ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή 7 Απριλίου 0 ιάρκεια Εξέτασης: ώρες Α.. Σχολικό βιβλίο Σελίδες 8-9. Α.. Σχολικό βιβλίο Σελίδες 86-87. Α.. Σχολικό βιβλίο Σελίδα 6. Α.. ΘΕΜΑ Β α Σ, β Λ, γ Λ, δ Σ, ε Σ. ΑΠΑΝΤΗΣΕΙΣ Β.. Αφού το εύρος R 0 mn και το πλήθος τω κλάσεω είαι κ, τότε R 0 c κ. Α οι κλάσεις είαι [ a, a+ ),[ a+, a+ 8),[ a+ 8, a+ ), από τη κετρική τιµή της ης κλάσης ( a + 8) + ( a + ) a + 0 0 0 a + 0 a 0, άρα οι κλάσεις είαι [ 0, ),{, 8),{8,),[, 6),[6, 0). Έχουµε επίσης ότι N 0, αφού N, άρα 0. Επίσης, δίεται ότι µαθητές περιµέου λιγότερο από mn άρα, έτσι: 6 0,06 και 0 00 F 0,, άρα + 0, 0, 0,06 () 0, v 0, 0, 7. 0 ίεται επίσης ότι 0 µαθητές περιµέου λιγότερο από mm, άρα N 0 + + 0 0 + 0 0, άρα ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Β.. 0 0, και F + + 0,, δίεται επίσης ότι το 8% τω 0 µαθητώ περιµέου χρόο λιγότερο από 6mn, άρα F 8 F 0,8 + + + 0,8, οπότε % 0,8 0, 0, και 0, 0, 0 Οπότε N + + + + 7+ 0+, άρα 0 8 έτσι ο πίακας γίεται : Κλάσεις: χρόος σε mn Κέτρο κλάσης Συχότητα N F % [0,) 0,06 0,06 6 [,8) 6 7 0 0, 0, 0 [8,) 0 0 0 0, 0, 0 [,6) 0, 0,8 8 [6,0) 8 8 0 0,6 00 Σύολο 0 Για το µέσο χρόο ααµοής και τη διασπορά: Κλάσεις: χρόος σε mn ( ) F ( ) [0,) 6-0 00 00 [,8) 6 7-6 6 [8,) 0 0 00-0 [,6) 08 88 [6,0) 8 8 6 6 88 Σύολο 0 600 968 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Άρα s κ 600 mn και η διασπορά ή διακύµαση 0 κ ( ), δηλαδή s 96 968 9,6 mn 0 00, οπότε s s 9,6, mn. Η διάµεσος δ σε οµαδοποιηµέη καταοµή ατιστοιχεί στη τιµή δ της µεταβλητής (στο οριζότιο άξοα) έτσι ώστε το 0% τω παρατηρήσεω α είαι µικρότερες ή ίσες του δ. ηλαδή η διάµεσος έχει αθροιστική σχετική συχότητα F 0 % έτσι στο σχήµα από το ιστόγραµµα αθροιστικώ σχετικώ συχοτήτω επί τοις εκατό τα σηµεία Α, Μ, Β είαι συευθειακά έτσι: B M λ ΑΒ λ ΑΜ ή B M 8 0 0 0 0 ( δ ) 0 ή 6 δ δ δ 0 δ δ,9 mn περίπου F % 00 8 0% 0 0 Α(,0) Β(6,8) Μ(δ,0) 0 8 δ 6 0 χροος σε mn Β τρόπος Από τα όµοια τρίγωα ΑΗΜ ΑΚΒ ή λόγω θεωρήµατος Θαλή έχουµε ΑΗ ΗΜ 0 0, δηλαδή 0, 9 περίπου ΑΚ ΚΒ Άρα η διάµεσος δ + + 0,9, 9 περίπου ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) F % 00 8 0% 0 Α(,0) 0 0 H Β(6,8) 0 8 δ 6 0 χροος σε mn Μ(δ,0) Β.. α) Από το σχήµα έχουµε Γ ( 8,0), P(0, ), (,0) Γ P Γ 0 0 0 λ ΓΑ λγρ, άρα Γ P Γ 8 0 8 0 0 0 0 0 0 άρα το 0% τω µαθητώ έχει χρόο ααµοής κάτω από 0 mn (οπότε το 70% κάει χρόο από 0 mn και πάω) άρα για το εδεχόµεο Α{ο χρόος ααµοής του µαθητή είαι µικρότερος από 0 mn }, έχουµε 0 P ( ) P( t< 0 mn) 0, 00 F % 00 88 8 