Κοινωνικά Δίκτυα Κοινωνική Επιλογή Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr
Ατομική Απόφαση Το πρόβλημα της απόφασης (decision problem) ορίζεται ως εξής: Υπάρχουν μια σειρά από επιλογές Α 1, A 2,.., A n ανάμεσα στις οποίες πρέπει να επιλέξουμε μια. Υπάρχει ένα πλήθος Ο 1, Ο 2,.., Ο m από αμοβαία αποκλειόμενα και εξαντλητικά αποτελέσματα των επιλογών μας δηλ. οπωσδήποτε ένα και μόνο ένα από αυτά θα συμβεί ως αποτέλεσμα της επιλογής μας και τα Ο i καλύπτουν όλες τις δυνατές επιλογές. Αν επιλέξουμε μια k εκ των Α τότε αυτή μπορεί να έχει ως αποτέλεσμα το Οj με πιθανότητα P(Οi) και χρησιμότητα (utility) U(Οi) Με βάση τα παραπάνω ορίζουμε την αναμενόμενη χρησιμότητα (expected utility) EU(A) μιας επιλογής A k ως εξής: EU (A k )= P(Ο i ) U(Ο i ) για ι=1, 2,..., m
Ορθολογική Επιλογή Tο πιο διαδεδομένο μοντέλο λήψης αποφάσεων ορίζει ότι θα πρέπει να προτιμήσουμε την επιλογή A k η οποία μεγιστοποιεί την αναμενόμενη χρησιμότητα. Για να επιτευχθεί αυτό θα πρέπει να γνωρίζουμε τις πιθανότητες πραγματοποίησης των αποτελεσμάτων κάθε επιλογής. Ο τρόπος ποσοτικοποίησης που χρησιμοποιείται προκύπτει από μια ακολουθία αξιωμάτων και ένα θεώρημα που έχουν προταθεί από τους von Neumann και Morgenstern και βασίζονται στην έννοια της κλήρωσης (lottery)..
Κληρώσεις κατά Morgenstern & von Neumann Oρίζουμε ένα σύνολο από βραβεία X={ Α, Β, Γ,... } τα οποία μπορούμε να κερδίσουμε συμμετέχοντας σε μια κλήρωση για καθένα από αυτά. Οι κληρώσεις μπορεί να είναι και μικτές στις οποίες μπορούμε να κερδίσουμε ένα από κάποιο σύνολο βραβείων με διαφορετικές πιθανότητες. Για παράδειγμα, μπορούμε να συμμετάσχουμε σε μια μικτή κλήρωση ApB στην οποία μπορούμε να κερδίσουμε το βραβείο Α με πιθανότητα p και το B με πιθανότητα (1-p) (επομένως ApB=p*A+(1-p)*B). Ανάμεσα σε όλες τις πιθανές κληρώσεις ορίζουμε σχέσεις προτίμησης ως εξής: Α Β, σημαίνει ότι προτιμούμε να συμμετάσχουμε στην κλήρωση Α από την Β Α ~ Β, σημαίνει ότι είμαστε αδιάφοροι ανάμεσα στις κληρώσεις Α και Β
Αξιώματα σε Κληρώσεις Ορίζουμε 4 αξιώματα τα οποία αναφέρονται στις σχέσεις προτίμησης σε κληρώσεις. Αν το K είναι ένα σύνολο από κληρώσεις (μικτές ή όχι) τα μέλη του ικανοποιούν τα ακόλουθα αξιώματα: Πληρότητα. Για κάθε Α, Β που ανήκουν στο K ισχύει ότι Α Β ή Β Α ή Α ~ Β. Μεταβατικότητα. Για κάθε Α, Β, Γ που ανήκουν στο K ισχύει ότι αν Α Β και Β Γ τότε Α Γ Συνέχεια. Για κάθε Α, Β, Γ που ανήκουν στο K ισχύει ότι αν Α Β Γ τότε υπάρχουν πιθανότητες p, q για τις οποίες ισχύει ότι ΑpΓ Β ΑqΓ Ανεξαρτησία. Για κάθε Α, Β, Γ που ανήκουν στο K ισχύει ότι Α Β Γ αν και μόνο αν για κάθε πιθανότητα p ισχύει ότι ΑpΓ ΒpΓ
Θεώρημα Αναπαράστασης Μια σχέση προτίμησης μεταξύ κληρώσεων ικανοποιεί τα ανωτέρω τέσσερα αξιώματα όταν και μόνο όταν υπάρχει μια συνάρτηση χρησιμότητας u τέτοια ώστε: αν A B, τότε u(a) > u(b), u(apb) = p u(a) + (1 - p) u(b), για κάθε συνάρτηση u που ικανοποιεί τις σχέσεις (1) και (2) υπάρχουν αριθμοί a > 0 και τέτοιοι ώστε u = a * u + b.
