Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

Σχετικά έγγραφα
Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

Αναπαραστάσεις οµάδων: παραδείγµατα

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

(m, n) = 1 τότε Aut(H K) = Aut(H) Aut(K). Z(GL(2, R)), Z(SL(2, R)), Z(GL(n, R)), Z(SL(n, R)). } a b 0 c {( ) 1 b A = 0 1 {( ) a 0 D = 0 c T = } : b R

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

Διανύσµατα στο επίπεδο

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Περιεχόμενα. Πρόλογος 3

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

Γεωµετρικη Θεωρια Ελεγχου

A, και εξετάστε αν είναι διαγωνίσιμη.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

Εφαρμοσμένα Μαθηματικά ΙΙ

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

a = a a Z n. a = a mod n.

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

a 11 a 1n b 1 a m1 a mn b n

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

= k. n! k! (n k)!, k=0

n! k! (n k)!, = k k 1

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

March 14, ( ) March 14, / 52

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Υπολογιστικά & Διακριτά Μαθηματικά

Κεφάλαιο 4 ιανυσµατικοί Χώροι

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Κεφάλαιο 7 Βάσεις και ιάσταση

x 2 = x x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

Κεφάλαιο 4 Διανυσματικοί Χώροι

g (v + W ) = gv + W gv = 0.

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

[A I 3 ] [I 3 A 1 ].

Κεφάλαιο 4 Διανυσματικοί Χώροι

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

Γραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

[ ] και το διάνυσµα των συντελεστών:

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ

Transcript:

6 Ιουλίου 2015

1 Οµάδες 2 3

οµάδες Οµάδες Παραδείγµατα (Z, +) (Z n, +) (R, +), (R, ), (R +, ) (T, ), T = {z C : z = 1} S n = {φ : N n N n, 1 1 και επί}, όπου N n = {1, 2,..., n}, µε πράξη την σύνθεση. D n =< a, b > τ.ω.a 2 = b n = 1, aba = b 1. S = {φ : N N, 1 1 και επί : k φ τ.ω.φ(n) = n, n k φ } D =< a, b > τ.ω.a 2 = 1, aba 1 = b 1.

Παραδείγµατα Οι παρακάτω είναι οµάδες πινάκων µε πράξη τον πολλαπλασιασµό πινάκων GL(n, R) = {A : n n πίνακας, det A 0} SL(n, R) = {A : A GL(n, R), det A = 1} O(n, R) = {A : A GL(n, R), A t A = I} GL(n, C) = {A : n n πίνακας, det A 0} U(n) = {A : A GL(n, C), A A = I} SU(n) = {A : A U(n), det A = I}

Παραδείγµατα 1 x z H = 0 1 y : x, y, z R 0 0 1 1 x z H d = 0 1 y : x, y, z Z 0 0 1 {( ) } a b SL(n, Z) = : a, b, c, d Z, ad bc = 1 c d F n η ελεύθερη οµάδα µε n γεννήτορες.

Ορισµός H χώρος Hilbert πεπερασµένης διάστασης και G οµάδα. Μια unitary αναπαράσταση π της G είναι µια απεικόνιση G B(H) τέτοια ώστε: 1 x π(x) είναι οµοµορφισµός οµάδων 2 π(x) π(x) = π(x)π(x) = I, x G. Ορισµός (π, H) unitary αναπαράσταση της G. Ενας διανυσµατικός υπόχωρος V του H λέγεται αναλλοίωτος αν π(x)v V, v V, x G V αναλλοίωτος, τότε V αναλλοίωτος.

Ορισµός (π, H) unitary αναπαράσταση της G. Η π λέγεται irreducible αν οι µόνοι αναλλοίωτοι υπόχωροι είναι ο H και ο {0}. Ορισµός G οµάδα, (π, H) unitary αναπαράσταση της G. Αν V αναλλοίωτος υπόχωρος του H, τότε ο περιορισµός π V (g) του π(g) στον V, ορίζει ένα στοιχείο του B(V). Η g π V (g) είναι µια απεικόνιση G B(V) και λέγεται υποαναπαράσταση της π.