Ε(7, ) 0% Μ(δ,0) 0 Α(,0) 0 Ρ(0, ) 0 Γ(8,0) 0 8 0δ 67 0 K Β(6,8) (0,00) χροος σε mn Β Ε Β 00 8 8 λ Β λβε, άρα Β Ε Β 0 6 7 6 6 8 8 88 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Άρα το 88% τω µαθητώ έχει χρόο ααµοής κάτω από 7 mn, από αυτούς το 0% έχει χρόο ααµοής κάτω από 8 mn, άρα χρόο ααµοής τουλάχιστο 8 mn και λιγότερο από 7 mn έχει το 88 0 68% του συόλου τω µαθητώ. Έτσι για τη πιθαότητα του εδεχοµέου Β{ο χρόος ααµοής του µαθητή είαι τουλάχιστο 8 mn και λιγότερος από 7 mn },έχουµε 68 P ( P(8 t< 7 mn) 0,68 00 β) Θεωρούµε το εδεχόµεο B {ο χρόος ααµοής του µαθητή 8 mn t 0 mn }, τότε το 0% τω µαθητώ έχει χρόο ααµοής κάτω από 0 mn, από αυτούς το 0% έχει χρόο ααµοής κάτω από 8 mn, οπότε το 0 0 0% έχει χρόο ααµοής 8 mn t 0 mn, 0 άρα P ( B 0,, οπότε 00 P ( P( ) + P( 0, + 0,68 0, 0,88,εώ P ( P( ) 0, 0, 0,, έτσι ( ) P ( P( B ) P( 0,68 0, 0,8 ΘΕΜΑ Γ Γ.. Αρχικά για το όριο: δ lm + Πρέπει + 0 και + 0 όποτε και +, άρα και +, έτσι έχουµε και, άρα η συάρτηση ορίζεται στο σύολο [,) (, + ) άρα για τη συάρτηση έχουµε: ( ) ( ) ( + + ) ( + ) ( + )( + + ) ) ( + + ) ( ) ( + + ) ( + + ) ( + ) ( + ) ( + + ) lm lm 0 ( ) ή ( ( ) άρα lm ( ) + Έτσι δ lm 0 0 mm Hg + Όπως γωρίζουµε στη καοική καταοµή, η µέση τιµή χωρίζει το σύολο τω παρατηρήσεω µε τέτοιο τρόπο έτσι ώστε το 0% τω παρατηρήσεω α είαι µικρότερες ή ίσες της και το 0% τω παρατηρήσεω α είαι ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) µεγαλύτερες ή ίσες της. ηλαδή στη καοική καταοµή ισχύει ότι η διάµεσος και η µέση τιµή ταυτίζοται έτσι δ 0 mm Hg. Αποδεικύεται ότι στη καοική καταοµή: το 8% έχει συστολική πίεση > s από το πρόβληµα δίεται ότι: το 8% έχει συστολική πίεση µεγαλύτερη από mm Hg, άρα πρέπει, s mm Hg, όµως 0 mm Hg, άρα 0 s s mm Hg Έτσι για τη καταοµή Α έχουµε: % 8% 0% 0 0 0 0 - s - s - s + s + s + s σε mm Hg Για το συτελεστή µεταβολής είαι οµοιογεές. CV <, άρα το δείγµα Α 0 6 0 Γ.. α) Για το δείγµα Β ξέρουµε ότι κάθε άτοµο του δείγµατος αυτού παρουσιάζει συστολική πίεση + 0 σε mm Hg, για κάθε,,...,, σε σχέση µε τη συστολική πίεση τω ατόµω του δείγµατος Α. Άρα, από γωστή εφαρµογή του σχολικού βιβλίου, θα ισχύει ότι B + 0 0+ 0 0 mm Hg Εώ s s mm Hg. B s ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Οπότε s B CV B < B 0 0 CV οµοιογέεια σε σχέση µε το δείγµα Α. καταοµή Α, έτσι το δείγµα Β παρουσιάζει µεγαλύτερη καταοµή Β 0 0 0 0 σε mm Hg - s - s - s + s + s + s B- sb B- sb B- sb B B+ sb B+ sb B+ sb Γ.. β), 0 0 0 0 σε mm Hg + s + s. Από τη υπόθεση έχουµε ότι το πλήθος τω ατόµω του δείγµατος Α, στο + s, + s, είαι ίσο µε 0, όµως το παραπάω διάστηµα [ ] ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 7 ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) διάστηµα περιέχει το,% του πλήθους τω ατόµω της καταοµής, Α, άρα,% 0 0,. 