ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ



Σχετικά έγγραφα
ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα 3. Επιλέγουµε έναν που δεν είναι άνεργος. Ποια είναι η πιθανότητα να είναι πτυχιούχος; = 0.

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΙΙΙ εσµευµένη Πιθανότητα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Conditional Probability)

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Θεωρία Πιθανοτήτων και Στατιστική

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

HY118- ιακριτά Μαθηµατικά

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

P (B) = P (B/A) P (A) + P (B/Γ) P (Γ) =

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται

Θεωρία Πιθανοτήτων & Στατιστική

Στην Ξένια και στην Μαίρη

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Σηµειώσεις στη Θεωρία Πιθανοτήτων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

= 14 = 34 = Συνδυαστική Ανάλυση

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

HY118-Διακριτά Μαθηματικά

Τι είδαμε την προηγούμενη φορά

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Θεωρία Πιθανοτήτων & Στατιστική

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα

Πρόχειρες σηµειώσεις στις Πιθανότητες

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

Βιομαθηματικά BIO-156

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

3ο Φροντιστηριο ΗΥ217

Τι είδαμε την προηγούμενη φορά

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4

(365)(364)(363)...(365 n + 1) (365) k

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 =

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

Πρόχειρες σηµειώσεις στις Πιθανότητες

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Πανεπιστήμιο Ιωαννίνων, Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας)

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

1.1 Πείραμα Τύχης - δειγματικός χώρος

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

Βασικά στοιχεία της θεωρίας πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Θέματα Στατιστικής. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Στατιστική. Δημόσια Διοίκηση Πάντειο. 24 θέματα σε 5 σελίδες

Τίτλος Μαθήματος: Στατιστική Ι. Ενότητα: Πιθανότητες. Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας. Τμήμα: Οικονομικών Επιστημών

Transcript:

Τµ. Επιστήµης των Υλικών

εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο (ή µια πιθανότητα) P είναι µια συνολοσυνάρτηση, P : A R, µε τις εξής ιδιότητες, 1 A A, P(A) 0. 2 P(Ω) = 1. 3 Αν A 1, A 2,... γεγονότα ανά δύο ξένα µεταξύ τους (δηλ. A i A j =, i j), τότε P( i=1a i) = i=1 P(Ai). Οταν συµβαίνει κάποιο γεγονός A, τότε P(A) > 0. Ποια είναι η πιθανότητα να συµβεί ένα γεγονός B, όταν γνωρίζουµε (δηλ. είµαστε ϐέβαιοι) ότι συµβαίνει το γεγονός A; P(B A) συµβολίζεται ως η πιθανότητα να συµβεί το γεγονός Β, δοθέντος ότι συµβαίνει το γεγονός Α (δεσµευµένη πιθανότητα) Ορισµός P(B A) = P(A B) P(A), όπου P(A) > 0.

εσµευµένες Πιθανότητες Πρόταση Η συνολοσυνάρτηση P( A) είναι ένα µέτρο πιθανότητας, δηλαδή ισχύουν τα αξιώµατα του Kolmogorov 1 B A, P(B A) 0. 2 P(Ω A) = 1. 3 Αν B 1, B 2,... γεγονότα ανά δύο ξένα µεταξύ τους (δηλ. B i B j =, i j), τότε P( i=1b i A) = i=1 P(Bi A). Παράδειγµα 1 Μία δίτεκνη οικογένεια λαµβάνεται στην τύχη από ένα καθορισµένο σύνολο τέτοιων οικογενειών. 1 Ποια είναι η πιθανότητα να πάρουµε παιδί του ίδιου γένους; 2 Ποια είναι η πιθανότητα να πάρουµε παιδί του ίδιου γένους όταν γνωρίζουµε ότι υπάρχει τουλάχιστον ένα κορίτσι;

