ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

Σχετικά έγγραφα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

( ) 2. χρόνος σε min. 2. xa x. x x v

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Ασκήσεις στη Στατιστική

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(c f (x)) = c f (x), για κάθε x R

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x)

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

c f(x) = c f (x), για κάθε x R

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,...,

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

c f(x) = c f (x), για κάθε x R

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ

Γ Λυκείου Μαθηματικά Γενικής Παιδείας o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας Ασκήσεις για λύση. M. Παπαγρηγοράκης 1 11.

BIOΣΤΑΤΙΣΤΙΚΗ. ιδάσκων: Τριανταφύλλου Ιωάννης Τ.Ε.Ι. ΑΘΗΝΑΣ

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική

{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΣΤΑΤΙΣΤΙΚΗ. φυσικός αριθµός, που δείχνει πόσες φορές εµφανίζεται η τιµή x i της µεταβλητής αυτής. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β4 Έστω η συνάρτηση f ( ) = A( ) B( ) Βρείτε τη µέγιστη

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου 2016 Β ΓΥΜΝΑΣΙΟΥ ˆ ΑΔΒ.

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

Σωστό - Λάθος Επαναληπτικές

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Επίπεδο εκπαίδευσης πατέρα 2

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ. =, όπου x A και g( x) 0.

Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

- 1 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ

( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος.

