Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου

Σχετικά έγγραφα
Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Σύντομη σύγκριση μεθόδων ένταξης δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Αλγόριθμοι συνόρθωσης δικτύων

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)

Αλγόριθμοι συνόρθωσης δικτύων

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Παράδειγμα συνόρθωσης υψομετρικού δικτύου

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Γενική λύση συνόρθωσης δικτύου

Μερικά διδακτικά παραδείγματα

Μερικά διδακτικά παραδείγματα

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Οδηγός λύσης θέματος 3

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Οδηγός λύσης θέματος 4

Σύντομος οδηγός του προγράμματος DEROS

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων

Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς

Τοπογραφικά Δίκτυα & Υπολογισμοί

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)

Τοπογραφικά Δίκτυα & Υπολογισμοί

Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Οδηγός λύσης για το θέμα 2

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

Οδηγός λύσης θέματος 2

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

Τοπογραφικά Δίκτυα & Υπολογισμοί

Οδηγός λύσης θέματος 1

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ

Τοπογραφικά Δίκτυα & Υπολογισμοί

Σύντομος οδηγός του μαθήματος

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Αξιολόγηση ακρίβειας του μοντέλου μετασχηματισμού μεταξύ HTRS07 & ΕΓΣΑ87

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Τοπογραφικά Δίκτυα & Υπολογισμοί

Αξιολόγηση του ΕΓΣΑ87 μέσω ενός σύγχρονου γεωδαιτικού μοντέλου ταχυτήτων για τον Ελλαδικό χώρο

Τοπογραφικά Δίκτυα & Υπολογισμοί

Προβλήματα και επιλογές στο σχεδιασμό, υλοποίηση και χρήση ενός διαχρονικού γεωδαιτικού ΠΑ υψηλής ακρίβειας για την Ελλάδα

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΥΨΟΜΕΤΡΙΑ - ΧΩΡΟΣΤΑΘΜΗΣΗ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΜΕΑΣ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών. Στέφανος Βαζακίδης και Κατερίνα Σαχίνογλου

Συνόρθωση του δικτύου SmartNet Greece και ένταξη στο HTRS07 του HEPOS. Συγκρίσεις και εφαρμογές NRTK στην πράξη.

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

Χρήση εναλλακτικών τεχνικών συνόρθωσης δικτύων μέσω στοχαστικών δεσμεύσεων και εκτίμησης συνιστωσών μεταβλητότητας αναφοράς

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

Σύντομος οδηγός του μαθήματος

Ένταξη διανομών Υπ. Γεωργίας στο ΕΓΣΑ 87 μέσω μετρήσεων GNSS: η περίπτωση του Συνοικισμού Δασοχωρίου Σερρών

Transcript:

Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Περιεχόμενα Στις επόμενες διαφάνειες παρουσιάζονται οι ακρίβειες των συνορθωμένων συντεταγμένων που έχουν προκύψει από διάφορα σενάρια επίλυσης ενός οριζόντιου δικτύου. Τα αποτελέσματα περιλαμβάνουν τις τιμές των τυπικών αποκλίσεων συντεταγμένων από τους εξής πίνακες: () - (επίδραση των τυχαίων σφαλμάτων των μετρήσεων) () - (επίδραση των τυχαίων σφαλμάτων των δεσμεύσεων για το ΣΑ) () () - (συνολική επίδραση των παραπάνω) xˆ xˆ xˆ

Οριζόντιο δίκτυο (*) Τα δεδομένα του δικτύου είναι ίδια με αυτά που δόθηκαν σε προηγούμενο παράδειγμα. (*) Τα σημεία,, είναι γνωστοί σταθμοί αναφοράς (οι αρχικές συντεταγμένες τους έχουν ακρίβεια: ± cm)

Υπενθυμίζεται ότι - Οι παρατηρήσεις πεδίου στο συγκεκριμένο δίκτυο έχουν γίνει με ακρίβεια της τάξης: ~ cc για τις οριζόντιες διευθύνσεις ~ 0.7 cm για τις οριζόντιες αποστάσεις - Οι αποστάσεις μεταξύ των σημείων του δικτύου είναι περίπου - km. - Οι γνωστές συντεταγμένες των σταθμών αναφοράς έχουν ακρίβεια cm.

