v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

3 η δεκάδα θεµάτων επανάληψης

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

1 η δεκάδα θεµάτων επανάληψης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

4 η δεκάδα θεµάτων επανάληψης

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

1,y 1) είναι η C : xx yy 0.

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΤΑΞΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Kόλλιας Σταύρος 1

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

2 η δεκάδα θεµάτων επανάληψης

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999)

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Επαναληπτικά Θέµατα Εξετάσεων

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΣΥΝΕΙΡΜΟΣ

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

Επαναληπτικά συνδυαστικα θέµατα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΚΥΚΛΟΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΞΑΣΚΗΣΗ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ. 2. Έστω Κ (α, β) το κέντρο και ρ η ακτίνα του ζητούμενου κύκλου C. οπότε:

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

Επαναληπτικά συνδυαστικα θέµατα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

Ερωτήσεις αντιστοίχισης

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ. 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά. Σ Λ. 2. Αν α=β τότε α=β. Σ Λ. 3.

5 Γενική µορφή εξίσωσης ευθείας

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

(x - 1) 2 + (y + 1) 2 = 8.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών

= π 3 και a = 2, β =2 2. a, β

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων είναι ίσο µε το άθροισµα των γινοµένων των οµώνυµων συντεταγµένων τους Μονάδες 9 Γ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση α Ένα διάνυσµα και µία ευθεία, αν έχουν τον ίδιο συντελεστή διεύθυνσης είναι παράλληλα β Αν det (,β) α είναι η ορίζουσα των διανυσµάτων ισχύει η ισοδυναµία: α // β det ( α,β) α, β, τότε γ Αν α, β είναι θετικοί ακέραιοι, τότε πάντα ισχύει: α β [α, β] (α, β) όπου [α, β] είναι το ελάχιστο κοινό πολλαπλάσιο των α, β και (α, β) είναι ο µέγιστος κοινός διαιρέτης των α, β δ Η εξίσωση x + + Ax + B +Γ 0 µε Α +Β 4Γ >0 παριστάνει κύκλο µε κέντρο A B K, Μονάδες 8 Στη Στήλη Α δίνονται εξισώσεις κωνικών τοµών και στη Στήλη Β εξισώσεις εφαπτοµένων κωνικών τοµών στο σηµείο επαφής (x, ) Να γράψετε στο τετράδιό σας το γράµµα της Στήλης Α και δίπλα σε κάθε γράµµα, τον αριθµό της Στήλης Β που αντιστοιχεί πάντα στη σωστή εξίσωση εφαπτοµένης

Στήλη Α Στήλη Β α x + ρ p(x + x ) β x α γ px δ x α + β xx + ρ 3 xx + β 4 xx + 5 6 xx ρ xx Μονάδες 4 ΘΕΜΑ ο Α Να αποδείξετε ότι το γινόµενο δύο περιττών ακεραίων αριθµών είναι περιττός ακέραιος αριθµός Μονάδες 5 α ( α + ) Β Να αποδείξετε ότι αν ο α είναι ακέραιος, τότε και ο ακέραιος είναι Μονάδες 0 α ( α + ) Γ Αν ο α είναι περιττός ακέραιος, να αποδείξετε ότι ο επίσης περιττός ακέραιος είναι Μονάδες 0 ΘΕΜΑ 3ο ίνεται η παραβολή 4x Νρείτε: Α την εστία και τη διευθετούσα της παραβολής Μονάδες 6 Β τις ευθείες που διέρχονται από την εστία της παραβολής και απέχουν από την αρχή των αξόνων απόσταση ίση µε Μονάδες 0 Γ την εξίσωση της εφαπτοµένης της παραβολής που είναι παράλληλη στην ευθεία x Μονάδες 9

ΘΕΜΑ 4ο ίνεται η εξίσωση x + xσυνθ ηµθ 0, 0 θ<π Α Να αποδείξετε ότι για κάθε θ η εξίσωση αυτή παριστάνει κύκλο, του οποίου να προσδιορίσετε το κέντρο και την ακτίνα Moνάδες 9 Β Αν π θ σηµείο Μ(,), νρείτε την εξίσωση της εφαπτοµένης του κύκλου στο Μονάδες 9 Γ Να αποδείξετε ότι για τις διάφορες τιµές του θ τα κέντρα των παραπάνω κύκλων βρίσκονται σε κύκλο µε κέντρο Ο(0,0) και ακτίνα ρ Μονάδες 7 3

