48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση n μεταβλητών ΙΙ Αν Α R και Β R n τότε έχουμε διανυσματική συνάρτηση μίας πραγματικής μεταβλητής ΙIΙ Εδώ θα ασχοληθούμε με την περίπτωση Α R και Β R δηλαδή με πραγματικές συναρτήσεις δύο μεταβλητών ΣΥΜΒΟΛΙΣΜΟΣ: n : εξαρτημένη μεταβλητή n : ανεξάρτητες μεταβλητές [Για n εναλλακτικά z] ΠΑΡΑΤΗΡΗΣΗ IV: Για n η γραική παράσταση είναι τρισδιάστατη μήκος πλάτος και ύψος Εναλλακτική απεικόνιση γίνεται με τα διαγράμματα ισοϋψών καμπύλων contour lots ΟΡΙΣΜΟΣ: Ισοϋψείς καμπύλες με ύψος c αποτελούνται από όλα τα σημεία c για τα οποία ισχύει c ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ: Καμπύλες ίσου κέρδους Καμπύλες ίσης Παραγωγής 3 Καμπύλες ίσου κόστους 4 Καμπύλες ίσης χρησιμότητας 5 Καμπύλες ίσων εσόδων
Z 5 5 5 5 5 3 Z -e -5e 5e e 3 Y - - -3 - X 3 ΔΙΑΓΡΑΜΜΑ : Διάγραμμα Συνάρτησης Πυκνότητας Πιθανότητας της Διμεταβλητής Κανονικής Κατανομής για ρ8 5 Y -5 - -5 X 5 ΔΙΑΓΡΑΜΜΑ 3 : Διάγραμμα της Συνάρτησης 4-3 4 Y -3 - - 3 5-3 - - 3 5 5 Y - -5 5 e 4e 6e 8e e -8e-6e-4e-e -8e-6e-4e-e e4e 6e 8e e e 8e 6e 4ee -e-4e-6e-8e -8e -6e -4e -e e 8e 6e 4e e X - -5 5 ΔΙΑΓΡΑΜΜΑ : Διάγραμμα Ισοϋψών Καμπύλων της Συνάρτησης Πυκνότητας Πιθανότητας της Διμεταβλητής Κανονικής Κατανομής για ρ8 ΔΙΑΓΡΑΜΜΑ 4: Διάγραμμα ισοϋψών Καμπύλων της Συνάρτησης 4-3 4 X
5 53 5 ΣΗΜΕΙΑ ΔΙΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΠΕΡΙΟΧΗ ΕΝΟΣ ΣΗΜΕΙΟΥ ΟΡΙΣΜΟΣ: Περιοχή ενός σημείου R ονομάζεται ένα υποσύνολο Π του R που περιέχει το σημείο και τα κοντινά σε αυτό Η περιοχή που ορίζεται από τα σημεία που ικανοποιούν τις συνθήκες - <ε και - <ε για ε> ορίζουν μια τετραγωνική περιοχή γύρω από το σημείο Η περιοχή που ορίζεται από τα σημεία που ικανοποιούν τη συνθήκη - - <δ για δ> ορίζουν μια κυκλική περιοχή με κέντρο το σημείο και ακτίνα δ Y e -e -e e X ΔΙΑΓΡΑΜΜΑ 5: Διαγραμματική Απεικόνιση τετραγωνικής περιοχής ενός σημείου Y e -e -e X e ΔΙΑΓΡΑΜΜΑ 6: Διαγραμματική Απεικόνιση Κυκλικής περιοχής ενός σημείου
54 55 5 ΕΣΩΤΕΡΙΚΑ ΣΗΜΕΙΑ ΟΡΙΣΜΟΣ: Ένα σημείο A λέγεται εσωτερικό σημείο του συνόλου Α αν και μόνο αν υπάρχει Π η οποία είναι υποσύνολο του Α δηλαδή Π Α 53 ΣΗΜΕΙΑ ΟΛΙΚΟΥ ΕΛΑΧΙΣΤΟΥ ΚΑΙ ΜΕΓΙΣΤΟΥ ΟΡΙΣΜΟΣ: Για τη συνάρτηση το σημείο D λέγεται σημείο ολικού ελάχιστου αν ή ολικού μέγιστου αν για κάθε D 53 ΣΥΓΚΛΙΣΗ ΚΑΙ ΣΥΝΕΧΕΙΑ ΟΡΙΣΜΟΣ: Έστω η πραγματική συνάρτηση και το σημείο τότε η συνάρτηση συγκλίνει στην τιμή L όταν προσεγγίζουν το αν για κάθε ε> υπάρχει μια περιοχή του τέτοια ώστε για κάθε σημείο που ανήκει σε αυτή την περιοχή ισχύει -L <ε ΙΔΙΟΤΗΤΑ: Αν lim L τότε lim{ lim } lim { lim } L ΠΑΡΑΤΗΡΗΣΗ: Οι ιδιότητες που ισχύουν στη σύγκλιση συναρτήσεων μίας μεταβλητής ισχύουν και για τις σύγκλιση συναρτήσεων μεταβλητών ΟΡΙΣΜΟΣ: Η συνάρτηση είναι συνεχής στο σημείο D αν lim
