Οδηγός λύσης θέματος 3
|
|
- Νέφθυς Παχής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος Οδηγός λύσης θέματος 3 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
2 ανά 5 λεπτά ανά 1 λεπτό Αρχείο δεδομένων (DataSet3.txt) Χρονική εποχή παρατηρήσεων t k (min) Συντ/γμένη x του κινούμενου δέκτη μέσω GPS (m) Συντ/γμένη y του κινούμενου δέκτη μέσω GPS (m) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
3 Άλλα διαθέσιμα δεδομένα Ακρίβεια παρατηρήσεων οριζόντιας θέσης μέσω GPS C v 1 m 1 m 2 2 Αρχικές τιμές της θέσης και της ταχύτητας του κινούμενου δέκτη (t o = ) x( t ) o xt ( o) 58.3 m yt ( o) m xt ( o) 31.5 km / h yt ( o) 35.3 km / h 2 25 m km / h 81 km / h m2 C x ( t o ) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
4 Y (m) Παρατηρήσεις της τροχιάς του κινούμενου δέκτη t=9 min t=1 min.5 1 X (m) x 1 4 Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
5 Δυναμικό μοντέλο του κινούμενου δέκτη x( t) 1 ( t t) x( t) w1 () t y( t) 1 ( t t) y( t) w2 () t x( t) 1 x( t) w3 () t y( t) 1 y( t) w () t 4 Κίνηση με σταθερή ταχύτητα Δυναμικός θόρυβος C w 2 25 m 2 25 m km / h km / h Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
6 Μοντέλο εποχιακών παρατηρήσεων xt () v obs x ( t) 1 ( ) obs y t x () t obs y () t 1 x( t) v obs y () t Μετρήσεις μέσω GPS πίνακας Α yt () Διάνυσμα άγνωστων παραμέτρων προβλήματος Τυχαία σφάλματα μετρήσεων GPS Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
7 Τι προσπαθούμε να κάνουμε ; Υλοποίηση του αλγορίθμου Kalman filtering για την εκτίμηση της θέσης και ταχύτητας του κινούμενου δέκτη Τime updating (prediction) k k k1 ˆ k1 xˆ ( t ) Φ( t, t ) x ( t ) xˆ T t ( ) k t t k1 t ˆ ( t ) k t x k1 C Φ(, ) C Φ (, ) C w k k1 Measurement updating (filtering) k k k k k k xˆ ( t ) xˆ ( t ) K y A xˆ ( t ) C 1 xˆ ( t ) ˆ k C x A P A ( tk) T k k k 1 πίνακας κέρδους T k k k K C A P xˆ ( tk ) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
8 Ενδεικτικά αποτελέσματα Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
9 DX (m) X (m) Εκτίμηση θέσης κατά Χ x συντ/νες Χ μέσω εκτιμήσεων x- συντ/νες Χ μέσω εκτιμήσεων x Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
10 DY (m) Y (m) Εκτίμηση θέσης κατά Υ συντ/νες Υ μέσω εκτιμήσεων x- συντ/νες Υ μέσω εκτιμήσεων x Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
11 DX (m) DY (m) X (m) Y (m) Εκτίμηση θέσης κατά X και Υ συντ/νες Χ μέσω εκτιμήσεων x- συντ/νες Χ μέσω εκτιμήσεων x x συντ/νες Υ μέσω εκτιμήσεων x- συντ/νες Υ μέσω εκτιμήσεων x Από τη χρονική εποχή t=3 min και μετά, μεγαλώνει το μέγεθος των διαφορών μεταξύ της εκτίμησης και της πρόγνωσης για τον προσδιορισμό της θέσης του κινούμενου δέκτη γιατί; Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
12 DV X (km/h) V X (km/h) Εκτίμηση ταχύτητας κατά Χ 6 4 ταχύτητες κατά Χ μέσω εκτιμήσεων x- ταχύτητες κατά Χ μέσω εκτιμήσεων x Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
13 DV Y (km/h) V Y (km/h) Εκτίμηση ταχύτητας κατά Υ 4 ταχύτητες κατά Υ μέσω εκτιμήσεων x- ταχύτητες κατά Υ μέσω εκτιμήσεων x Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
14 DV X (km/h) DV Y (km/h) V X (km/h) V Y (km/h) Εκτίμηση ταχύτητας κατά X και Υ 6 4 ταχύτητες κατά Χ μέσω εκτιμήσεων x- ταχύτητες κατά Χ μέσω εκτιμήσεων x+ 4 ταχύτητες κατά Υ μέσω εκτιμήσεων x- ταχύτητες κατά Υ μέσω εκτιμήσεων x Tο μέγεθος των διαφορών μεταξύ εκτίμησης και πρόγνωσης για τον προσδιορισμό της ταχύτητας του κινούμενου δέκτη δεν αλλάζει ιδιαίτερα από την χρονική εποχή t=3 min και μετά γιατί; Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
15 V (km/h) Εκτίμηση συνολικής ταχύτητας 7 6 μέτρο ταχύτητας (predicted) μέτρο ταχύτητας (estimated) Στο παραπάνω γράφημα φαίνεται να υπάρχει μια φαινόμενη μετατόπιση του ενός σετ ταχυτήτων σε σχέση με το άλλο! Για ποιο λόγο συμβαίνει αυτό; Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