Σύγκριση ακρίβειας συντ/νων από διαφορετικές πηγές τυχαίων σφαλμάτων

Παράδειγμα: τιμές από τον πίνακα () =.0 cm =. cm =.7 cm =. cm =. cm =. cm = 0.7 cm Λύση: x, y, x σταθερά

Παράδειγμα: τιμές από τον πίνακα () = 7.9 cm = 8.6 cm = 8.8 cm = 7. cm =.7 cm = 0.0 cm =. cm Λύση: x, y, x σταθερά

Παράδειγμα: τιμές από τον πίνακα =.0 cm =. cm = 8. cm = 8.7 cm =.7 cm =. cm = 9.0 cm = 7. cm () και =. cm = 0.7 cm = 0. cm =. cm =. cm =.9 cm Λύση: x, y, x σταθερά

Να θυμάστε ότι () - Ο πίνακας δίνει τις ακρίβειες των συνορθωμένων συντεταγμένων του δικτύου θεωρώντας ότι οι γνωστές συντεταγμένες των ΣΑ δεν έχουν καθόλου σφάλματα! () - Ο πίνακας δίνει τις ακρίβειες των συνορθωμένων συντεταγμένων του δικτύου λόγω των τυχαίων σφαλμάτων στις γνωστές συντεταγμένες των ΣΑ που συμμετέχουν στις δεσμεύσεις ορισμού του datum!

Να θυμάστε ότι - Η αξιολόγηση του δικτύου με βάση τον πίνακα () συμ-μεταβλ. δίνει, κατά μία έννοια, την σχετική ακρίβεια των συνορθωμένων συντεταγμένων ως προς τους γνωστούς ΣΑ που χρησιμοποιούνται στον ορισμό του datum! - Η αξιολόγηση του δικτύου με βάση τον πίνακα συμ-μεταβλ. δίνει, κατά μία έννοια, την απόλυτη ακρίβεια των συνορθωμένων συντεταγμένων ως προς το σύστημα αναφοράς που υλοποιούν οι γνωστοί ΣΑ!

Σύγκριση ακρίβειας συντ/νων από διαφορετικά σενάρια συνόρθωσης δικτύου

Παράδειγμα: τιμές από τον πίνακα =.0 cm =. cm = 0. cm = 0. cm =.7 cm =. cm =. cm = 0.7 cm () = 0. cm = 0.6 cm =. cm = 0.7 cm = 0.8 cm = 0.7 cm =. cm = 0.7 cm = 0. cm Λύση Ι: x, y, x σταθερά Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Παράδειγμα: τιμές από τον πίνακα = 7.9 cm = 8.6 cm =.0 cm =.6 cm = 8.8 cm = 7. cm =. cm =.0 cm () =.6 cm =.9 cm = 0.0 cm =. cm =.0 cm =. cm =.7 cm =.9 cm =.0 cm Λύση Ι: x, y, x σταθερά Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Παράδειγμα: τιμές από τον ολικό πίνακα = 8. cm = 8.7 cm =.0 cm =.6 cm = 9.0 cm = 7. cm =. cm =. cm =.7 cm =.0 cm = 0. cm =. cm =. cm =. cm =.9 cm =.0 cm =.0 cm Λύση Ι: x, y, x σταθερά Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Συμπέρασμα Λύση μερικών εσωτερικών δεσμεύσεων () () Λύση ελάχιστων σταθερών συντεταγμένων () () (*) Η λύση μερικών εσωτερικών δεσμεύσεων δίνει πιο ακριβή και σταθερή ένταξη του δικτύου στο ΣΑ που ορίζουν οι γνωστοί σταθμοί αναφοράς ειδικά όταν οι γνωστές συντεταγμένες των τελευταίων είναι επηρεασμένες από τυχαία σφάλματα.

Σύγκριση ακρίβειας συντ/νων από διαφορετικά σενάρια συνόρθωσης δικτύου

Παράδειγμα: τιμές από τον πίνακα () =.0 cm =. cm =.7 cm =. cm =. cm =. cm = 0.7 cm Λύση: x, y, x σταθερά

Παράδειγμα: τιμές από τον πίνακα () =. cm = 0.7 cm = 0.6 cm = 0. cm Λύση: x, y, x, y, x, y σταθερά

Παράδειγμα: τιμές από τον πίνακα () (*) αν η ακρίβεια των παρατηρήσεων ήταν μία τάξη μεγέθους χειρότερη =. cm = 6. cm = 6. cm Λύση: x, y, x, y, x, y σταθερά

Παράδειγμα: τιμές από τον πίνακα () = 7.9 cm = 8.6 cm = 8.8 cm = 7. cm =.7 cm = 0.0 cm =. cm Λύση: x, y, x σταθερά

Παράδειγμα: τιμές από τον πίνακα () = 6. cm =. cm =. cm =.9 cm Λύση: x, y, x, y, x, y σταθερά

Παράδειγμα: τιμές από τον πίνακα () = 0.0 cm = 0.0 cm (*) αν οι σταθμοί αναφοράς είχαν ακρίβεια ± 0 cm =.8 cm =.8 cm = 0.0 cm = 0.0 cm = 0.0 cm = 0.0 cm = 7. cm =.6 cm Λύση: x, y, x, y, x, y σταθερά

Παράδειγμα: τιμές από τον πίνακα =. cm = 0.7 cm = 6. cm =. cm () και () = 0.6 cm = 0. cm =. cm =.9 cm Λύση: x, y, x, y, x, y σταθερά