56 57 54 ΣΥΝΑΡΤΗΣΕΙΣ ΓΑΜΜΑ ΚΑΙ ΒΗΤΑ ΟΡΙΣΜΟΣ: Η συνάρτηση γάμμα ορίζεται για και δίδεται από τον τύπο: Γ t t e dt ΙΔΙΟΤΗΤΕΣ: ΓΓ για > Γκκ! για κ υσικό αριθμό 3 ΓΓ 4 Γ/ π ΟΡΙΣΜΟΣ: Η συνάρτηση Βήτα ορίζεται για και δίδεται από τον τύπο: Β t t dt ΙΔΙΟΤΗΤΕΣ: BΓ Γ/ Γ B B 55 ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 55 ΕΙΣΑΓΩΓΗ - ΣΥΜΒΟΛΙΣΜΟΣ Έστω ότι έχουμε δύο αγαθά τότε με και συμβολίζουμε τις τιμές τους και με q και q τις ποσότητες τους Τότε έχουμε: D D είναι οι συναρτήσεις ζητήσεως των δύο αγαθών S S είναι οι συναρτήσεις προσοράς των δύο αγαθών Rq q είναι η συνάρτηση εσόδων έσοδα που προκύπτουν από την πώληση q μονάδων του πρώτου αγαθού και q μονάδων του δευτέρου αγαθού Cq q είναι η συνάρτηση κόστους κόστος που προκύπτει από την παραγωγή q μονάδων του πρώτου αγαθού και q μονάδων του δευτέρου αγαθού Uq q είναι η συνάρτηση χρησιμότητας του καταναλωτή
58 59 Π ή Q είναι η συνάρτηση παραγωγής από δύο συντελεστές παραγωγής πχ κεάλαιο και εργασία 55 ΣΧΕΣΕΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΑΓΑΘΩΝ ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται ανταγωνιστικά αν η αύξηση της τιμής του ενός συνεπάγεται αύξηση της ζήτησης του άλλου ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται συμπληρωματικά αν η αύξηση της τιμής του ενός συνεπάγεται μείωση της ζήτησης του άλλου ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται ουδέτερα αν δεν είναι ούτε ανταγωνιστικά ούτε συμπληρωματικά 553 ΚΑΜΠΥΛΕΣ ΑΔΙΑΦΟΡΙΑΣ ΟΡΙΣΜΟΣ: Οι ισοϋψείς καμπύλες μίας συνάρτησης χρησιμότητας δίνουν τις καμπύλες αδιαορίας Όλοι οι συνδυασμοί στην ίδια καμπύλη αδιαορίας μας δίνουν την ίδια χρησιμότητα για τον καταναλωτή 56 ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ ΟΡΙΣΜΟΣ: Έστω η πραγματική συνάρτηση z και ένα εσωτερικό σημείο του πεδίου ορισμού Τότε η οριακή τιμή lim δ lim δ δ oνομάζεται μερική παράγωγος της ως προς στο σημείο ΣΥΜΒΟΛΙΣΜΟΣ: ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι: Όμοια έχουμε ή γενικότερα δ lim δ δ ΙΙ: Μπορούμε να γενικεύσουμε τον παραπάνω ορισμό της μερικής παραγώγου για συναρτήσεις περισσοτέρων από δύο μεταβλητές
