Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Σχετικά έγγραφα
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

Εισαγωγή στη θεωρία πληροφορίας

Ψηφιακές Τηλεπικοινωνίες

Τηλεπικοινωνιακά Συστήματα ΙΙ

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Ψηφιακές Τηλεπικοινωνίες

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

Θέματα Συστημάτων Πολυμέσων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051

Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)

Θέματα Συστημάτων Πολυμέσων

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Κεφάλαιο 2 Πληροφορία και εντροπία

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

( ) log 2 = E. Σεραφείµ Καραµπογιάς

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

. Το σύνολο R* E. Το σύνολο R-{1}

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

1 Βασικές Έννοιες Θεωρίας Πληροφορίας

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Βασικά στοιχεία της θεωρίας πιθανοτήτων

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

F x h F x f x h f x g x h g x h h h. lim lim lim f x

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 4 η ΟΣΣ

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Θεώρημα Βolzano. Κατηγορία 1 η Δίνεται η συνάρτηση:

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Απαντήσεις σε απορίες

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Ασκήσεις μελέτης της 16 ης διάλεξης

Θεώρημα κωδικοποίησης πηγής

Λυμένες Ασκήσεις σε Εντροπία, Αμοιβαία Πληροφορία, Κωδικοποίηση Πηγής και AEP

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

Μέρος ΙΙ. Τυχαίες Μεταβλητές

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση

Βασικά στοιχεία της θεωρίας πιθανοτήτων

II. Τυχαίες Μεταβλητές

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

x. Αν ισχύει ( ) ( )

Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

P A B P(A) P(B) P(A. , όπου l 1

Θεωρία της Πληροφορίας (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΕΠΙΣΚΟΠΗΣΗ

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Διμεταβλητές κατανομές πιθανοτήτων

Transcript:

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία Υπό συνθήκη εντροπία Αμοιβαία πληροφορία Σελίδα-2

Πληροφορία ρ Πληροφορία ρ = νέα γνώση Αποκτάται μέσω ακοής, όρασης, κλπ. Η πηγή πληροφορίας παράγει εξόδους που δεν είναι γνωστές στο δέκτη εκ των προτέρων Εάν είχαμε τη δυνατότητα να τις προβλέψουμε δεν θα υπήρχε λόγος μετάδοσης. Τι είναι πληροφορία; Ποιοτική περιγραφή Απαιτείται όμως και ποσοτική περιγραφή Σελίδα-3

Πληροφορία ρ Πηγές πληροφορίας με διακριτό αλφάβητο Αλφάβητο Διακριτής Πηγής: s, s, s 0 1 2 Παράδειγμα: ο καιρός στην Ελλάδα κάθε 15 Αυγούστου s 0 : χιόνι s 1 : βροχή s 2 : λιακάδα Πότε δίνεται περισσότερη πληροφορία; όταν τυχαίνει το σύμβολο s 0 ήτοs 2 ; με τι σχετίζεται η πληροφορία που φέρει κάθε σύμβολο; Σελίδα-4

Μέτρο Πληροφορίας ρ Η πληροφορία ενός συμβόλου είναι μια φθίνουσα συνάρτηση της πιθανότητας εμφάνισης Μικρή αλλαγή στην πιθανότητα μικρή αλλαγή στην πληροφορία (συνεχής συνάρτηση) Έστω ότι συνδυάζω δύο πηγές και φτιάχνω μια τρίτη: Φ 1 : καιρός στην Ελλάδα Φ 2 : δείκτης NASDAQ Είναι ανεξάρτητες, τότε η πληροφορία τηςσύνθετης ύθ πηγής είναι το άθροισμα των πληροφοριών των δύο πηγών πιθανότητα σύνθετου συμβόλου Σελίδα-5