16 Πίνακας κέρδους t k = 1 min t k = 2 min K k K k t k = 3 min t k = 4 min K k K k Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
17 Πίνακας κέρδους t k = 29 min t k = 3 min K k K k t k = 35 min t k = 4 min K k K k Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
18 Πίνακας κέρδους t k = 29 min t k = 4 min K k K k Οι εκτιμήσεις των ταχυτήτων φαίνεται να κερδίζουν λιγότερο από την πληροφορία των παρατηρήσεων όσο περνάει ο χρόνος! Για ποιο λόγο μπορεί να συμβαίνει αυτό; Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
19 Residual along Y (m) Residual along X (m) Σφάλματα κλεισίματος μεταξύ παρατηρήσεων και προγνώσεων δυναμικού μοντέλου k k k k r y A xˆ ( t ) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
20 Std (m) Std (m) Ακρίβεια εκτίμησης θέσης 8 Ακρίβεια συντ/νων Χ STDs των εκτιμήσεων Χ (+) STDs των εκτιμήσεων Χ (-) Ακρίβεια συντ/νων Υ STDs των εκτιμήσεων Υ (+) STDs των εκτιμήσεων Υ (-) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
21 Std (km/h) Std (km/h) Ακρίβεια εκτίμησης ταχύτητας 14 Ακρίβεια ταχυτήτων κατά Χ 12 1 STDs των εκτιμήσεων V x (+) STDs των εκτιμήσεων V x (-) Ακρίβεια ταχυτήτων κατά Υ 12 1 STDs των εκτιμήσεων V y (+) STDs των εκτιμήσεων V y (-) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
22 Y (m) Εκτιμώμενες τροχιές του κινούμενου δέκτη t=9 min t=7 min t=3 min 8 t=19 min 6 4 t=1 min t=65 min 2 τροχιά μέσω εκτιμήσεων x- τροχιά μέσω εκτιμήσεων x+ t=1 min X (m) x 1 4 Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
23 Y (m) Εκτιμώμενες τροχιές του κινούμενου δέκτη observed trajectory estimated trajectory (-) X (m) x 1 4 Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
24 Y (m) Y (m) Εκτιμώμενες τροχιές του κινούμενου δέκτη 8 7 δr=162.5 m 6 5 δr=214.8 m t=12 min t=8 min δr=286.2 m t=5 min δr=147.3 m t=3 min t=1 min observed trajectory estimated trajectory (-) 1 δr=2.8 m X (m) X (m) x 1 4 Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
25 Y (m) Y (m) Εκτιμώμενες τροχιές του κινούμενου δέκτη 11 1 δr=272.3 m δr=138.2 m 9 t=28 min t=3 min t=35 min 8 t=45 min 7 t=5 min δr=188.7 m observed trajectory estimated trajectory (-) X (m) x X (m) x 1 4 Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
26 Y (m) Εκτιμώμενες τροχιές του κινούμενου δέκτη observed trajectory estimated trajectory (+) X (m) Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
27 Τεχνική έκθεση o Περιγραφή της διαδικασίας επίλυσης του θέματος και όλων των σχετικών αλγορίθμων που εφαρμόσθηκαν. o Παράθεση των αποτελεσμάτων σε κατάλληλους πίνακες με τη βοήθεια συνοδευτικών γραφημάτων (όπου κρίνετε ότι είναι απαραίτητο). o Παράθεση του σχετικού κώδικα ή των υπολογιστικών φύλλων που χρησιμοποιήσατε. o Αναλυτικός σχολιασμός των αποτελεσμάτων. Σημειώσεις για το μάθημα Ειδικά Θέματα Συνορθώσεων και Εφαρμογές (8 ο εξάμηνο) Χ. Κωτσάκης, 217
Οδηγός λύσης για το θέμα 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 218-219 Οδηγός λύσης για το θέμα 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Οδηγός λύσης θέματος 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να κάνουμε
Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Οδηγός λύσης θέματος 4
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 217-218 Οδηγός λύσης θέματος 4 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να
Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 08-09 Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Οδηγός λύσης θέματος 1
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Οδηγός λύσης θέματος 1 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Αρχείο δεδομένων (DataSet1.txt)
Σύντομη σύγκριση μεθόδων ένταξης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω ότι έχουμε διαθέσιμες