Ανάθεση Τιμών Χρησιμότητας Η ανάθεση αριθμητικών τιμών για τη χρησιμότητα κάθε δυνατής κλήρωσης στο σύνολο K γίνεται με τα ακόλουθα βήματα: Ανάθεσε τη τιμή 1 στην χρησιμότητα της κλήρωσης Ai για την οποία ισχύει ότι A i A j για κάθε j!= ι όπου A i, A j ανήκουν στο K. Επομένως u(a i ) = 1 και η A i αντιστοιχεί στην περισσότερο προτιμητέα κλήρωση Ανάθεσε την τιμή 0 στην χρησιμότητα της κλήρωσης A k η για την οποία ισχύει ότι A j A k για κάθε j!= k όπου A k, A j ανήκουν στο K. Επομένως u(a k ) = 0. Η A k επομένως αντιστοιχεί στην λιγότερο προτιμητέα κλήρωση Για κάθε άλλη κλήρωση B διαφορετική από τις A i, A k όρισε την πιθανότητα p για την οποία ισχύει ότι A i pa j = B. Η πιθανότητα p εκφράζει τη χρησιμότητα της Β στο σύνολο K. Επομένως u(b)=p..
QUIΖ - 1 Επιλέξτε μεταξύ 2 κληρώσεων Α και Β: Στην Α υπάρχει μια πιθανότητα 100% να κερδίσουμε 100 ευρώ. Στην Β υπάρχει μια πιθανότητα 1% να κερδίσουμε τίποτα, 10% πιθανότητα να κερδίσουμε 500 ευρώ και 89% πιθανότητα να κερδίσουμε 100 ευρώ. Επιλέξτε μεταξύ 2 κληρώσεων Γ και Δ: Στην Γ υπάρχει μια πιθανότητα 11% να κερδίσουμε 100 ευρώ και 89% πιθανότητα να κερδίσουμε τίποτα. Στην Δ υπάρχει μια πιθανότητα 10% να κερδίσουμε 500 ευρώ και 80% πιθανότητα να κερδίσουμε τίποτα.
Παράδοξο του Allais Oι χρησιμότητες για το καθένα από τα βραβεία είναι: u(500 )=1, u(0 )=0, u(100 )=x, όπου 0 < x < 1 ενω η αναμενόμενη χρησιμότητα καθεμίας από τις κληρώσεις υπολογίζεται ως εξής: u(a)=x u(b)=0.1+0.89*x u(γ)=0.11*x u(δ)=0.1 Από τις ανωτέρω σχέσεις προκύπτει ότι: u(a) - u(b) = u(γ) - u(δ)= 0.11*x 0.1 και επομένως η επιλογή Γ θα πρέπει να είναι προτιμότερη από την Δ όπως η Α είναι προτιμότερη από την Β!!
