ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Παρασκευή ΕΠΙΜΕΛΕΙΑ lisari team ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

Σχετικά έγγραφα
ΛΥΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ lisari team ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ η έκδοση

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη :15 πμ ΕΠΙΜΕΛΕΙΑ LISARI TEAM. ΘΕΜΑΤΑ Α + Β Βελαώρας Γιάννης Κάκανος Γιάννης ΘΕΜΑ Γ

ΛΥΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ lisari team ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ η έκδοση

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη :10. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Μαρία Παπαδομανωλάκη ΘΕΜΑ Β ΘΕΜΑ Γ

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Παρασκευή :30. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Σήφης Βοσκάκης ΘΕΜΑ Β ΘΕΜΑ Γ

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΤΑΡΤΗ : 35 π.μ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΕΠΙΜΕΛΕΙΑ lisari team

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΠΑΡΑΣΚΕΥΗ 20 ΜΑΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

(Έκδοση: )

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

(Έκδοση: )

(Έκδοση: )

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

(Έκδοση: )

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

Απαντήσεις. Θέμα 1 ο. Α. α) v1. Άρα v1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

(Έκδοση: )

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

Μαθηματικός Περιηγητής σχ. έτος

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων 2014 Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γενικής Παιδείας ΗΜΕΡΗΣΙΑ ΓΕ.Λ.

P A B P(A) P(B) P(A. , όπου l 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΕΠΑ.Λ. ΑΠΑΝΤΗΣΕΙΣ

Λύσεις των θεμάτων των επαναληπτικών πανελλαδικών εξετάσεων στα Μαθηματικά και Στοιχεία Στατιστικής

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Λύσεις των θεμάτων 22/04/2013. Προσομοίωση 1 Πανελαδικών Εξετάσεων 2013 στα «Μαθηματικά και Στοιχεία Στατιστικής» Γ ΓΕ.Λ και ΕΠΑ.Λ.

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Δ ι α γ ω ν ί ς μ α τ α π ρ ο ς ο μ ο ί ω ς η σ 1

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

P(A ) = 1 P(A). Μονάδες 7

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

1 ο κύκλος C με κέντρο την αρχή των αξόνων και ακτίνα ρ = 2

Μαθηματικά Γ' Γενικού Λυκείου -Θετικών Σπουδών, Λύσεις Ασκήσεων Εκδότης: Ινστιτούτο Τεχνολογίας Υπολογιστών και Εκδόσεων Διόφαντος

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 2019

ΠΑΝΕΛΛΑΔΙΚΟ ΔΙΚΤΥΟ. Είδος Νομός Πόλη ΟΔΟΝΤΙΑΤΡΙΚΟ ΚΕΝΤΡΟ ΑΙΤΩΛΟΑΚΑΡΝΑΝΙΑΣ ΑΓΡΙΝΙΟ ΟΔΟΝΤΙΑΤΡΙΚΟ ΚΕΝΤΡΟ ΑΙΤΩΛΟΑΚΑΡΝΑΝΙΑΣ ΜΕΣΟΛΟΓΓΙ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ÈÅÌÁÔÁ 2005 ÏÅÖÅ ( ) ( ) 2 2 Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. θ έ µ α τ α ΑΠΑΝΤΗΣΕΙΣ ( )( )( ) ( )( ) Επαναληπτικά Θέµατα ΟΕΦΕ 2005.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ ΔΕΚΕΜΒΡΙΟΣ 2013 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

Transcript:

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Παρασκευή 0 05 6 :00 πµ ΕΠΙΜΕΛΕΙΑ lsar team ΠΑΝΑΓΙΩΤΗΣ ΓΚΡΙΜΠΑΒΙΩΤΗΣ ΓΙΑΝΝΗΣ ΖΑΜΠΕΛΗΣ ΓΙΑΝΝΗΣ ΚΑΚΑΝΟΣ ΗΜΗΤΡΗΣ ΜΠΑ ΕΜΗΣ ΗΜΗΤΡΗΣ ΠΑΠΑΜΙΚΡΟΥΛΗΣ ΘΩΜΑΣ ΠΟ ΗΜΑΤΑΣ ΧΡΗΣΤΟΣ ΣΙΣΚΑΣ ΤΑΚΗΣ ΤΣΑΚΑΛΑΚΟΣ ΜΑΚΗΣ ΧΑΤΖΟΠΟΥΛΟΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 06

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των μελών της lsar team http://lsar.blogspot.gr/0/0/blog-post_3.html η έκδοση: 0 05 05 (συνεχής ανανέωση) Οι λύσεις διατίθεται αποκλειστικά και ελεύθερα από το μαθηματικό blog http://lsar.blogspot.gr

