ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Σχετικά έγγραφα
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(c f (x)) = c f (x), για κάθε x R

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

P A B P(A) P(B) P(A. , όπου l 1

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

P(A ) = 1 P(A). Μονάδες 7

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μαθηματικός Περιηγητής σχ. έτος

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

x. Αν ισχύει ( ) ( )

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

Transcript:

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι cf cf, για κάθε Μονάδες 7 Α. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες Α3. Πότε μια ποσοτική μεταβλητή λέγεται διακριτή και πότε συνεχής; Μονάδες Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Αν για τη συνάρτηση f ισχύει f0 0, για κάθε 0,, και η παράγωγός της f διατηρεί πρόσημο εκατέρωθεν του, 0 τότε η f είναι γνησίως μονότονη στο, και δεν παρουσιάζει ακρότατο στο διάστημα αυτό. (μονάδες ) β. Για δύο οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει: PA B PB PA B (μονάδες ) γ. Σε μια κανονική ή περίπου κανονική κατανομή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστημα s, s, όπου η μέση τιμή και s η τυπική απόκλιση των παρατηρήσεων. (μονάδες ) δ. Αν είναι η τιμή μιας ποσοτικής μεταβλητής Χ, τότε η αθροιστική συχνότητα N εκφράζει το πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής. (μονάδες ) ε. Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες ή τις σχετικές συχνότητες f των τιμών της μεταβλητής. (μονάδες ) Μονάδες 0 ΘΕΜΑ Β Στο παρακάτω σχήμα φαίνεται το ιστόγραμμα συχνοτήτων, το οποίο παριστάνει τις πωλήσεις σε χιλιάδες ευρώ που έγιναν από τους πωλητές μιας εταιρείας κατά τη διάρκεια ενός έτους. ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com