6 6 57 ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ: Έστω διαορίσιμη σε ένα εσωτερικό σημείο τότε η γραμμική απεικόνιση gdd d ονομάζεται ολικό διαορικό της συνάρτησης στο σημείο ΣΥΜΒΟΛΙΣΜΟΣ: d ή d ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι: Οι ποσότητες d και d d 58 ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΣΥΝΘΕΣΕΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΡΟΤΑΣΗ: Έστω η συνάρτηση οποία μπορεί να γρατεί ως g h h τότε g h h h g h h h h h και g h h h g h h h h h ονομάζονται και μερικά διαορικά ΙΙ: Αν η είναι παραγωγίσιμη σε κάθε εσωτερικό σημείο του πεδίου ορισμού τότε μπορούμε να γράψουμε: d d d
6 63 59 ΠΕΠΛΕΓΜΕΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΣΜΟΣ: Οι συναρτήσεις οι οποίες γράονται υπό τη μορή k όπου η εξαρτημένη μεταβλητή και δεν μπορούμε να λύσουμε ως προς ονομάζονται πεπλεγμένες συναρτήσεις ΠΑΡΑΓΩΓΟΣ ΠΕΠΛ ΣΥΝΑΡΤΗΣΗΣ: Αν τότε η παράγωγος d/d δίδεται από τον τύπο: d d Όμοια αν k τότε η μερική παράγωγος / i δίδεται από τον τύπο i i 5 ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕΡΙΚΩΝ ΠΑΡΑΓΩΓΩΝ 5 ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΗΣ ΟΡΙΣΜΟΣ: Η συνάρτηση παραγωγής QΠ k εκράζει την ποσότητα του παραγόμενου προϊόντος ως προς τους συντελεστές παραγωγής k κεάλαιο εργασία πρώτες ύλες κλπ ΟΡΙΣΜΟΣ: Οριακή παραγωγικότητα του συντελεστή i ονομάζεται η μερική παράγωγος της συνάρτησης παραγωγής προς τον συντελεστή αυτό δηλαδή Π/ i ΠΑΡΑΤΗΡΗΣΗ: Συνήθως Π/ i > δηλαδή όσο αυξάνει ένας συντελεστής τόσο αυξάνει η παραγωγή Πέρα ενός σημείου i η παραγωγή συνεχίζει να αυξάνει αλλά με θίνων ρυθμό δηλαδή η δεύτερη παράγωγος ως προς i είναι αρνητική Αυτό το αινόμενο λέγεται και «Νόμος της θίνουσας παραγωγικότητας»
64 65 5 ΟΡΙΑΚΗ ΧΡΗΣΙΜΟΤΗΤΑ ΟΡΙΣΜΟΣ: Σαν οριακή χρησιμότητα του i προϊόντος ονομάζουμε τη μερική παράγωγο δηλαδή U/q i 53 ΜΕΡΙΚΗ ΕΛΑΣΤΙΚΟΤΗΤΑ ΟΡΙΣΜΟΣ: Αν k τότε η μερική ελαστικότητα ως προς i ονομάζεται η ποσότητα Ε i i i k i ΕΡΜΗΝΕΙΑ: Η μερική ελαστικότητα δίνει την ποσοστιαία μεταβολή της αν η i αυξηθεί κατά % και όλες οι υπόλοιπες εξαρτημένες μεταβλητές μείνουν σταθερές ΣΥΜΒΟΛΙΣΜΟΣ: Ε i ή Ε/Ε i ή Ε/Ε i ΠΑΡΑΤΗΡΗΣΗ: Ε/Ε i ln/ ln k i 5 ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΑΝΩΤΕΡΑΣ ΤΑΞΗΣ ΟΡΙΣΜΟΣ: Μερικές παράγωγοι δευτέρας τάξεως της συνάρτησης ονομάζονται οι συναρτήσεις που προκύπτουν αν παραγωγίσουμε τις μερικές παραγώγους / και / και δίδονται ως εξής: ΠΑΡΑΤΗΡΗΣΕΙΣ: και Ι Μπορούμε να γενικεύσουμε τον παραπάνω ορισμό σε μερική παράγωγος n-τάξης και τη συμβολίζουμε ως n k n k για k n IΙ Όμοια μπορούμε να ορίσουμε τη μερική παράγωγο n-τάξης για συνάρτηση μεταβλητών και τη συμβολίζουμε ως k k k n με k k n