± ª,»±+ª± ª + ² ª± ³ ª ³

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή 7 Απριλίου 0 ιάρκεια Εξέτασης: ώρες Α.. Σχολικό βιβλίο Σελίδες 8-9. Α.. Σχολικό βιβλίο Σελίδες 86-87. Α.. Σχολικό βιβλίο Σελίδα 6. Α.. ΘΕΜΑ Β α Σ, β Λ, γ Λ, δ Σ, ε Σ. ΑΠΑΝΤΗΣΕΙΣ Β.. Αφού το εύρος R 0 mn και το πλήθος τω κλάσεω είαι κ, τότε R 0 c κ. Α οι κλάσεις είαι [ a, a+ ),[ a+, a+ 8),[ a+ 8, a+ ), από τη κετρική τιµή της ης κλάσης ( a + 8) + ( a + ) a + 0 0 0 a + 0 a 0, άρα οι κλάσεις είαι [ 0, ),{, 8),{8,),[, 6),[6, 0). Έχουµε επίσης ότι N 0, αφού N, άρα 0. Επίσης, δίεται ότι µαθητές περιµέου λιγότερο από mn άρα, έτσι: 6 0,06 και 0 00 F 0,, άρα + 0, 0, 0,06 () 0, v 0, 0, 7. 0 ίεται επίσης ότι 0 µαθητές περιµέου λιγότερο από mm, άρα N 0 + + 0 0 + 0 0, άρα ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Β.. 0 0, και F + + 0,, δίεται επίσης ότι το 8% τω 0 µαθητώ περιµέου χρόο λιγότερο από 6mn, άρα F 8 F 0,8 + + + 0,8, οπότε % 0,8 0, 0, και 0, 0, 0 Οπότε N + + + + 7+ 0+, άρα 0 8 έτσι ο πίακας γίεται : Κλάσεις: χρόος σε mn Κέτρο κλάσης Συχότητα N F % [0,) 0,06 0,06 6 [,8) 6 7 0 0, 0, 0 [8,) 0 0 0 0, 0, 0 [,6) 0, 0,8 8 [6,0) 8 8 0 0,6 00 Σύολο 0 Για το µέσο χρόο ααµοής και τη διασπορά: Κλάσεις: χρόος σε mn ( ) F ( ) [0,) 6-0 00 00 [,8) 6 7-6 6 [8,) 0 0 00-0 [,6) 08 88 [6,0) 8 8 6 6 88 Σύολο 0 600 968 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Άρα s κ 600 mn και η διασπορά ή διακύµαση 0 κ ( ), δηλαδή s 96 968 9,6 mn 0 00, οπότε s s 9,6, mn. Η διάµεσος δ σε οµαδοποιηµέη καταοµή ατιστοιχεί στη τιµή δ της µεταβλητής (στο οριζότιο άξοα) έτσι ώστε το 0% τω παρατηρήσεω α είαι µικρότερες ή ίσες του δ. ηλαδή η διάµεσος έχει αθροιστική σχετική συχότητα F 0 % έτσι στο σχήµα από το ιστόγραµµα αθροιστικώ σχετικώ συχοτήτω επί τοις εκατό τα σηµεία Α, Μ, Β είαι συευθειακά έτσι: B M λ ΑΒ λ ΑΜ ή B M 8 0 0 0 0 ( δ ) 0 ή 6 δ δ δ 0 δ δ,9 mn περίπου F % 00 8 0% 0 0 Α(,0) Β(6,8) Μ(δ,0) 0 8 δ 6 0 χροος σε mn Β τρόπος Από τα όµοια τρίγωα ΑΗΜ ΑΚΒ ή λόγω θεωρήµατος Θαλή έχουµε ΑΗ ΗΜ 0 0, δηλαδή 0, 9 περίπου ΑΚ ΚΒ Άρα η διάµεσος δ + + 0,9, 9 περίπου ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) F % 00 8 0% 0 Α(,0) 0 0 H Β(6,8) 0 8 δ 6 0 χροος σε mn Μ(δ,0) Β.. α) Από το σχήµα έχουµε Γ ( 8,0), P(0, ), (,0) Γ P Γ 0 0 0 λ ΓΑ λγρ, άρα Γ P Γ 8 0 8 0 0 0 0 0 0 άρα το 0% τω µαθητώ έχει χρόο ααµοής κάτω από 0 mn (οπότε το 70% κάει χρόο από 0 mn και πάω) άρα για το εδεχόµεο Α{ο χρόος ααµοής του µαθητή είαι µικρότερος από 0 mn }, έχουµε 0 P ( ) P( t< 0 mn) 0, 00 F % 00 88 8 Ε(7, ) 0% Μ(δ,0) 0 Α(,0) 0 Ρ(0, ) 0 Γ(8,0) 0 8 0δ 67 0 K Β(6,8) (0,00) χροος σε mn Β Ε Β 00 8 8 λ Β λβε, άρα Β Ε Β 0 6 7 6 6 8 8 88 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Άρα το 88% τω µαθητώ έχει χρόο ααµοής κάτω από 7 mn, από αυτούς το 0% έχει χρόο ααµοής κάτω από 8 mn, άρα χρόο ααµοής τουλάχιστο 8 mn και λιγότερο από 7 mn έχει το 88 0 68% του συόλου τω µαθητώ. Έτσι για τη πιθαότητα του εδεχοµέου Β{ο χρόος ααµοής του µαθητή είαι τουλάχιστο 8 mn και λιγότερος από 7 mn },έχουµε 68 P ( P(8 t< 7 mn) 0,68 00 β) Θεωρούµε το εδεχόµεο B {ο χρόος ααµοής του µαθητή 8 mn t 0 mn }, τότε το 0% τω µαθητώ έχει χρόο ααµοής κάτω από 0 mn, από αυτούς το 0% έχει χρόο ααµοής κάτω από 8 mn, οπότε το 0 0 0% έχει χρόο ααµοής 8 mn t 0 mn, 0 άρα P ( B 0,, οπότε 00 P ( P( ) + P( 0, + 0,68 0, 0,88,εώ P ( P( ) 0, 0, 0,, έτσι ( ) P ( P( B ) P( 0,68 0, 0,8 ΘΕΜΑ Γ Γ.. Αρχικά για το όριο: δ lm + Πρέπει + 0 και + 0 όποτε και +, άρα και +, έτσι έχουµε και, άρα η συάρτηση ορίζεται στο σύολο [,) (, + ) άρα για τη συάρτηση έχουµε: ( ) ( ) ( + + ) ( + ) ( + )( + + ) ) ( + + ) ( ) ( + + ) ( + + ) ( + ) ( + ) ( + + ) lm lm 0 ( ) ή ( ( ) άρα lm ( ) + Έτσι δ lm 0 0 mm Hg + Όπως γωρίζουµε στη καοική καταοµή, η µέση τιµή