Ιδιότητες Πληροφορίας Όταν η πιθανότητα να συμβεί ένα γεγονός είναι μονάδα, τότε η ποσότητα της μεταφερόμενης πληροφορίας είναι μηδενική Όταν P A = 1 τότε I A = 0 Η πληροφορία ενός γεγονότος είναι μη αρνητικό μέγεθος αφού ισχύει και 0 P 1 I 0 A Όσο πιο απίθανο είναι να συμβεί ένα γεγονός, τόσο περισσότερη πληροφορία λαμβάνουμε από την πραγματοποίηση του, δηλαδή P A P B τότε Η συνολική ποσότητα πληροφορίας δύο ανεξάρτητων γεγονότων είναι το άθροισμα των επιμέρους μέτρων πληροφορίας των γεγονότων A I I B I I I P P P AB B AB A B Σελίδα-6

Μέτρο Πληροφορίας ρ Η πληροφορία I A την οποία αποκτούμε από την πραγματοποίηση ενός γεγονότος A το οποίο έχει πιθανότητα P A δίνεται από τον τύπο 1 I A log b ( ) log b P A P A Η βάση του λογαρίθμου ορίζει τη μονάδα μέτρησης της πληροφορίας Εάν η βάση είναι το 2, τότε η πληροφορία μετριέται σε bits Eαν χρησιμοποιηθούν φυσικοί λογάριθμοι (ln), τότε η πληροφορία μετριέται σε nat. (1 nat = 1,44 bits) Στησυνέχειαόλοιοιλογάριθμοιθαείναιμεβάσητο2 Σελίδα-7

Γραφική παράσταση της συνάρτησης του μέτρου της πληροφορίας για b = 2 Σελίδα-8

Μέση πληροφορία ή Εντροπία Από ένα τηλεπικοινωνιακό σύστημα μεταδίδονται σειρές συμβόλων Για μια πηγή πληροφορίας με αλφάβητο Α = {α 1, α 2,..., α Ν } H εντροπία ή μέση πληροφορία του Α, είναι ο μέσος όρος της αυτοπληροφορίας των συμβόλων στην έξοδο και ορίζεται ως 1, 2,..., N n 1 pa ( )log pa ( ) n n Σελίδα-9

Βασικές Ιδιότητες Εντροπίας Η εντροπία είναι το μέτρο της μέσης αβεβαιότητας μιας τυχαίας μεταβλητής Ορίζει τον μέσο αριθμό bits που απαιτούνται για να περιγράψουν την τυχαία μεταβλητή Η εντροπία μιας τυχαίας μεταβλητής εξαρτάται μόνο από τις πιθανότητες που χαρακτηρίζουν την τυχαία μεταβλητή και όχι από τις πιθανές τιμές της τυχαίας μεταβλητής lim( xlog x) 0 Αφού x 0 δεν αλλάζουν την εντροπία οι όροι με μηδενική πιθανότητα. Σελίδα-10

Δυαδική πηγή Shannon Εμφανίζονται δύο έξοδοι με πιθανότητες Η εντροπία είναι p και (1 p) αντίστοιχα. Η(X) = -plog(p) (1 p)log(1 p) = H b (p) Μεγιστοποιείται όταν p=½, δηλαδή H b (1/2) = 1 b Όπως αναμένεται το αποτέλεσμα μπορεί να μεταφερθεί με 1 bit Σελίδα-11

Γραφική Παράσταση Συνάρτησης Shannon Σελίδα-12

Ιδιότητες συνάρτησης Shannon 1. Όταν p = 0, είναι H(X) = 0. Αυτό προκύπτει από τη lim xlog σχέση 2 x x 0 =0 2. Όταν p = 1, είναι H(X) = 0. Η μεταβλητή παύει να είναι τυχαία και η αβεβαιότητα μηδενίζεται 3. Η εντροπία H(X) λαμβάνει τη μέγιστη τιμή της H max =1 bit, όταν p o =p 1 =1/2 δηλαδή όταν τα σύμβολα 1 και 0 είναι ισοπίθανα 4. Υπάρχει συμμετρία γύρω από το p=0.5 5. Είναι μία κοίλη συνάρτηση της πιθανότητας Σελίδα-13

