α β α < β ν θετικός ακέραιος.



Σχετικά έγγραφα
ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Η Θεωρία σε 99 Ερωτήσεις

ΚΕΦΑΛΑΙΟ 1 ο Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

α+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

Η θεωρία στα Μαθηματικά κατεύθυνσης

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

Παρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Π ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

Θεωρήματα και προτάσεις με τις αποδείξεις τους

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία

, µε α και β, πραγµατικούς αριθµούς. Τα στοιχεία του C λέγονται µιγαδικοί αριθµοί και το C σύνολο των µιγαδικών αριθµών. Εποµένως:

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια

Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Επανάληψη Τελευταίας Στιγμής

ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο. Παράγραφος 1.1. Ποιο πείραμα λέγεται αιτιοκρατικό και ποιο πείραμα τύχης;

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β

Η θεωρία στα Μαθηματικά κατεύθυνσης :

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

Μαθηματικά Γ Λυκείου 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ. Το Σύνολο των Μιγαδικών Αριθµών

Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο TEI

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.

Η θεωρία στα Μαθηματικά κατεύθυνσης :

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

, Άρρητοι Q β Πραγματικοί R Q Q, α β γ δ αγ βδ αδ βγ

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ

x 3. Οι περιττές δυνάμεις άνισων αριθμών είναι ομοιοτρόπως άνισες: Αν α, β ε IR

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Η θεωρία της Α Λυκείου

, Ακέραιοι: Z... 3, 2, 1,0,1,2,3..., Ρητοί: Q / α Ζ, β Ζ *, Άρρητοι Q. α β α β α α β α β... β. α β α β α α β α β... αβ β. α β γ αβ βγ αγ α β β γ γ α

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

Εκθετική - Λογαριθµική συνάρτηση

Κυρτότητα και εφαρµογές. Ανισότητες Jensen

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

α α α = Δωρεάν διάθεση α ν = β ν β δ γ Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr

just ( u) Πατρόκλου 66 Ίλιον

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

( 0) = lim. g x - 1 -

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική Κατεύθυνση

Ηλίας Σκαρδανάς Μαθηματικός

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΥΠΑΙΘ / Ψηφιακά Εκπαιδευτικά Βοηθήματα / Βασικές γνώσεις θεωρίας Μαθηματικών μέχρι την Β Λυκείου. Στοιχεία άλγεβρας

Επαναληπτικές Έννοιες

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

ικά Κατεύθυνσης Γ Λυκείου 4 ο ΓΛΧ M.Ι.Παπαγρηγοράκης Χανιά [Μαθηματικά] Θετικών Σπουδών

Transcript:

Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι θετικοί κι τίστροφοι ριθµοί έου άθροισµ.: γι κάθε >0.. Οι ρητικοί κι τίστροφοι ριθµοί έου άθροισµ -.: γι κάθε <0.. Οι περιττές δυάµεις άισω ριθµώ είι οµοιοτρόπως άισες: Α, ε IR < < θετικός κέριος. (Προσοή!! Αυτό ισύει γι τις άρτιες δυάµεις µόο, θετικοί ριθµοί) 4. Οι τίστροφοι οµόσηµω ριθµώ είι τιστρόφως άισοι π ότι υτοί.: Α, θετικοί κι οι δύο ή ρητικοί ριθµοί κι οι δύο, µε < τότε > Απόλυτ - Ρίζες. Η πόλυτη τιµή εός θετικού ριθµού είι ο ίδιος ο ριθµός.. Η πόλυτη τιµή εός ρητικού ριθµού είι ο τίθετος ριθµός.. 0 γι κάθε πργµτικό ριθµό. 4. κι γι κάθε πργµτικό ριθµό 5. γι κάθε πργµτικό ριθµό 6. θ θ θ, θ 0 7. θ θ ή -θ, θ 0 8. θ θ ή - θ, θ 0 9. ± γι οποιουσδήποτε πργµτικούς ριθµούς,. (Η ιδιότητ υτή ισύει κι γι µιγδικούς ριθµούς, κι γι διύσµτ.) 0. Η πόστση δύο ριθµώ πάω σε έ άξο είι ίση µε τη πόλυτη τιµή της διφοράς τους. Α, δύο πργµτικοί ριθµοί τότε : d (, ).., ε IR κι θετικός κέριος.

