Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Σχετικά έγγραφα
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

fysikoblog.blogspot.com

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Μετασχηματισμοί Καταστάσεων και Τελεστών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

. Να βρεθεί η Ψ(x,t).

μαγνητικό πεδίο τυχαίας κατεύθυνσης

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Για τη συνέχεια σήμερα...

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Αρμονικός Ταλαντωτής

Σχετικιστικές συμμετρίες και σωμάτια

Κύριος κβαντικός αριθμός (n)

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

( ) ( ) Hamiltonian φορμαλισμός. = L!q i. p i. q i. , p i = H. !p i. !q i, L q i, t S = L dt µεγιστοποιείται σε µια λύση της εξίσωσης κίνησης

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

Κλασική Ηλεκτροδυναμική

Η άλγεβρα της στροφορμής

Η Αναπαράσταση της Θέσης (Position Representation)

1. Μετάπτωση Larmor (γενικά)

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)

Λυμένες ασκήσεις στροφορμής

Από τι αποτελείται το Φως (1873)

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

Εφαρμογές κβαντικής θεωρίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +)

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Αρμονικός ταλαντωτής Ασκήσεις

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Δύο διακρίσιμα σωμάτια με σπιν s 1

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Ατομική και Μοριακή Φυσική

2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

Το ελαστικο κωνικο εκκρεμε ς

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Â. Θέλουμε να βρούμε τη μέση τιμή

Κεφάλαιο M11. Στροφορµή

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Το θεώρημα virial1 στην κβαντική μηχανική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

Transcript:

Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται σε δυναµικό V (r) είναι H = p2 + V (r). (1.1) όπου r, p τα ανύσµατα της ϑέσης και της ορµής του σωµατιδίου αντίστοιχα. Αν το δυναµικό είναι κεντρικό τότε εξαρτάται µόνο από το µέτρο r του ανύσµατος r και διευκολύνει την ανάλυση του προβλήµατος να γράψουµε την Χαµιλτωνιανή στην µορφή H = 1 ( p2 r + L2 ) + V (r). (1.2) r2 Στην (1.2) p r είναι η προβολή της ορµής στο άνυσµα ϑέσης p r p r r και L 2 είναι το τετράγωνο του µέτρου της τροχιακής στροφορµής. Ως αποτέλεσµα της σφαιρικής συµµετρίας του προβλήµατος, της κίνησης δηλαδή σε σφαιρικά συµµετρικό δυναµικό, οι αγκύλες Poisson κάθε συνιστώσας της τροχιακής στρο- ϕορµής και εποµένως και η αγκύλη Poisson του τετραγώνου του µέτρου αυτής µε την Χαµιλτωνιανή H µηδενίζονται, {L i, H} = 0, i = x, y, z {L 2, H} = 0. (1.3) Εποµένως για κίνηση σε δυναµικά µε σφαιρική συµµετρία η τροχιακή στροφορµή διατηρείται και η κλασική κίνηση πραγµατοποιείται σε επίπεδο κάθετο στο στα- ϑερό άνυσµα της τροχιακής στροφορµής. Για την περιγραφή της ϑέσης του κλασικού σωµατιδίου στο επίπεδο αυτό χρειάζονται η απόσταση r από το ελκτικό κέντρο και η αζιµουθιακή γωνία φ. Οι κανονικές ορµές που αντιστοιχούν σε αυτές τις µεταβλητές είναι p r, p φ. Η p φ είναι η προβολή της τροχιακής στροφορµής στον άξονα z, δηλαδή p φ = L z η οποία στην γεωµετρία του προβλήµατος είναι και η µοναδική συνιστώσα άρα L z = L. 1.1.2 Κβαντική περιγραφή Η Χαµιλτωνιανή του κβαντικού συστήµατος η αντίστοιχη της ( 1.1) είναι Ĥ = ˆp2 + V (ˆr). (1.4) Στην αναπαράσταση ϑέσης ˆp = i h, ˆr = r και ˆp 2 = h 2 2. Μπορεί να αποδειχθεί ότι ˆp 2 = ˆp 2 r + ˆL 2 r 2 (1.5)