000. 00 000 ηλαδή 000, έτσι B. 000 άτοµα.,. Οπότε συολικά και από τα δύο δείγµατα έχου συστολική πίεση κάτω από mm Hg Το 8 % τω ατόµω της καταοµής Α Το 6 % τω ατόµω της καταοµής Β 8 6 Άρα συολικά.000+.000. 000 άτοµα 00 00 καταοµή Α 8% 6% 0 0 0 0 σε mm Hg + s - s B B B καταοµή Β ΘΕΜΑ.. α. a '( ) ( a + ) Ο συτελεστής διεύθυσης της εφαπτοµέης ( ε ) : + β είαι λ και ισούται µε τη παράγωγο της στο 0, εποµέως είαι: ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 8 ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) a '() ( a + ) a... a, οπότε η ( a + ) συάρτηση γίεται ( ) και είαι ( ). + Για και στη (ε) βρίσκουµε: + β β. β. '( ) 0 0 ( + ) 0 + '( ) + 0 () ր τ.µ. ց Στο διάστηµα (,0] η είαι γησίως αύξουσα και στο διάστηµα [ 0, + ) είαι γησίως φθίουσα. Στο 0 η παρουσιάζει τοπικό µέγιστο το ( 0), το οποίο είαι και ολικό µέγιστο, αφού για 0 είαι ( ) (0) και για 0 είαι ( ) (0), δηλαδή για κάθε R είαι ( ) (0)... α. Α Α έα εδεχόµεο εός δειγµατικού χώρου Ω, τότε ισχύει 0 P ( ), οπότε πρέπει 0, 0 + 0 + 0 0.. β) Είαι + + 7 + 0 Οπότε {,, },, 0. Οι πιθαότητες τω εδεχοµέω ( ', B, και Α είαι οι αριθµοί,,, όχι απαραίτητα µε τη ίδια σειρά. 0 Η αύξουσα σειρά αυτώ τω αριθµώ είαι,,. 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 9 ΑΠΟ 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Είαι B, οπότε P( ) P(. Α P ( ) και P (, τότε υποχρεωτικά πρέπει α είαι 7 P (( '), αλλά τότε P ( P( > P( ) που 0 0 0 είαι άτοπο γιατί ισχύει P( P( ), αφού B. Α P ( ) και P (, τότε υποχρεωτικά πρέπει α είαι 0 P (( B )'), αλλά τότε P ( P( > P( ) που είαι άτοπο γιατί ισχύει P( P( ), αφού B. Εποµέως είαι: P ( ), P( και P (( B )'). 0 Επειδή είαι P( ( ') P(, τότε P ( P( ( ').. Είαι P ( B' ) P( P( ) () 0 0 Επίσης είαι B' ( B' )' B, οπότε P ( B' ) P( (). Από τις και προκύπτει ότι P( B' ) < P( B' ) και αφού η συάρτηση είαι γησίως φθίουσα στο διάστηµα [ 0, + ), τότε P B' > P( B').. Είαι ( ( )) ( ) P ( P( ) + P( P( P( + P( ) P( + 0 0 0 Είαι Β Γ Β, άρα P ( Β Γ) P( Β) P( Β Γ) () Επίσης, Β Γ Γ, άρα P ( Β Γ) P( Γ) P( Β Γ) 0 P( B Γ) P( Β Γ) P( 0 0 P( Β Γ) P( Β Γ) P( Β Γ) () 0 0 Από τις () και () προκύπτει ότι: P ( Β Γ). ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 0 ΑΠΟ 0