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o Α Ονοµάζουµε εσωτερικό γινόµενο δύο µη µηδενικών διανυσµάτων α και β και το συµβολίζουµε µε α β τον πραγµατικό αριθµό: α β α β συνφ όπου φ η γωνία των διανυσµάτων α και β Αν α 0 ή β 0 τότε ορίζουµε α β 0 Β Έστω α(x,ψ) και β(x,ψ ) Με αρχή το Ο παίρνουµε τα διανύσµατα OA α και OB β Από τον νόµο των συνηµιτόνων στο τρίγωνο OAB έχουµε: (AB) (OA) + (OB) (OA)(OB)συνAÔB Όµως είναι: (ΑΒ) (x - x ) +(ψ - ψ ) (ΟΑ) x +ψ και (ΟΒ) x +ψ Εποµένως έχουµε διαδοχικά: (x - x ) +(ψ - ψ ) x +ψ +x +ψ - (ΟΑ)(ΟΒ) συνaôb ή µετά από πράξεις: x x +ψ ψ +(ΟΑ)(ΟΒ) συνaôb και επειδή: (ΟΑ)(ΟΒ) συν(aôb) α β Προκύπτει τελικά ότι: x x +ψ ψ Γ γ δ Σ Λ Λ Σ Στήλη Α Στήλη Β α β 3 γ δ 6 4

ΘΕΜΑ o Α Έστω α κ+ και β λ+ µε κ,λ Ζ δύο περιττοί ακέραιοι αριθµοί Τότε: α β (κ+)(λ+) 4κλ+κ+λ+ (κλ+κ+λ)+ ρ+ όπου ρ κλ+κ+λ ακέραιος αριθµός Άρα το γινόµενο α β περιττός αριθµός Β (i) (ii) Αν α άρτιος ακέραιος αριθµός, [ δηλαδή α ] λ µε λ Ζ τότε έχουµε: α(α + ) λ(4λ + ) λ(4λ + ) λ(4λ + ) Z Αν α περιττός ακέραιος αριθµός, δηλαδή α λ+ µε λ Ζ τότε έχουµε: α(α + ) (λ + ) [(λ + ) + ] (λ + ) [ 4λ + 4λ + + ] (λ + ) [ 4λ + 4λ + ] [(λ + )(λ + λ + ) ] (λ + )(λ + λ + ) Z () Γ Από το συµπέρασµα () του ερωτήµατος Β έχουµε ότι: α (α + ) (λ+)(λ +λ+) (λ+)[(λ +λ)+] (λ+)(ρ+) : περιττός ακέραιος λόγω του ερωτήµατος Α µε ρ λ +λ Ζ ΘΕΜΑ 3o A Η εξίσωση 4x γράφεται x, οπότε είναι ρ Έτσι η εστία Ε ρ ρ έχει συντεταγµένες E,0 ή Ε(,0) Η διευθετούσα είναι x ή x - B Το σύνολο των ευθειών που διέρχονται από την εστία Ε(,0) περιγράφεται από τις εξισώσεις: (η λ ): - 0 λ(x-) λx - λ λx + (-) - λ 0, λ IR (ε): x d(0, ε) άρα η (ε) δεν είναι λύση Αναζητούµε έτσι λ IR ώστε 5

d(0,η ) λ 4λ (λ λ 0 + ( ) 0 λ λ + ( ) + ) λ Έτσι προκύπτουν δύο ευθείες: α) Για λ : x - β) Για λ - : -x + λ ή λ - Γ Αν (ε ) η ζητούµενη ευθεία και Α(x, ) το σηµείο επαφής της (ε ) µε την παραβολή, η (ε ) έχει τη µορφή: ρ(x + x ) ή (x + x ) Επειδή 0 η τελευταία γράφεται x x + ΘΕΜΑ 4o Άρα ο συντελεστής διεύθυνσης προκύπτει λ Λόγω της παραλληλίας µε την x - πρέπει: λ Όµως Α(x, ) είναι σηµείο της παραβολής, οπότε 4x 4x x Τελικά η ζητούµενη εξίσωση είναι: (x + ) x + Α Η δοσµένη εξίσωση γράφεται: (x - xσυνθ) + ( - ηµθ) ή (x - xσυνθ + συν θ) + ( - ηµθ + ηµ θ) ή (x - συνθ) + ( - ηµθ) () Η τελευταία όµως παριστάνει κύκλο µε κέντρο Κ(συνθ, ηµθ) ρ και ακτίνα Β Από την εξίσωση () για θ π, προκύπτει ο κύκλος: (x - 0) + ( - ) του οποίου το κέντρο είναι Κ(0,) M K Είναι: λ ΚΜ Επειδή η εφαπτοµένη ευθεία στο Μ x M x K 0 είναι κάθετη στην ευθεία ΚΜ, προκύπτει ότι θα έχει συντελεστή διεύθυνσης λ - και εξίσωση: - -(x - ) Άρα - x +3 6

Γ Οι συντεταγµένες x, των κέντρων των παραπάνω κύκλων είναι: x συνθ, ηµθ Έτσι προκύπτει x + συν θ + ηµ θ ή x + Άρα τα κέντρα αυτά βρίσκονται στον κύκλο µε κέντρο Ο(0,0) ρ και ακτίνα 7