1.1 Κίνηση σε κεντρικά δυναµικά 3 οπότε η Χαµιλτωνιανή (1.4) για κίνηση σε σφαιρικά συµµετρικό δυναµικό γράφεται και ώς Ĥ = 1 ( ˆp2 r + ˆL 2 ) + V (r). (1.6) r2 Ο τελεστής ˆp r στις σχέσεις (1.5) και ( 1.6) ορίζεται ως ˆp r 1 2 ( ˆp ˆr r + ˆr ˆp ), (1.7) r είναι αυτοσυζυγής όπως προκύπτει από τον ορισµό του και είναι το αντίστοιχο του κλασικού µεγέθους p r p r r. Η Χαµιλτωνιανή (1.6) έχει εποµένως τεθεί σε µορφή που ϑυµίζει την αντίστοιχη κλασική έκφραση (1.2). Από τον ορισµό του ο τελεστής ˆp r όταν εφαρµοσθεί σε µιά κυµατική συνάρτηση Ψ δίνει ως αποτέλεσµα ˆp r Ψ = 1 2 ( ˆp (ˆr r Ψ) + ˆr (ˆpΨ) ). (1.8) r Στην αναπαράσταση ϑέσης και σε σφαιρικές συντεταγµένες είναι εύκολο να δειχθεί ότι το δεξιό µέλος αυτής δίνει i h ( Ψ r + 1 r Ψ). Εποµένως ο τελεστής ˆp r στην αναπαράσταση ϑέσης είναι ˆp r = i h ( r + 1 r ). (1.9) Από αυτήν εύκολα προκύπτει ότι το τετράγωνο αυτού είναι h 2 ( 2 οπότε η (1.6) γίνεται Ĥ = 1 ( h 2 ( 2 r 2 + 2 r r ) + ˆL 2 ) r 2 r 2 + 2 r r ) + V (r). (1.10) Οι τελεστές ˆLi, i = x, y, z των συνιστωσών της τροχιακής στροφορµής, όπως ασφαλώς και ο ˆL 2, δεν εξαρτώνται από την µεταβλητή r ούτε και περιέχουν πα- ϱαγωγίσεις ως προς αυτήν, εποµένως οι µεταθέτες των τελεστών ˆL i, ˆL 2 µε την Χαµιλτωνιανή είναι µηδέν, [Ĥ, ˆLi ] = [Ĥ, ˆL 2 ] = 0. (1.11) Οι σχέσεις (1.11) εκφράζουν ότι η στροφορµή ως κβαντικό µέγεθος διατηρείται όταν το σύστηµα έχει πλήρη συµµετρία περιστροφής. Σε οποιαδήποτε ϕυσική κατάσταση οι µέσες τιµές της κάθε συνιστώσας όπως και του τετραγώνου του µέτρου της τροχιακής στροφορµής είναι χρονικά σταθερές.

4 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1.3 Επίλυση της Εξίσωσης Schrödinger για κεντρικό δυνα- µικό Η Χαµιλτωνιανή (1.10), ο τελεστής ˆL 2 και οποιαδήποτε προβολή της τροχιακής στροφορµής, έστω η ˆL z, µετατίθενται µεταξύ τους. Εποµένως µπορούν να αναζητηθούν ιδιοκαταστάσεις των τριών αυτών τελεστών. Η χρονικά ανεξάρτητη κυµατική συνάρτηση Ψ Elm (r, θ, φ), που είναι ιδιοκατάσταση των τριών αυτών µεγεθών, ικανοποιεί την εξίσωση Ĥ Ψ Elm = E Ψ Elm, (1.12) εφ όσον είναι ιδιοσυνάρτηση της ενέργειας, ενώ συγχρόνως ως ιδιοσυνάρτηση των ˆL z, ˆL 2 ικανοποιεί τις εξισώσεις ˆL 2 Ψ Elm = h 2 l(l + 1) Ψ Elm, ˆLz Ψ Elm = hm Ψ Elm. (1.13) Από τις (1.13) προκύπτει άµεσα ότι η κυµατική συνάρτηση Ψ Elm (r, θ, φ) έχει την µορφή Ψ Elm (r, θ, φ) = R(r) Y lm (θ, φ), (1.14) όπου R(r) εξαρτάται µόνο από την µεταβλητή r. Από την (1.12), χρησιµοποιώντας την (1.14) και την µορφή της Χαµιλτωνιανής (1.10), προκύπτει η ακόλουθει εξίσωση για το ακτινικό µέρος R(r) της κυµατικής συνάρτησης, h2 ( R El + 2 r R El ) + ( h 2 l(l + 1) r 2 ) + V (r) R El = E R El. (1.15) Στην εξίσωση αυτή χρησιµοποιούµε τους δείκτες E, l για να υποδηλώσουµε το γεγονός ότι η µορφή του ακτινικού µέρους εξαρτάται από την ιδιοτιµή της ενέργειας E και από την τιµή του κβαντικού αριθµού l όπως ϕαίνεται από την εξίσωση (1.15). Το ενεργειακό ϕάσµα για κίνηση σε κεντρικά δυναµικά παρουσιάζει εκ- ϕυλισµό. Για κάθε τιµή της ενέργειας E και του κβαντικού αριθµού l υπάρχουν 2l + 1 ανεξάρτητες ιδιοκαταστάσεις της ενέργειας που αντιστοιχούν στους κβαντικούς αριθµούς m = l, l + 1,..., l 1, l. Η συνάρτηση χ El, που ορίζεται µέσω της σχέσης R El χ El /r, ικανοποιεί την εξίσωση h2 χ El + U(r) χ El = E χ El, (1.16) στην οποία U(r) V (r) + h2 l(l+1) r. Η συνάρτηση αυτή καλείται ενεργό 2 δυναµικό και είναι άθροισµα του πραγµατικού δυναµικού V (r) µέσα στο οποίο κινείται το σωµατίδιο και του όρου h 2 l(l + 1)/r 2 που προέκυψε από την τροχιακή στροφορµή και ο οποίος καλείται ϕυγοκεντρικό δυναµικό. Να σηµειωθεί ότι η εξίσωση (1.16) µοιάζει µε ένα µονοδιάστατο πρόβληµα επίλυσης της χρονικά ανεξάρτητης εξίσωσης Schrödinger όπου στην ϑέση της κυµατικής συνάρτησης