Πρόλογος Στο παρόν αρχείο περιλαμβάνονται οι λύσεις των Πανελλαδικών Εξετάσεων στο μάθημα Μαθηματικά και Στοιχεία Στατιστικής. Η παρουσίαση των λύσεων είναι πλήρης και αναλυτική στο μέγιστο δυνατό, προκειμένου οι μαθητές να μπορούν να μελετήσουν και να επεξεργαστούν εύκολα το αρχείο. Η εργασία αυτή εκπονήθηκε αποκλειστικά από τη γνωστή διαδικτυακή ομάδα Μαθηματικών από διάφορα μέρη της Ελλάδος, τη lsar team. Προσπάθησαν και τα κατάφεραν να δώσουν πρώτοι διαδικτυακά τις πλήρεις λύσεις σε ένα αρχείο pdf!! Μετά από την αρχική επιμέλεια των λύσεων ακολούθησαν ενδελεχείς έλεγχοι, διορθώσεις και βελτιώσεις με στόχο μια πληρέστερη και πιο ποιοτική παρουσίαση. Ζητούμε συγνώμη για τυχόν παραλείψεις, λάθη ή αστοχίες που ενδεχομένως θα έχουν διαφύγει της προσοχής μας, γεγονός αναπόφευκτο δεδομένων των στενών χρονικών περιθωρίων. Θα ακολουθήσουν επόμενες εκδόσεις, όπου η εν λόγω παρουσίαση θα βελτιωθεί, ίσως εμπλουτιστεί και με εναλλακτικές λύσεις. Οποιαδήποτε σχόλια, παρατηρήσεις, διορθώσεις και βελτιώσεις επί των λύσεων είναι ευπρόσδεκτα στην ηλεκτρονική διεύθυνση lsar.blogspot@gmal.com. Με εκτίμηση lsar teaμ 0 05 06

lsar team. Αντωνόπουλος Νίκος (Ιδιοκτήτης Φροντιστηρίου "Κατεύθυνση" - Άργος). Αυγερινός Βασίλης (Ιδιοκτήτης Φροντιστηρίου "ΔΙΑΤΑΞΗ" - Ν. Σμύρνη και Νίκαια) 3. Βελαώρας Γιάννης (Φροντιστήριο "ΒΕΛΑΩΡΑΣ" - Λιβαδειά Βοιωτίας). Βοσκάκης Σήφης (Φροντιστήριο "Ευθύνη" - Ρέθυμνο) 5. Γιαννόπουλος Μιχάλης ( Θεσσαλονίκη - Αμερικάνικη Γεωργική Σχολή) 6. Γκριμπαβιώτης Παναγιώτης (Φροντιστήριο "Αστρολάβος" - Άρτα) 7. Δούδης Δημήτρης (3ο Λύκειο Αλεξανδρούπολης) 8. Ζαμπέλης Γιάννης (Φροντιστήρια "Πουκαμισάς" Γλυφάδας) 9. Ηλίας Ζωβοΐλης (Μαθηματικός - Χαϊδάρι) 0. Κακαβάς Βασίλης (Φροντιστήριο "Ώθηση" - Μαρούσι). Κάκανος Γιάννης (Φροντιστήριο "Παπαπαναγιώτου Παπαπαύλου" - Σέρρες). Κανάβης Χρήστος (Διδακτορικό στο ΕΜΠ ο ΣΔΕ φυλακών Κορυδαλλού) 3. Καρδαμίτσης Σπύρος (Πρότυπο Λύκειο Αναβρύτων). Κοπάδης Θανάσης (Ιδιοκτήτης Φροντιστηρίων "9+" - Πολύγωνο) 5. Κουλούρης Ανδρέας (3ο Λύκειο Γαλατσίου) 6. Κουστέρης Χρήστος (Φροντιστήριο "Στόχος" - Περιστέρι) 7. Μανώλης Ανδρέας (Φροντιστήριο "Ρηγάκης" - Κοζάνη) 8. Μαρούγκας Χρήστος (3ο ΓΕΛ Κηφισιάς) 9. Δημήτρης Μπαδέμης (Φροντιστήριο "Πουκαμισάς" - Γλυφάδας) 0. Νάννος Μιχάλης (ο Γυμνάσιο Σαλαμίνας). Νικολόπουλος Θανάσης (Λύκειο Κατασταρίου, Ζάκυνθος). Παγώνης Θεόδωρος (Φροντιστήριο "Φάσμα" - Αγρίνιο) 3. Παπαδομανωλάκη Μαρία (Συνιδιοκτήτρια Πρότυπου Κέντρου Μάθησης "ΔΙΑΚΡΙΣΙΣ" - Ρέθυμνο). Παπαμικρούλης Δημήτρης (Εκπαιδευτικός Οργανισμός "Ρόμβος") 5. Πάτσης Ανδρέας (Βόνιτσα - Μαθηματικός) 6. Ποδηματάς Θωμάς ( Σπουδαστήριο Μαθηματικών Θωμάς και Ρόζα Ποδηματά - Βόλος) 7. Ράπτης Γιώργος (6ο ΓΕΛ Βόλου) 8. Σίσκας Χρήστος (Φροντιστήριο "Μπαχαράκης" - Θεσσαλονίκη) 9. Σκομπρής Νίκος (Συγγραφέας ο Λύκειο Χαλκίδας) 30. Σπλήνης Νίκος (Φροντιστήριο "ΟΡΙΖΟΝΤΕΣ" - Ηράκλειο Κρήτης) 3. Σταυρόπουλος Παύλος (Ιδιωτικά Εκπαιδευτήρια Δούκα) 3. Σταυρόπουλος Σταύρος (Γραμματέας Ε.Μ.Ε Κορινθίας - Γυμνάσιο Λ.Τ. Λεχαίου Κορινθίας) 33. Τρύφων Παύλος (ο Εσπερινό ΕΠΑΛ Περιστερίου) 3. Τσακαλάκος Τάκης (συνταξιούχος αλλά ενεργός μαθηματικός) 35. Χαραλάμπους Σταύρος (Θεσσαλονίκη - Μουσικό Λύκειο) 36. Χατζόπουλος Μάκης (ο ΓΕΛ Πετρούπολης)