Ιδιότητες της μέσης ποσότητας πληροφορίας ή εντροπίας Η μέση πληροφορία ρ Η(x) ( ) είναι συνεχής συνάρτηση των πιθανοτήτων p(x n ), όπου n 1, 2,.., N Η μέση πληροφορία Η(x) είναι συμμετρική συνάρτηση των πιθανοτήτων διαφορετικές τυχαίες μεταβλητές με κατανομές πιθανοτήτων που προέρχονται από μεταθέσεις της ίδιας κατανομής πιθανοτήτων έχουν ίση εντροπία. Η εντροπία Η(x) παίρνει τη μέγιστη τιμή, όταν όλα τα ενδεχόμενα είναι ισοπίθανα. Τότε η αβεβαιότητα είναι η μέγιστη δυνατή και κατά Τότε, η αβεβαιότητα είναι η μέγιστη δυνατή και κατά συνέπεια, η επιλογή ενός μηνύματος προσφέρει τη μέγιστη δυνατή μέση πληροφορία.

Ιδιότητες της μέσης ποσότητας πληροφορίας ρ ή εντροπίας ισχύει η αρχή της προσθετικότητας H X, Y H X H Y εάν έχουμε δύο ανεξάρτητα γεγονότα με πιθανότητα p x και p y, τότε η συνολική πληροφορία που μας δίνουν τα δύο γεγονότα είναι το άθροισμα των επιμέρους πληροφοριών.

Από κοινού εντροπία Η από κοινού εντροπία δύο τυχαίων μεταβλητών είναι N M (, ) px (, y)log( px (, y)) i 1 j 1 i j i j Ση Στη γενική περίπτωση Κ τυχαίων μεταβλητών N N N 1 2 1 H ( X X... X )... p( x, x,... x )log( p( x, x,..., x )) 1 2 K i1 i2 ik i1 i2 ik i 1 i 2 i 1 1 2 K Σελίδα-16

Υπό Συνθήκη Εντροπία Η υπό συνθήκη εντροπία της σύνθετης πηγής όταν είναι γνωστή η έξοδος της απλής πηγής δίνεται από την παρακάτω ακάτωσχέση N N M HY ( X) HY ( x) px ( ) px (, y)log( py ( / x)) i i i j j i i 1 i 1 j 1 Σελίδα-17

Κανόνας της Αλυσίδας Η από κοινού και υπό συνθήκη εντροπία συνδέονται μεταξύ τους. Το θεώρημα που μας δίνει αυτή τη σύνδεση λέγεται κανόνας της αλυσίδας δίνεται από την παρακάτω σχέση H(X/Y) = H(X,Y) H(Y) Σελίδα-18

Αμοιβαία Πληροφορία ρ Δίνει την ποσότητα πληροφορίας που μια τυχαία μεταβλητή παρέχει για μια άλλη. Μέτρο εξάρτησης των δύο μεταβλητών I( X; Y) H( X) H( X Y) Είναι συμμετρική ως προς Χ και Υ, δηλαδή I( X; Y) I( Y; X) Είναι μη αρνητική, δηλαδή Ι(Χ;Υ) 0 Σελίδα-19

Διάγραμμα Venn Σελίδα-20

Διάγραμμα Venn 1. Τη σύνθετη εντροπία (joint entropy) Η(Χ,Υ), (, η οποία μετράει τη συνολική πληροφορία των Χ και Y. 1. Την εντροπία υπό συνθήκης (conditional entropy) Η(Χ Υ), η οποία μετράει την πληροφορία του Χ, όταν η Υ είναι γνωστή και αντιστρόφως. 2. Την αμοιβαία-κοινή εντροπία (mutual entropy) Ι(Χ;Y), ηοποίαμετράειτησχέσητωνχκαιυ, υπό την έννοια ότι μας δείχνει πόσο μειώνεται η πληροφορία του Χ όταν μαθαίνουμε το Υ και αντιστρόφως. Σελίδα-21