., θετικός ή 0 κι θετικός κέριος. µ µ., θετικός ή 0 κι, µ θετικοί κέριοι. µ µ µ 4. ( ), εir κι, µ θετικοί κέριοι. Τριώυµο Τριώυµο είι κάθε πράστση που µπορεί πάρει τη µορφή γ. Ρίζες του τριωύµου είι οι τιµές του γι τις οποίες η τιµή του γ είι 0. Α > 0Το τριώυµο έει δύο ρίζες άισες τις, κι ποδεικύετι ότι µπορεί πάρει τη µορφή: f ( ) γ ( )( ). Α 0.Το τριώυµο έει µί διπλή ρίζ τη κι ποδεικύετι ό τι µπορεί πάρει τη µορφή : f ( ) γ. Α < 0.Το τριώυµο έει τη µορφή 4 f ( ) γ Α < 0.Το τριώυµο έει µιγδικές ρίζες τις i i Πρόσηµο τριωύµου η περίπτωση: >0 κι > 0 Τιµές του - Πρόσηµο του γ - 0 ετερόσηµο του 0 η περίπτωση: >0 κι < 0 Τιµές του - Πρόσηµο του γ - 0 ετερόσηµο του 0 - η περίπτωση: 0 κι > 0 γ 0 γι κάθε πργµτικό ριθµό. (:)Μηδείζει µόο γι 4 η περίπτωση: 0 κι < 0 γ 0 γι κάθε πργµτικό ριθµό. (:)Μηδείζει µόο γι 5 η περίπτωση: <0 κι > 0

Το τριώυµο δε έει ρίζ κι ισύει: γ>0 γι κάθε πργµτικό ριθµό. ( ) 6 η περίπτωση: <0 κι < 0 Το τριώυµο δε έει ρίζ κι ισύει: γ<0 γι κάθε πργµτικό ριθµό. ( ) Προσοή!!. Α γι κάθε τιµή του : γ 0 τότε: <0 οπότε το τριώυµο γ είι γι κάθε τιµή του δηλδή: ( γ)>0 γι κάθε τιµή του. Ισύει γ 0 γι κάθε πργµτικό ριθµό κι µόο ισύει: 0 κι <0. Ισύει γ<0 γι κάθε πργµτικό ριθµό κι µόο ισύει: <0 κι <0 4. Ισύει γ 0 γι κάθε πργµτικό ριθµό κι µόο ισύει: 0 κι >0 5. Ισύει γ>0 γι κάθε πργµτικό ριθµό κι µόο ισύει: <0 κι >0 6. Το τριώυµο γ διτηρεί στθερό πρόσηµο γι κάθε πργµτικό ριθµό κι µόο ισύει: <0. Πολυώυµ. Πολυώυµο είι κάθε πράστση που µπορεί πάρει τη µορφή: Ρ() - -. 0. µε, -,.,, 0 στθεροί πργµτικοί ριθµοί κι µετλητή µε τιµές πργµτικούς ριθµούς. Το πολυώυµο Ρ() έει ρίζ το ριθµό ρ κι µόο Ρ(ρ)0 κι µόο έει πράγοτ το -ρ δηλδή Ρ()(ρ)π(). Α Ρ(), Q() δύο πολυώυµ µε Q() 0 τότε υπάρου δύο πολυώυµ π() κι υ() ώστε : Ρ() Q()π()υ(). Τ πολυώυµ π() κι υ() ρίσκοτι κάοτς τη διίρεση Ρ() : Q() Πρόοδοι Αριθµητική πρόοδος οοµάζετι η κολουθί ριθµώ,,,..,,. στη οποί κάθε όρος προκύπτει πό το προηγούµεο προσθέτοτς το ίδιο ριθµό, (διφορά), ω. Ισύου: (-)ω.. ( ) [ ( ) ω] Γεωµετρική πρόοδος οοµάζετι η κολουθί ριθµώ,,,..,,. στη οποί κάθε όρος προκύπτει πό το προηγούµεο πολλπλσιάζοτς το ίδιο µη µηδεικό ριθµό, (λόγος), λ. Ισύου: λ -.. Λογάριθµοι λ λ όσο λ