QUIΖ - 2 Επιλέξτε μεταξύ 2 κληρώσεων Α και Β: Στην Α κερδίζουμε μια εβδομάδα πληρωμένες διακοπές στη Μύκονο αν τραβήξουμε από την κληρωτίδα μια κόκκινη μπάλα. Στην Β κερδίζουμε μια εβδομάδα πληρωμένες διακοπές στη Μύκονο αν τραβήξουμε από την κληρωτίδα μια μπλε μπάλα. Επιλέξτε μεταξύ 2 κληρώσεων Γ και Δ: Στην Γ κερδίζουμε μια εβδομάδα πληρωμένες διακοπές στη Μύκονο αν τραβήξουμε από την κληρωτίδα μια κόκκινη ή κίτρινη μπάλα. Στην Δ κερδίζουμε μια εβδομάδα πληρωμένες διακοπές στη Μύκονο αν τραβήξουμε από την κληρωτίδα μια μπλε ή κίτρινη μπάλα
Απόφαση σε Ομάδες Στο επίπεδο της ομάδας υποθέτουμε ότι καθένα από τα μέλη της ομάδας συμπεριφέρεται ορθολογικά και επομένως για ποράδειγμα ότι οι προτιμήσεις του ικανοποιούν τη μεταβατικότητα και τα υπόλοιπα σχετικά αξιώματα. Ο σκοπός της ομάδας είναι να λάβει δίκαιες αποφάσεις. Προφανώς στην κατηγορία των δίκαιων αποφάσεων δεν συμπεριλαμβάνονται αποφάσεις οι οποίες ταυτίζονται πάντα με τις προτιμήσεις ενός συγκεκριμένου μέλους της ομάδας. Με άλλα λόγια δεν αναφερόμαστε σε αυταρχικές ομάδες. Υποθέτουμε επίσης ότι κάθε μέλος της ομάδας υποβάλλει ένα διατεταγμένο σύνολο προτιμήσεων το οποίο καλύπτει όλο το σύνολο των διαθέσιμων προτιμήσεων.
Παράδειγμα Μια παρέα τριών φίλων (Φ1, Φ2 και Φ3) θέλει να αποφασίσει πως θα περάσει το σαββατόβραδο της. Μετά από αρκετή σκέψη οι τρεις φίλοι καταλήγουν σε τρεις εναλλακτικές πρότάσεις: 1. Κινηματογράφος 2. Ταβέρνα 3. Παιχνίδι στον Υπολογιστή Οι προτιμήσεις καθενός απο αυτούς είναι: Φ1: 1 2 3 Φ2: 2 3 1 Φ3: 3 1 2
Μέθοδος Concorcet Η απόφαση που υπερτερεί κατά πλειοψηφία έναντι όλων των άλλων σε διμερείς συγκρίσεις αποτελεί τη βούληση της ομάδας. Δύο φίλοι προτιμούν την 1 έναντι της 2 και ένας μόνο προτιμά την 2 έναντι της 1. Επομένως κατά πλειοψηφία η 1 υπερτερεί της 2. Δύο φίλοι προτιμούν την 2 έναντι της 3 και ένας μόνο προτιμά την 3 έναντι της 2. Επομένως κατά πλειοψηφία η 2 υπερτερεί της 3. Δύο φίλοι προτιμούν την 3 έναντι της 1 και ένας μόνο προτιμά την 1 έναντι της 3. Άρα κατά πλειοψηφία η 3 υπερτερεί της 1. Επομένως ισχύει ότι: 1 2 3 1 Η μέθοδος Condorcet δεν παράγει μια διατεταγμένη ακολουθία προτιμήσεων καθώς καταλήγει σε έναν κύκλο στον οποίο δεν ισχύει η μεταβατική ιδιότητα.
Μέθοδος Borda Στη διαδικασία αυτή έστω ότι θέλουμε να επιλέξουμε μεταξύ m αποφάσεων. Κάθε μέλος της ομάδας βαθμολογεί με μηδέν (0) την λιγότερο επιθυμητή επιλογή, με 1 την προτελευταία απιλογή του... και με m-1 την πρώτη επιλογή του. Στη συνέχεια υπολογίζεται το άθροισμα των βαθμών που πήρε συνολικά κάθε επιλογή από όλα τα μέλη της ομάδας. Η ομάδα αποφασίζει να ακολουθήσει την επιλογή που λαμβάνει τη μεγαλύτερη βαθμολογία. Στο παράδειγμα μας, το άθροισμα κάθε επιλογής υπολογίζεται ως εξής: βαθμός(1)= 2+0+1 =3 βαθμός(2)= 1+2+0 =3 βαθμός(3)= 0+1+2 =3 και επομένως η ομάδα είναι αδιάφορη ως προς ποιά απόφαση θα υιοθετήσει (1 ~ 2 ~ 3) καθώς όλες λαμβάνουν την ίδια βαθμολογία.