εσµευµένες Πιθανότητες Πολλαπλασιαστικό Θεώρηµα Εστω ότι συµβαίνουν τα γεγονότα A 1, A 2,...,A n, µε P( n 1 j=1 A j) > 0, τότε P( n j=1 A j) = P(A 1 )P(A 2 A 1 )P(A 3 A 1 A 2 )...P(A n n 1 j=1 A j) Απόδειξη. (Επαγωγικά) n = 2, P(A 1 A 2) = P(A 1)P(A 2 A 1) (ισχύει εξ ορισµού.) Υποθέτω ότι ισχύει για n = k, ϑα δείξω ότι ισχύει για n = k + 1. n = k, P( k j=1 Aj) = P(A1)P(A2 A1)P(A3 A1 A2)...P(A k k 1 j=1 Aj) n = k + 1, P( k+1 j=1 Aj) = P(( k j=1 Aj) A k+1) = P(A k+1 k j=1 Aj)P( k j=1 Aj) = P(A 1)P(A 2 A 1)P(A 3 A 1 A 2)...P(A k k 1 j=1 Aj)P(A k+1 k j=1 Aj). Παράδειγµα 2 Από µια κληρωτίδα που περιέχει 10 πανοµοιότυπα σφαιρίδια, εκτός του ότι 5 είναι µαύρα, 3 είναι κόκκινα και 2 είναι λευκά, 4 σφαιρίδια λαµβάνονται στην τύχη. Ποια είναι η πιθανότητα το 1ο σφαιρίδιο να είναι µαύρο, το 2ο να είναι κόκκινο, το 3ο λευκό και το 4ο µαύρο;

εσµευµένες Πιθανότητες Ορισµός Τα σύνολα A 1, A 2,...,A n,... αποτελούν µια διαµέριση του συνόλου Ω, εάν αυτά είναι ξένα µεταξύ τους ανά δύο (δηλ. A i A j =, i j) και Θεώρηµα Ολικής Πιθανότητας (Θ.Ο.Π.) j=1aj = Ω. Εστω {A j, j = 1, 2,...} µια διαµέριση του δειγµατοχώρου Ω, τότε για κάθε σύνολο Β του δειγµατοχώρου ισχύει η σχέση Θεώρηµα Bayes P(B) = P(A j)p(b A j). Υπό τις προϋποθέσεις του Θ.Ο.Π. και εφ οσον P(B) > 0, j=1 P(A j B) = P(Aj)P(B Aj) P(B), j = 1, 2,..., όπου P(A j) ονοµάζεται εκ των προτέρων πιθανότητα και P(A j B) ονοµάζεται εκ των υστέρων πιθανότητα.

εσµευµένες Πιθανότητες Παράδειγµα 3 Ενας ϕοιτητής γράφεται ως πρωτοετής στο τµ. Επιστήµης των Υλικών. Η πιθανότητα να πάρει υποτροφία είναι 0.30. Αν πάρει υποτροφία η πιθανότητα να πάρει πτυχίο στα 5 χρόνια είναι 0.85 και αν δεν πάρει υποτροφία είναι µόνο 0.45. 1 Να ϐρεθεί η πιθανότητα να πάρει πτυχίο ο ϕοιτητής στα 5 χρόνια. 2 Αν ο ϕοιτητής πήρε το πτυχίο του στα 5 χρόνια, ποια είναι η πιθανότητα να έχει πάρει υποτροφία; Παράδειγµα 4 Κατά την εξέταση ενός ασθενούς υπάρχει η υποψία ότι αυτός πάσχει από µία από τις 3 ασθένειες A 1 ή A 2 ή A 3. Υποθέτουµε ότι, υπό ορισµένες συνθήκες, το 50% του πληθυσµού πάσχουν από την ασθένεια A 1, 25% από την ασθένεια A 2 και 25% από την ασθένεια A 3. Για καλύτερη διάγνωση ο ασθενής υποβάλλεται σε ορισµένο τεστ του οποίου το αποτέλεσµα είναι ϑετικό µε 25% στην περίπτωση της ασθένειας A 1, 50% στην περίπτωση της ασθένειας A 2 και 90% στην περίπτωση της ασθένειας A 3. Ποια είναι η πιθανότητα ο ασθενής να µην έχει την ασθένεια A 1, παρ όλο ότι το παραπάνω τεστ είναι ϑετικό.

Ανεξάρτητα Γεγονότα Ορισµός Αν P(B A) = P(B), τότε τα γεγονότα Α και Β ονοµάζονται ανεξάρτητα. Παράδειγµα 5 Εστω µια κάλπη που περιέχει 10 πανοµοιότυπα σφαιρίδια, όπου τα 7 είναι µαύρα και τα 3 είναι άσπρα, λαµβάνω δύο σφαιρίδια, (i) χωρίς επανατοποθέτηση και (ii) µε επανατοποθέτηση. Ορίζω τα εξής γεγονότα, M 1 = {Το 1ο σφαιρίδιο είναι µαύρο.} M 2 = {Το 2ο σφαιρίδιο είναι µαύρο.} A 1 = {Το 1ο σφαιρίδιο είναι άσπρο.} A 2 = {Το 2ο σφαιρίδιο είναι άσπρο.} Είναι τα γεγονότα M 1 και M 2 ανεξάρτητα µεταξύ τους;