αριθμός πωλητών ΦΡΟΝΤΙΣΤΗΡΙΑ «ΘΕΣΜΟΣ» 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 0 8 6 6 8 0 πωλήσεις σε χιλιάδες ευρώ Β. Να βρείτε το πλήθος των πωλητών της εταιρείας. Μονάδες 5 Β. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συχνοτήτων της κατανομής των πωλήσεων κατάλληλα συμπληρωμένο, δικαιολογώντας τη στήλη με τις σχετικές συχνότητες Κλάσεις f,,,3, Κεντρικές τιμές Συχνότητα Σχετική συχνότητα,,,, Σύνολο Μονάδες 8 Β3. α. Να υπολογίσετε τη μέση τιμή των πωλήσεων του έτους. (μονάδες 6) β. Να βρείτε το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον,5 χιλιάδων ευρώ (θεωρούμε ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες). (μονάδες 6) Μονάδες ΘΕΜΑ Γ Ένα δοχείο περιέχει κόκκινες (Κ), άσπρες (Α) και πράσινες (Π) μπάλες. Επιλέγουμε τυχαία μία μπάλα. Η πιθανότητα να προκύψει κόκκινη μπάλα είναι PK, ενώ η πιθανότητα να προκύψει άσπρη μπάλα είναι PA, όπου, είναι οι θέσεις των τοπικών ακροτάτων της συνάρτησης 7 f, 3 με Γ. Να βρείτε τις πιθανότητες Ρ(Κ), Ρ(Α) και Ρ(Π), όπου Ρ(Π) η πιθανότητα να προκύψει πράσινη μπάλα. Μονάδες 0 f ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 3 Γ. Αν PK και PA, να βρείτε τις πιθανότητες των παρακάτω ενδεχομένων: Γ: «η μπάλα που επιλέγεται τυχαία να είναι κόκκινη ή άσπρη» Δ: «η μπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη» Ε: «η μπάλα που επιλέγεται τυχαία να είναι άσπρη ή να μην είναι πράσινη» Μονάδες 9 Γ3. Αν οι άσπρες μπάλες είναι κατά τέσσερις () λιγότερες από τις πράσινες μπάλες, να βρείτε πόσες μπάλες έχει το δοχείο. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με βάση ορθογώνιο και ανοικτό από πάνω. Το ύψος του κουτιού είναι 5 dm. Η βάση του κουτιού έχει σταθερή περίμετρο 0 dm και μία πλευρά της είναι dm με 0 0. 5 dm dm Δ. Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηση του είναι E 0 00, 0,0 και να βρείτε για ποια τιμή του το κουτί έχει μέγιστη επιφάνεια. Μονάδες 8 Στη συνέχεια, θεωρούμε τα σημεία A,y, όπου y E,,,,5 με 5 5 9 Δ. Αν το δείγμα των τετμημένων,,,,5 των παραπάνω σημείων A,y δεν είναι ομοιογενές έχει μέση τιμή 8 και τυπική απόκλιση s τέτοια, ώστε s 5s 0 τότε: α) να αποδείξετε ότι s (μονάδες ) β) να βρείτε τη μέση τιμή των, με,,,5 Δίνεται ότι: s t t (μονάδες ) Δ3. Επιλέγουμε τυχαία ένα από τα παραπάνω σημεία την πιθανότητα του ενδεχομένου: B A,y,,,,5 έ, ώ y 9R, όπου R είναι το εύρος των y E,,,,5 A,y,,,,,5 Μονάδες 8. Να βρείτε Μονάδες 9 ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΘΕΜΑ A A. Θεωρία σχολικό βιβλίο, σελ. 30. A. Θεωρία σχολικό βιβλίο, σελ. 3. Α3. Θεωρία σχολικό βιβλίο, σελ. 59. Α. α Σ, β Λ, γ Λ, δ Λ, ε Σ ΘΕΜΑ Β Β. 3 8 6 0 Β. Κεντρικές Κλάσεις τιμές Β3. α) f 0,3, 0 3 f3 0,35, 0 ΑΠΑΝΤΗΣΕΙΣ Συχνότητα Σχετική συχνότητα, 3 0,3,6 5 8 0, 6,8 7 0,35 8,0 9 6 0,35 Σύνολο 0 8 0 6 f 0,5 0 f 0,, 3 58 7 9 6 0 36 0 98 5 5,7 ά ώ 0 ή ΘΕΜΑ Γ f 3 0,3 5 0, 7 0,35 90,5 0,9,5,35 5,7 ά ώ. β) Θεωρώντας ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες, έχουμε: σε πλάτος 6 8 πωλητές σε πλάτος 6,5,5,5 8 6 πωλητές Άρα το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον,5 χιλιάδες ευρώ είναι: 6 6 6 6. 3 7 3 Γ. Είναι f,. Η f ως πολυωνυμική είναι συνεχής και παραγωγίσιμη στο με f 7, f 0 7 0 ή 3 f ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ f 0 7 0,, 3 / /3 + f + 0 0 + Γ. P f Η f στο παρουσιάζει τοπικό μέγιστο το f f f 3 P K, P A 3 P K P A 5 P P 3 και στο παρουσιάζει τοπικό ελάχιστο το Επομένως Είναι P f (η μπάλα που επιλέγεται τυχαία να είναι Κ ή Α)= 7 PK PA 3 P P 3 (η μπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη)=ρ(να είναι πράσινη)= P P E P 5 (η μπάλα που επιλέγεται τυχαία να είναι άσπρη ή να μην είναι πράσινη)=ρ(να είναι άσπρη ή κόκκινη)= P 7 Γ3. Έστω Ν(Α) το πλήθος των άσπρων μπαλών και Ν(Π) το πλήθος των πράσινων μπαλών. Τότε N 5 5 5 P NA 8 5N () NA Και P A () 3 N 3 3, N 8, άρα το δοχείο έχει 8 μπάλες. ΘΕΜΑ Δ Δ. Η βάση του κουτιού έχει περίμετρο 0 dm y 0 y 0, 0 0 Γ Δ B Ε 5 dm A Θ dm Ζ ydm Η ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ άρα E AB 50 5 50 5 0 00 0 0 00 0 0 0 0 00, 0 0 Η συνάρτηση Ε() ως πολυωνυμική είναι συνεχής και παραγωγίσιμη στο (0,0) με E 0 E 0 5, E 0 0 5 0 5 0 Ε + 0 Ε Άρα για 5 dm το κουτί έχει μέγιστη επιφάνεια. Δ. α) Είναι s 5s 0 s ήs Δ3. για s είναι ομοιογενές, άτοπο για s είναι s CV δηλ. το δείγμα 6 0 s CV δηλ. το δείγμα δεν είναι ομοιογενές, άρα s 8 0 t β) Είναι s t t t 8 68 t άρα η μέση τιμή των 5 είναι 68... 5 9 [5,0) E E E5 y y y5 Άρα R y y5 E5 E9 Δηλαδή y 96 y 6,,,,5 0 00 5 5 0 5,9 Άρα 3 3 B,y,,y,,,y, N B 3 5 50 00 8 90 00 5 9 6 Επομένως από τον κλασικό ορισμό της πιθανότητας: NB 3 PB N 5 Επιμέλεια: ΣΙΜΙΤΖΟΓΛΟΥ Μ. ΝΤΡΙΤΣΟΣ Τ. ΣΤΡΟΥΖΑΚΗΣ Δ. ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 035 ΜΑΡΟΥΣΙ: Δ. Ράλλη 3 ( ος όροφος), τηλ.: 063508 thesmos@otenet.gr thesmosmarous@gmal.com