Πλουραλιστική Μέθοδος Επιλέγεται η απόφαση η οποία θα βρεθεί στην πρώτη θέση των επιλογών του μεγαλύτερου πλήθους μελών της ομάδας από όλες τις υπόλοιπες. Σημειωτέον ότι δεν είναι απαραίτητο το μεγαλύτερο πλήθος να αποτελεί την πλειοψηφία των μελών της ομάδας. Έστω ότι σε μια ομάδα πέντε μέλη της επιλέγουν 1 2 3, ένα μέλος της επιλέγει 1 3 2, ενώ τέσσερα μέλη της επιλέγουν 2 3 1.
Θεώρημα του May Ορίζουμε τα εξής τρια αξιώματα τα οποία θα πρέπει να ικανοποιούνται από μια διαδικασία συνάθροισης: Ανωνυμία (Anonymity). Αλλάζοντας αμοιβαία τις διατάξεις επιλογών δυο οποιωνδήποτε μελών της ομάδας δεν μεταβάλλει τη διάταξη στο επίπεδο της ομάδας. Ουδετερότητα (Neutrality). Τα ονόματα των επιλογών δεν επηρεάζουν την τελική διάταξη στο επίπεδο της ομάδας. Ειδκότερα, αν επιλέξουμε να κάνουμε μια ανταλλαγή δυο συγκεκριμένων επιλογών σε όλες τις ατομικές διατάξεις επιλογών των μελών της ομάδας, η τελική διάταξη στο επίπεδο της ομάδας θα αντικατοπτρίζει την καινούργια διάταξη των επιλογών που ανατλλάχθηκαν. Θετική απόκριση (Positive Responsiveness). Αν η επιλογή Α ισοβαθμεί με κάποια άλλη επιλογή στην τελική κατάταξη της ομάδας και σε μια ατομική κατάταξη βελτιώσει τη θέση της κατά ένα βήμα τότε θα πρέπει να αναδειχθεί νικητής στην τελική κατάταξη για την ομάδα. Σύμφωνα με το θεώρημα του May μια διαδικασία συνάθροισης ανάμεσα σε δύο επιλογές ικανοποιεί τα τρια ανωτέρω αξιώματα όταν και μόνο όταν είναι η πλουραλιστική μέθοδος.
Αξιώματα του Arrow Αποδοτικότητυα. κατά Pareto (Pareto Efficiency). Αν σε όλες τις διατάξεις επιλογών των μελών της ομάδας η επιλογή Α εμφανιζεται σε υψηλότερη θέση από την επιλογή Β τότε το ίδιο θα πρέπει να ισχύει και στην τελικη διάταξη στο επίπεδο της ομάδας. Ανεξαρτησία έναντι άσχετων εναλλακτικών επιλογών (Independence of Irrelevant Alternatives). Η διάταξη μεταξύ δύο επιλογών στην τελική διάτξη της ομάδας θα πρέπει να εξαρτάτι μόνο από τη διάταξη των δύο αυτών επιλογών στις ατομικές διατάξεις των μελών της ομάδας. Δημοκρατικότητα (Non-Dictatorship). Η τελική διάταξη της ομάδας δεν θα πρέπει να συμπίπτει πάντα με την διάταξη ενός συγκεκριμένου μέλους της ομάδας. Με άλλα λόγια, η ομάδα δε θα πρέπει να περιέχει έναν δικτάτορα. Στην αντίθετη περίπτωση ορίζουμε ότι η διαδικασία συνάθροισης είναι δικτατορική. Ολοκληρωτική Κάλυψη (Universal Domain). Η διαδικασία συνάθροισης θα πρέπει να λαμβάνει υπόψη της όλες τις ατομικές διατάξεις επιλογών και να παράγει πάντα μια τελική διάταξη στο επίπεδο της ομάδας
Θεώρημα του Arrow Το θεώρημα του Arrow ορίζει ότι σε ομάδες πεπερασμένου αριθμού μελών (>1) δεν υπάρχει διαδικασία συνάθροισης η οποία εξετάζει τρεις ή περισσότερες εναλλακτικές επιλογές και ικανοποιεί τα τέσσερα αξιώματα που αναφέραμε.