Ορισµός (π 1, H 1 ), (π 2, H 2 ) αναπαραστάσεις της G. Η απεικόνιση x (π 1 π 2 )(x) : G B(H 1 H 2 ) που ορίζεται (π 1 π 2 )(x)(v 1 + v 2 ) = π 1 (x)v 1 + π 2 (x)v 2 λέγεται ευθύ άθροισµα των π 1, π 2. G οµάδα, (π, H) unitary αναπαράσταση της G. Αν V αναλλοίωτος υπόχωρος του H, τότε ο περιορισµός π V της π στον V και ο περιορισµός π V της π στον V είναι υποαναπαραστάσεις της G, και π = π V π V. Πρόταση (π, H) unitary αναπαράσταση της G. Τότε η π είναι ευθύ άθροισµα από irreducible αναπαραστάσεις.

Ορισµός (π 1, H 1 ), (π 2, H 2 ) αναπαραστάσεις της G. Λέγονται ισοδύναµες αν υπάρχει U : H 1 H 2 ισοµετρία επί, τέτοια ώστε x G. Uπ 1 (x) = π 2 (x)u Η ισοδυναµία αναπαραστάσεων είναι σχέση ισοδυναµίας. Ορισµός Ĝ το σύνολο των κλάσεων ισοδυναµίας των unitary irreducible αναπαραστάσεων της G.

Η τετριµµένη L 2 (G) ο χώρος Hilbert µε εσωτερικό γινόµενο Η αναπαράσταση λ που ορίζεται f, g = f(x)g(x). λ(y)f(x) = f(y 1 x) λέγεται αριστερή κανονική αναπαράσταση της G. Αν e x : G G που ορίζεται e x (y) = 1 αν x = y και e x (y) = 0 αν x y τότε λ(y)e x = e yx.

Z 2 στο C( 2 : ορίζουµε ) 0 1 π(1) = 1 0 Z 4 στο C( 2 : ορίζουµε ) 0 1 π(1) = 1 0 D 4 στο C( 2 : ορίζουµε ) 0 1 π(a) =, π(b) = 1 0 ( 0 1 1 0 )

Z n, ορίζουµε για k = 0, 1, 2,...n 1 π k : Z n C π k (m) = e 2πi km n S πεπερασµένο σύνολο στο οποίο δρα η G. C(S) δ.χ. πάνω στο C µε ϐάση (e s ) s S. Ορίζουµε λs e s, µ s e s = λ s µ s. π(x)e s = e xs

Αλγεβρα οµάδας Οµάδες Ενας δ.χ. V πάνω στο C λέγεται άλγεβρα αν είναι εφοδιασµένος µε µια πράξη τ.ω. για κάθε a, b, c V, για κάθε λ C a(b + c) = ab + ac, (b + c)a = ba + ca a(bc) = (ab)c (λa)b = a(λb) = λ(ab) Λέγεται άλγεβρα µε µονάδα αν υπάρχει ενα στοιχείο e V τ.ω. ea = ae = a για κάθε a V. Παραδείγµατα: Η άλγεβρα των τετραγωνικών πινάκων, η άλγεβρα των γραµµικών µετασχηµατισµών ενός δ.χ.

Αλγεβρα οµάδας Οµάδες L 1 (G) = {f : G C} µε την κατά σηµείο πρόσθεση και γινόµενο την συνέλιξη f g(x) = y G f(xy 1 )g(y) και ενέλιξη f (x) = f(x 1 ). Η L 1 (G) µε την πράξη και την ενέλιξη λέγεται άλγεβρα της οµάδας G. Το στοιχείο e e που ορίζεται e e (y) = 1 αν e = y και e e (y) = 0 αν e y είναι µονάδα της L 1 (G).

Πρόταση (π, H) αναπαράσταση της G. Τότε η f π(f) = x G f(x)π(x) ικανοποιεί 1 π : L 1 (G) B(H) είναι γραµµική. 2 π(f g) = π(f)π(g) 3 π(f ) = π(f) 4 π(e e ) = I Αντίστροφα: Αν φ : L 1 (G) B(H) ικανοποιεί τις συνθήκες της πρότασης, τότε υπάρχει µια unitary αναπαράσταση π της G τ.ω. φ(f) = π(f)

Προβλήµατα Θεωρίας Αναπαραστάσεων 1 Να υπολογιστεί το Ĝ. 2 Να µελετηθεί η λ. 3 Για f L 1 (G) να ϐρεθεί η f απο τα π(f).