Να θυμάστε ότι - Η διατήρηση περισσότερων σταθερών συντ/νων από όσες χρειάζονται για τον ορισμό του ΣΑ (πλεονάζουσες απόλυτες δεσμεύσεις) οδηγεί σε βελτίωση της στατιστικής ακρίβειας του δικτύου σε σχέση με την λύση ελαχίστων δεσμεύσεων. - Η βελτίωση αυτή είναι θεωρητικού χαρακτήρα και δεν αντανακλά τον κίνδυνο παραμόρφωσης που υπάρχει σε λύσεις πλεοναζουσών δεσμεύσεων λόγω σφαλμάτων στις σταθερές συντ/νες των γνωστών σταθμών αναφοράς!

Σύγκριση ακρίβειας συντ/νων από διαφορετικά σενάρια συνόρθωσης δικτύου

Παράδειγμα: τιμές από τον ολικό πίνακα =.0 cm =.6 cm = 6. cm =. cm =. cm =. cm =.7 cm =.0 cm =. cm =.9 cm =. cm =. cm =.0 cm =.0 cm Λύση Ι: x, y, x, y, x, y σταθερά Λύση ΙΙ: ΠΔ με βάρη (W = c - )

Παράδειγμα: τιμές από τον ολικό πίνακα = 0.0 cm = 0.0 cm =.9 cm =. cm (*) αν οι σταθμοί αναφοράς είχαν ακρίβεια ± 0 cm =.9 cm =.8 cm = 6.6 cm =.9 cm = 0.0 cm = 0.0 cm =. cm =.8 cm =.0 cm =. cm = 7. cm =.6 cm = 0.0 cm = 0.0 cm =.8 cm =.9 cm Λύση Ι: x, y, x, y, x, y σταθερά Λύση ΙΙ: ΠΔ με βάρη (W = c - )

Παράδειγμα: τιμές από τον ολικό πίνακα =.7 cm =. cm =.6 cm =. cm (*) αν η ακρίβεια των παρατηρήσεων ήταν μία τάξη μεγέθους χειρότερη = 7.6 cm = 6. cm = 7. cm = 6. cm =.0 cm = 7. cm =.8 cm = 7. cm =. cm =.8 cm Λύση Ι: x, y, x, y, x, y σταθερά Λύση ΙΙ: ΠΔ με βάρη (W = c - )

Συμπέρασμα Λύση πλεοναζουσών απόλυτων δεσμεύσεων Λύση πλεοναζουσών δεσμεύσεων με βάρη () () () () (*) Η δεύτερη λύση ελέγχει & ελαχιστοποιεί καλύτερα την επίδραση των σφαλμάτων που υπάρχουν στις γνωστές συντεταγμένες των σταθμών αναφοράς κατά τη συνόρθωση του δικτύου.

Σύγκριση ακρίβειας συντ/νων από διαφορετικά σενάρια συνόρθωσης δικτύου

Παράδειγμα: τιμές από τον ολικό πίνακα =.0 cm =.6 cm =.0 cm =.6 cm =. cm =. cm =. cm =. cm =.7 cm =.0 cm =.7 cm =.0 cm =. cm =. cm =. cm =. cm =.0 cm =.0 cm =.0 cm =.0 cm Λύση Ι: ΠΔ με βάρη (W = c - ) Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Παράδειγμα: τιμές από τον ολικό πίνακα =.9 cm =. cm =.9 cm =. cm (*) αν οι σταθμοί αναφοράς είχαν ακρίβεια ± 0 cm = 6.6 cm =.9 cm = 6.6 cm =.9 cm =. cm =.8 cm =. cm =.8 cm =.0 cm =. cm =.0 cm =. cm =.8 cm =.9 cm =.8 cm =.8 cm Λύση Ι: ΠΔ με βάρη (W = c - ) Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Παράδειγμα: τιμές από τον ολικό πίνακα =.7 cm =. cm = 6. cm =. cm =.6 cm σ =. cm = 6. cm = 6.6 cm (*) αν η ακρίβεια των παρατηρήσεων ήταν μία τάξη μεγέθους χειρότερη = 7. cm = 6. cm = 8.8 cm = 7. cm =.8 cm = 7. cm =.6 cm = 7. cm x =. cm =.8 cm = 7. cm = 6.7 cm Λύση Ι: ΠΔ με βάρη (W = c - ) Λύση ΙΙ: μερικές εσωτερικές δεσμεύσεις (σημεία,, )

Συμπέρασμα Λύση πλεοναζουσών δεσμεύσεων με βάρη Λύση μερικών εσωτερικών δεσμεύσεων () () () () (*) Η πρώτη λύση περιορίζει κάπως καλύτερα την επίδραση των τυχαίων σφαλμάτων που υπάρχουν στις παρατηρήσεις πεδίου του δικτύου.