1.1 Κίνηση σε κεντρικά δυναµικά 5 έχουµε την χ El και στην ϑέση του δυναµικού το ενεργό δυναµικό U(r). Το ϕυγοκεντρικό δυναµικό είναι πάντα ϑετικό, µηδενίζεται µόνο στην περίπτωση που l = 0, και εποµένως έχει την τάση να απωθεί το σωµατίδιο εµποδίζοντας το να πλησιάσει την αρχή του ελκτικού κέντρου r = 0. Η συνθήκη κανονικοποίησης της κυµατικής συνάρτησης Ψ Elm (r, θ, φ) είναι Ψ Elm (r, θ, φ) 2 r 2 drdω = 1, (1.17) όπου dω είναι το στοιχείο της στερεάς γωνίας sin θ dθ dφ. Η ολοκλήρωση στην (1.17) εκτείνεται από r = 0 έως r = και σε όλη την στερεά γωνία. Εποµένως οι µεταβλητές θ, φ διατρέχουν τα διαστήµατα θ = 0, π και φ = 0, 2π. Από την µορφή της κυµατικής συνάρτησης και από την κανονικοποίηση των σφαιρικών αρµονικών προκύπτει άµεσα ότι 0 R El (r) 2 r 2 dr = 1. (1.18) Το γινόµενο R El (r) 2 r 2 dr που ισούται µε χ El (r) 2 dr είναι η πιθανότητα να ϐρεθεί το σωµατίδιο µέσα σε ένα σφαιρικό ϕλοιό µε ακτίνες r και r + dr. Αυτή είναι και η ϕυσική σηµασία της συνάρτησης χ El (r). Αντιπροσωπεύει το πλάτος πιθανότητας να ϐρεθεί το σωµατίδιο µέσα σε σφαιρικό ϕλοιό µε ακτίνες r και r + dr. Η συνάρτηση χ El (r) ϐρίσκεται από την επίλυση της διαφορικής εξίσωσης (1.16). Αν αναζητούµε δέσµιες καταστάσεις η κανονικοποίηση (1.18) επιβάλλει η συνάρτηση χ El (r) να τείνει στο µηδέν όταν r +, χ El ( ) = 0. (1.19) Είναι εύκολο επίσης να διαπιστώσει κανείς, από το γεγονός ότι ο τελεστής ˆp r είναι αυτοσυζυγής, ότι η συνάρτηση χ El (r) µηδενίζεται για r = 0, χ El (0) = 0. (1.20) Αυτές οι συνοριακές συνθήκες συνοδεύουν το πρόβληµα εύρεσης κανονικοποιήσιµων κυµατικών καταστάσεων που είναι λύσεις καθορισµένης ενέργειας και καθορισµένης τροχιακής στροφορµής. Να σηµειωθεί ότι λόγω του εκφυλισµού οι καταστάσεις συγκεκριµµένης ενέργειας είναι εν γένει γραµµικοί συνδυασµοί των Ψ Elm Ψ E = l m= l c m Ψ Elm, (1.21) άρα δεν χαρακτηρίζονται εν γένει από συγκεκριµµένη τιµή του κβαντικού αριθµού m.