Ανεξάρτητα Γεγονότα Ορισµός Εστω (Ω,A, P) ένας πιθανοθεωρητικός χώρος και γεγονότα A 1, A 2,...,A n A, τα οποία ϑα ονοµάζονται ανεξάρτητα µεταξύ τους, αν για οποιαδήποτε k γεγονότα από αυτά, A i1, A i2,...,a ik ισχύει η σχέση, P(A i1 ) P(A i2 )... P(A ik ) = P(A i1 )P(A i2 )...P(A ik ), k = 1, 2,...,n. Παρατήρηση A 1, A 2, A 3 ανεξάρτητα γεγονότα, εάν P(A 1 A 2 A 3 ) = P(A 1 )P(A 2 )P(A 3 ) P(A 1 A 2 ) = P(A 1 )P(A 2 ) P(A 1 A 3 ) = P(A 1 )P(A 3 ) P(A 2 A 3 ) = P(A 2 )P(A 3 ). Αν έχουµε, δηλ., n γεγονότα πρέπει να πάρουµε 2 n n 1 σχέσεις. Ορισµός Τα γεγονότα A 1, A 2,...,A n καλούνται ανεξάρτητα κατά Ϲεύγη αν

Παραδείγµατα Παράδειγµα 6 ιαθέτουµε τρία δοχεία U 1, U 2 και U 3. Το 1ο δοχείο περιέχει 5 µαύρα και 5 άσπρα σφαιρίδια, το 2ο δοχείο περιέχει 4 µαύρα και 8 άσπρα σφαιρίδια και το 3ο δοχείο περιέχει 8 µαύρα και 6 άσπρα σφαιρίδια. Ρίχνω ένα Ϲάρι. Αν έρθει η πλευρά «1», τότε ϐγάζω 2 σφαιρίδια από το U 1, αν έρθουν οι πλευρές «2» ή «3» ϐγάζω 3 σφαιρίδια από το U 2, ενώ αν έρθουν οι πλευρές «4» ή «5» ή «6» ϐγάζω 4 σφαιρίδια από το U 3. 1 Αν ϱίξω το Ϲάρι µία ϕορά, ποια είναι η πιθανότητα να ϐγάλω ακριβώς 2 µαύρα σφαιρίδια; 2 Αν ϱίξω το Ϲάρι για δεύτερη ϕορά, ποια είναι η πιθανότητα και την πρώτη και τη δεύτερη ϕορά να πάρω 2 µαύρα σφαιρίδια;

Παραδείγµατα Παράδειγµα 7 Ενα Ϲευγάρι (άντρας και γυναίκα) ϑέλει να πάει διακοπές σε ένα ελληνικό νησί. Τελικά καταλήγουν να πάνε σε ένα από τα παρακάτω, ή Σκιάθο ή Ζάκυνθο ή Πάρο (µε την ίδια πιθανότητα). Αν επιλέξουν τη Σκιάθο, η πιθανότητα να τσακωθούν µεταξύ τους κατά τη διάρκεια των διακοπών είναι 20%. Αν επιλέξουν τη Ζάκυνθο αυτή η πιθανότητα γίνεται 30%, ενώ αν πάνε στην Πάρο η πιθανότητα να τσακωθούν είναι 40%. 1 Ποια είναι η πιθανότητα, για το Ϲευγάρι, να τσακωθούν µεταξύ τους κατά τη διάρκεια των διακοπών; 2 Ποια είναι η πιθανότητα να πάνε για διακοπές στη Ζάκυνθο ή στην Πάρο, όταν είναι γνωστό ότι δεν πρόκειται να τσακωθούν;

Παραδείγµατα Παράδειγµα 8 Μέσα σε ένα δοχείο υπάρχουν 4 µαύρα και 6 άσπρα σφαιρίδια. Ρίχνω 3 νοµίσµατα ταυτόχρονα, και ϐγάζουµε τόσα σφαιρίδια από το δοχείο, όσα και το πλήθος των κορώνων από την ϱίψη των 3 νοµισµάτων. 1 Ποια είναι η πιθανότητα να ϐγάλω ένα µαύρο σφαιρίδιο από το δοχείο όταν η δειγµατοληψία γίνεται (i) µε επανάθεση, (ii) χωρίς επανάθεση. 2 Αν γνωρίζω ότι έχω ϐγάλει ένα µαύρο σφαιρίδιο από το δοχείο, ποια είναι η πιθανότητα κατά την ϱίψη των τριών νοµισµάτων να έχω 2 κορώνες, όταν η δειγµατοληψία γίνεται χωρίς επανάθεση.