Οµάδες Πρόταση G οµάδα, (π 1, H 1 ), (π 2, H 2 ) irreducible αναπαραστάσεις της G, και A : H 1 H 2 τ.ω. Aπ 1 (x) = π 2 (x)a για κάθε x G. Τότε 1 Αν οι π 1, π 2 δεν είναι ισοδύναµες, A = 0. 2 Αν π 1 = π 2, A = λi.

Απόδειξη Αν π irreducible και Aπ(x) = π(x)a, τότε αν λ είναι ιδιοτιµή του A, ο χώρος των ιδιοδιανυσµάτων για την λ είναι αναλλοίωτος, άρα ίσος µε H. Αρα A = λi. Εστω A τ.ω. Aπ 1 (x) = π 2 (x)a. Τότε A A ικανοποιεί A Aπ 1 (x) = π 1 (x)a A και άρα είναι πολλαπλάσιο του I. Αν δεν είναι 0, τότε αν A = U A έχουµε Uπ 1 (x) = π 2 (x)u και οι π 1, π 2 είναι ισοδύναµες.

Πρόταση G οµάδα, (π, H) αναπαράσταση της G. Τότε τα ε.ε.ι. 1 A B(H), Aπ(x) = π(x)a για κάθε x G, τότε A = λi. 2 π irreducible Απόδειξη Αν π οχι irreducible η προβολή σε έναν αναλλοίωτο υπόχωρο ικανοποιεί Aπ(x) = π(x)a. Παρατήρηση {π(x) : x G} είναι αυτοσυζυγής άλγεβρα και {π(x) : x G} = CI π irreducible

Πρόταση G αβελιανή οµάδα, (π, H) irreducible αναπαράσταση της G. Τότε dim H = 1.

Πρόταση G οµάδα, (π, H 1 ), (ρ, H 2 ) irreducible αναπαραστάσεις της G. Τότε 1 Αν οι π, ρ δεν είναι ισοδύναµες, π ij (x)ρ kl (x 1 ) = 0. x G 2 π ij (x)π kl (x 1 ) = δ il δ kj G /d π x G όπου d π είναι η διάσταση του χώρου της αναπαράστασης π.

Απόδειξη Εστω A B(H 2, H 1 ) και A G = x G π(x)aρ(x 1 ). Εχουµε π(y)a G = x G π(yx)aρ(x 1 ) = x G π(x)aρ(x 1 )ρ(y) = A G ρ(y). Αρα A G = 0. Αν A ο πίνακας που έχει 0 σε κάθε ϑέση εκτός από την jk όπου έχει 1, παίρνουµε (A G ) il = 0 και π ij (x)ρ kl (x 1 ) = 0. x G

Εστω A B(H 1 ) και A G = x G π(x)aπ(x 1 ). Εχουµε π(y)a G = x G π(yx)aπ(x 1 ) = x G π(x)aπ(x 1 )π(y) = A G π(y). Αρα A G = λi. Αν A ο πίνακας που έχει 0 σε κάθε ϑέση εκτός από την jk όπου έχει 1 και i l, τότε (A G ) il = 0 και άρα x G π ij(x)π ki (x 1 ) = 0 αν i l. Αν A ο πίνακας που έχει 0 σε κάθε ϑέση εκτός από την jk όπου έχει 1 και j k παίρνουµε tr(a G ) = x G tr π(x)aπ(x 1 ) = x G tr A = 0.

Αρα επειδή ο A G είναι διαγώνιος, (A G ) ii = 0, δηλαδή x G π ij(x)π ki (x 1 ) = 0 αν j k. Τέλος αν A ο πίνακας που έχει 0 σε κάθε ϑέση εκτός από την jj όπου έχει 1 έχουµε tr(a G ) = x G tr π(x)aπ(x 1 ) = x G tr A = G και άρα επειδή ο A G είναι διαγώνιος, (A G ) ii = G /d π, δηλαδή x G π ij(x)π ji (x 1 ) = G /d π.