χωρίζει το σύολο τω παρατηρήσεω µε τέτοιο τρόπο έτσι ώστε το 0% τω παρατηρήσεω α είαι µικρότερες ή ίσες της και το 0% τω παρατηρήσεω α είαι ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) µεγαλύτερες ή ίσες της. ηλαδή στη καοική καταοµή ισχύει ότι η διάµεσος και η µέση τιµή ταυτίζοται έτσι δ 0 mm Hg. Αποδεικύεται ότι στη καοική καταοµή: το 8% έχει συστολική πίεση > s από το πρόβληµα δίεται ότι: το 8% έχει συστολική πίεση µεγαλύτερη από mm Hg, άρα πρέπει, s mm Hg, όµως 0 mm Hg, άρα 0 s s mm Hg Έτσι για τη καταοµή Α έχουµε: % 8% 0% 0 0 0 0 - s - s - s + s + s + s σε mm Hg Για το συτελεστή µεταβολής είαι οµοιογεές. CV <, άρα το δείγµα Α 0 6 0 Γ.. α) Για το δείγµα Β ξέρουµε ότι κάθε άτοµο του δείγµατος αυτού παρουσιάζει συστολική πίεση + 0 σε mm Hg, για κάθε,,...,, σε σχέση µε τη συστολική πίεση τω ατόµω του δείγµατος Α. Άρα, από γωστή εφαρµογή του σχολικού βιβλίου, θα ισχύει ότι B + 0 0+ 0 0 mm Hg Εώ s s mm Hg. B s ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Οπότε s B CV B < B 0 0 CV οµοιογέεια σε σχέση µε το δείγµα Α. καταοµή Α, έτσι το δείγµα Β παρουσιάζει µεγαλύτερη καταοµή Β 0 0 0 0 σε mm Hg - s - s - s + s + s + s B- sb B- sb B- sb B B+ sb B+ sb B+ sb Γ.. β), 0 0 0 0 σε mm Hg + s + s. Από τη υπόθεση έχουµε ότι το πλήθος τω ατόµω του δείγµατος Α, στο + s, + s, είαι ίσο µε 0, όµως το παραπάω διάστηµα [ ] ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 7 ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) διάστηµα περιέχει το,% του πλήθους τω ατόµω της καταοµής, Α, άρα,% 0 0,. 000. 00 000 ηλαδή 000, έτσι B. 000 άτοµα.,. Οπότε συολικά και από τα δύο δείγµατα έχου συστολική πίεση κάτω από mm Hg Το 8 % τω ατόµω της καταοµής Α Το 6 % τω ατόµω της καταοµής Β 8 6 Άρα συολικά.000+.000. 000 άτοµα 00 00 καταοµή Α 8% 6% 0 0 0 0 σε mm Hg + s - s B B B καταοµή Β ΘΕΜΑ.. α. a '( ) ( a + ) Ο συτελεστής διεύθυσης της εφαπτοµέης ( ε ) : + β είαι λ και ισούται µε τη παράγωγο της στο 0, εποµέως είαι: ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 8 ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) a '() ( a + ) a... a, οπότε η ( a + ) συάρτηση γίεται ( ) και είαι ( ). + Για και στη (ε) βρίσκουµε: + β β. β. '( ) 0 0 ( + ) 0 + '( ) + 0 () ր τ.µ. ց Στο διάστηµα (,0] η είαι γησίως αύξουσα και στο διάστηµα [ 0, + ) είαι γησίως φθίουσα. Στο 0 η παρουσιάζει τοπικό µέγιστο το ( 0), το οποίο είαι και ολικό µέγιστο, αφού για 0 είαι ( ) (0) και για 0 είαι ( ) (0), δηλαδή για κάθε R είαι ( ) (0)... α. Α Α έα εδεχόµεο εός δειγµατικού χώρου Ω, τότε ισχύει 0 P ( ), οπότε πρέπει 0, 0 + 0 + 0 0.. β) Είαι + + 7 + 0 Οπότε {,, },, 0. Οι πιθαότητες τω εδεχοµέω ( ', B, και Α είαι οι αριθµοί,,, όχι απαραίτητα µε τη ίδια σειρά. 0 Η αύξουσα σειρά αυτώ τω αριθµώ είαι,,. 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 9 ΑΠΟ 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) Είαι B, οπότε P( ) P(. Α P ( ) και P (, τότε υποχρεωτικά πρέπει α είαι 7 P (( '), αλλά τότε P ( P( > P( ) που 0 0 0 είαι άτοπο γιατί ισχύει P( P( ), αφού B. Α P ( ) και P (, τότε υποχρεωτικά πρέπει α είαι 0 P (( B )'), αλλά τότε P ( P( > P( ) που είαι άτοπο γιατί ισχύει P( P( ), αφού B. Εποµέως είαι: P ( ), P( και P (( B )'). 0 Επειδή είαι P( ( ') P(, τότε P ( P( ( ').. Είαι P ( B' ) P( P( ) () 0 0 Επίσης είαι B' ( B' )' B, οπότε P ( B' ) P( (). Από τις και προκύπτει ότι P( B' ) < P( B' ) και αφού η συάρτηση είαι γησίως φθίουσα στο διάστηµα [ 0, + ), τότε P B' > P( B').. Είαι ( ( )) ( ) P ( P( ) + P( P( P( + P( ) P( + 0 0 0 Είαι Β Γ Β, άρα P ( Β Γ) P( Β) P( Β Γ) () Επίσης, Β Γ Γ, άρα P ( Β Γ) P( Γ) P( Β Γ) 0 P( B Γ) P( Β Γ) P( 0 0 P( Β Γ) P( Β Γ) P( Β Γ) () 0 0 Από τις () και () προκύπτει ότι: P ( Β Γ). ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 0 ΑΠΟ 0