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 218-219 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και
Παραδείγματα ανάλυσης αξιοπιστίας δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παραδείγματα ανάλυσης αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παράδειγμα συνόρθωσης υψομετρικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα συνόρθωσης υψομετρικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίνεται
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 207-208 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Σημείωση Τα παρακάτω
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Σύντομος οδηγός του μαθήματος
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 017-018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Γενική λύση συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το
Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 18-19 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Σύντομος οδηγός του προγράμματος DEROS
Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
Αξιολόγηση ακρίβειας του μοντέλου μετασχηματισμού μεταξύ HTRS07 & ΕΓΣΑ87
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Αξιολόγηση ακρίβειας του μοντέλου μετασχηματισμού μεταξύ HTRS07 & ΕΓΣΑ87 Χριστόφορος Κωτσάκης Τοµέας Γεωδαισίας και Τοπογραφίας Τµήµα Αγρονόµων
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 018-019 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές στο δίκτυο του
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη
Κίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 6: Σχηματισμός κανονικών εξισώσεων και το πρόβλημα ορισμού του ΣΑ Χριστόφορος Κωτσάκης Άδειες
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΚΙΝΗΜΑΤΙΚΟΣ ΕΝΤΟΠΙΣΜΟΣ GNSS/INS: ΑΠΟ ΤΑ ΕΛΑΧΙΣΤΑ
Δορυφορική Γεωδαισία Σύγχρονα Συστήματα και Εφαρμογές Σχολή Τεχνολογικών Εφαρμογών, Τμήμα Τοπογραφίας ΤΕΙ Αθήνας, 26 Μαΐου 2010 ΚΙΝΗΜΑΤΙΚΟΣ ΕΝΤΟΠΙΣΜΟΣ GNSS/INS: ΑΠΟ ΤΑ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΣΤΑ ΜΟΝΤΕΛΑ ΜΗΧΑΝΙΚΗΣ
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός
Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS
Επιµορφωτικά Σεµινάρια ΑΤΜ Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Συστήματα & πλαίσια αναφοράς Μετασχηματισμοί συντεταγμένων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική
Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Σύντομος οδηγός του μαθήματος
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1) Ποιός είναι ο βασικός ρόλος και η χρησιμότητα των δικτύων στη Γεωδαισία και την Τοπογραφία; 2) Αναφέρετε ορισμένες
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο Μεταλλικού Τ1-Τ10
2 ο Μάθημα Κίνηση στο επίπεδο
ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
v r T, 2 T, a r = a r (t) = 4π2 r
Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας
5 η Εβδομάδα Έργο και κινητική ενέργεια Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας Ομαλή κυκλική κίνηση Κίνηση σωματίου σε κύκλο με ταχύτητα σταθερού μέτρου. Επιτάχυνση
Θέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων
Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS
Επιµορφωτικά Σεµινάρια ΑΤΜ Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ΚΤΗΜΑΤΟΛΟΓΙΟ
προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway
ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017 Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway 1. Χρησιµοποιώντας διαστασιακή ανάλυση, να προσδιορίστε την ταχύτητα
Θέση- μετατόπιση -Ταχύτητα
Φύλλο εργασίας ΜΑΘΗΜΑ 1 Θέση- μετατόπιση -Ταχύτητα 1.Το σώμα Σ του σχήματος κινείται πάνω στον οριζόντιο άξονα x x. Με σημείο αναφοράς το Α το σώμα Σ βρίσκεται στη θέση x=, ενώ με σημείο αναφοράς το Β
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,