Ορισµός του e: lim,78888459045560874757 e Η συάρτηση e µε πργµτικό ριθµό είι γησίως ύξουσ στο IR κι φυσικά έει θετικές τιµές. Η συάρτηση ορίζετι στο IR, όσο > 0. Α 0<< είι γησίως φθίουσ. Α > είι γησίως ύξουσ. Α είι στθερή. Έει τιµές θετικές. Ο επέριος λογάριθµος ln, >0 κι η τίστροφη συάρτηση της εκθετικής e, ε IR. lny e y, µε >0 κι yεir. Η συάρτηση ln είι γησίως ύξουσ στο (0, ) κι έει σύολο τιµώ το (-, ) IR. Κάθε πργµτικός ριθµός µπορεί γρφεί ως λογάριθµος: ε IR τότε: lne ln ΑΛΛΑΓΗ ΒΑΣΗΣ σε λογάριθµο: log a ln a εκθέτης εκθέτη ln( άσης ) ΑΛΛΑΓΗ ΒΑΣΗΣ σε εκθετική συάρτηση : ( ση ) e εκδικός λογάριθµος λέγετι ο λογάριθµος που έει άση το 0: log y 0 y ln Αλλγή άσης: log ln0 Ι ΙΟΤΗΤΕΣ ΛΟΓΑΡΙΘΜΩΝ. ln0. lne. lne 4. e ln 5. ln(y)lnlny 6. ln k kln 7. ln ln ln y y ΟΡΙΑ ΛΟΓΑΡΙΘΜΩΝ lim ln lim ln οµοίως κι γι το log. 0 ΟΡΙΑ ΕΚΘΕΤΙΚΗΣ. >: lim 0, lim. 0<<: lim, lim 0 Τριγωοµετρί Η τριγωοµετρί είι δύο πράγµτ: Οι τύποι κι ο.. Βσικοί τριγωοµετρικοί τύποι κι ριθµοί. ηµ συ ή ηµ -συ ή συ -ηµ, γι κάθε ε IR. ηµ, συ, γι κάθε ε IR ηµ. γι ε IR - συ συ 4. π κπ, : κέριος κ σφ γι ε IR - { κπ,κ : κέριος} ηµ 5. σφ 6. () σφ (-σφ) (Ο τόος δηλώει πράγωγο) 7. ηµ ηµ συ συ συ ηµ - ηµ συ 4

8. Τύποι ποτετργωισµού : ηµ συ συ συ 9. ηµ συ 0. ηµ( ± ) ηµσυ ± συηµ, συ( ± )συσυ m ηµηµ ±, ( ± ) m. Νόµος ηµιτόω: Σε κάθε τρίγωο ΑΒΓ µε R τη κτί του γ περιγεγρµµέου του κύκλου ισύει: R ηµ Α ηµ Β ηµ Γ. Νόµος συηµιτόω: Σε κάθε τρίγωο ΑΒΓ ισύου οι σέσεις: γ -γ συα, γ -γ συβ, γ - συγ. Πολικές συτετγµέες σηµείου Μ(, ψ) στο επίπεδο Οψ. Α ΟΜρ 0 κι γωί ΟΜ ω (0 ο ω<60 ο ) τότε: ρ συω κι ψ ψ ρ ηµω ω συτελεστής διεύθυσης της ΟΜ, όσο 0. 4. Πίκς τριγωοµετρικώ ριθµώ: Γωί ω 0 ο 45 ο 60 ο ηµω συω ω σφω 5