66 ΘΕΩΡΗΜΑ: Αν οι μερικές παράγωγοι της / και / είναι συνεχείς σε ένα εσωτερικό σημείο του πεδίου ορισμού τότε ΟΡΙΣΜΟΣ: Διάνυσμα κλίσης της συνάρτησης στο σημείο ονομάζουμε το διάνυσμα με στοιχεία τις πρώτες μερικές παραγώγους στο σημείο αυτό ΣΥΜΒΟΛΙΣΜΟΣ: / / ΟΡΙΣΜΟΣ: Εσσιανή Μήτρα Hessian Matri ονομάζεται ο πίνακας Η με στοιχεία H ij / i j που αντιστοιχούν στην i γραμμή και j στήλη και δίδεται ως εξής: H 67 5 ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ ΟΡΙΣΜΟΣ: Το άθροισμα udυd ονομάζεται ακριβές διαορικό αν και μόνο αν u/υ/ ΟΡΙΣΜΟΣ: Κάθε εξίσωση της μορής udυd ονομάζεται διαορική εξίσωση ΠΑΡΑΤΗΡΗΣΗ: Αρκεί να βρούμε μια εξίσωση τέτοια ώστε d udυd όποτε η εξίσωση δίνει τη ζητούμενη συνάρτηση σε πεπλεγμένη μορή
68 69 53 ΑΚΡΟΤΑΤΑ ΚΑΙ ΣΑΓΜΑΤΙΚΑ ΣΗΜΕΙΑ ΟΡΙΣΜΟΣ: Έστω η συνάρτηση Το σημείο D ονομάζεται στάσιμο αν / / ΠΡΟΤΑΣΗ: Αν μια συνάρτηση είναι παραγωγίσιμη σε ένα εσωτερικό σημείο D το οποίο είναι τοπικό ακρότατο τότε αυτό το σημείο είναι στάσιμο ΠΡΟΤΑΣΗ: Αν ένα σημείο D είναι στάσιμο και τότε I Αν Δ> και / < / < τότε η παρουσιάζει τοπικό μέγιστο στο σημείο II Αν Δ> και / > / > τότε η παρουσιάζει τοπικό ελάχιστο στο σημείο ΙII Αν Δ< τότε το σημείο ονομάζεται σαγματικό ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Δ δεν μπορούμε να συμπεράνουμε τη ύση του σημείου μπορεί να είναι ακρότατο ή σαγματικό σημείο Ι Αν το σημείο δεν είναι εσωτερικό τότε μπορεί έχουμε ακρότατο με Δ<
7 54 ΔΕΣΜΕΥΜΕΝΑ ΑΚΡΟΤΑΤΑ [ΜΕΘΟΔΟΣ ΠΟΛΛΑΠΛΑΣΙΑΣΤΩΝ LANGRANGE] Πολλές ορές στόχος είναι να βρούμε το μέγιστο μιας συνάρτησης υπό κάποιο περιορισμό Για παράδειγμα ο καταναλωτής θέλει να μεγιστοποίησει τη χρησιμότητα του υπό τον περιορισμό να υπάρχει κάποιο όριο στις αγορές που καθορίζεται από το εισόδημα ΠΡΟΤΑΣΗ: Αν η συνάρτηση παρουσιάζει δεσμευμένο τοπικό ακρότατο στο σημείο υπό τον περιορισμό τότε υπάρχει λ R τέτοιο ώστε: λ και λ 7 ΠΑΡΑΤΗΡΗΣΗ: Αν Fλλ τότε τα δεσμευμένα τοπικά ακρότατα θα πρέπει να αναζητηθούν στις λύσεις του συστήματος: Fλ/ λ Fλ/ λ Fλ/λ ΠΡΟΤΑΣΗ: Αν Fλλ και το σημείο λ είναι λύση του συστήματος Fλ/ Fλ/ και και I Αν Δ > τότε η παρουσιάζει δεσμευμένο τοπικό μέγιστο IΙ Αν Δ < τότε η παρουσιάζει δεσμευμένο τοπικό ελάχιστο