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 lsar team / Σχολικό έτος 05 6 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΠΑΡΑΣΚΕΥΗ 0 ΜΑΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΣΕΛΙΔΕΣ ΘΕΜΑ Α Α.Σχολικό βιβλίο σελ. 50 ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο σελ. 87 Α3. Σχολικό βιβλίο σελ. Α. α) Σωστό β)λάθος γ) Σωστό δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β. Είναι Έχουμε οπότε 3 x 5 f x x 6x = +, x R 3 f ( x) = x 5x+ 6 με x R f ( x) = 0 x 5x+ 6= 0 5± Δ= 5 = άρα x, = x= 3 ή x= x 3 + f x + + f < > < Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 Η f είναι γνησίως αύξουσα στο Δ = (,] και στο Δ3 [ 3, ) φθίνουσα στο Δ = [,3]. Η f παρουσιάζει τοπικό μέγιστο στο x= με τιμή 8 5 8 f = + 6 = + = 3 3 3 Η f παρουσιάζει τοπικό ελάχιστο στο x = 3 με τιμή 7 5 5 7 f( 3) = 9+ 6 3 = 6 = 3 Β. Η εφαπτομένη έχει εξίσωση ( ε ) : y= αx+ β () Ισχύει ότι άρα ( ε ) : y= 6x+ β Όμως Α ( ε) άρα Οπότε α= f 0 = 6 f 0 = f 0 = 6 0+ β β= ( ε ) : y= 6x Β3. Είναι f ( x) x 5x+ 6 x 5x 6 lm = lm = lm x x+ x x+ x x+ Για το x 5x 6 έχουμε 5± 7 Δ= 5+ = 9 άρα x, = x= 6 ή x= Οπότε x 5x 6= x 6 x+ Τελικά f ( x) ( x+ )( x 6) x x x lm = lm = lm x 6 = 7 x+ x+ = +, ενώ είναι γνησίως Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 ΘΕΜΑ Γ Γ. Ορίζουμε τα ενδεχόμενα: α: «το παιδί είναι αγόρι» και κ: «το παιδί είναι κορίτσι» Άρα, ο δειγματικός χώρος του πειράματος είναι Ω = {ααα,αακ,ακα,ακκ,καα,κακ,κκα,κκκ} Γ. Τα ενδεχόμενα με αναγραφή των στοιχείων τους είναι: Α= καα, κακ, κκα, κκκ} { Β = {ακκ,κακ,κκα,κκκ} Γ = {ααα,αακ,κκα,κκκ} Γ3. α) Τα ενδεχόμενα Δ, Ε, Ζ με αναγραφή των στοιχείων τους είναι: Δ= Α B = {κακ, κκα, κκκ} E= A B = {ακκ, καα, κακ, κκα, κκ κ} Z= Γ Ε = {ααα,αακ} Άρα: Ν Ζ Ν Ω = 8 Ν( Δ) = 3, Ν(Ε) 5 Από τον κλασσικό ορισμό της πιθανότητας είναι: N( Δ) P( Δ) N Ω =, =, = άρα P( Δ) N( E) = άρα P( E) N( Ω) P E N( Z) = άρα P( Z) N( Ω) P Z 3 = 8 5 = 8 = = 8 Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team 3

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 β) Το ενδεχόμενο: «δεν πραγματοποιείται κανένα από τα Α, Β» είναι το ( Α B ). άρα = P( B) = ( B) P H P A A 5 3 P( H) = = 8 8 Το ενδεχόμενο: «πραγματοποιείται ακριβώς ένα από τα Α,Β» είναι το ( Α Β) ( B A) A B,B A ( ) ( ) + ( A) ( Α Β) P Θ = P B A = P A B P B οπότε ασυμβίβαστα = P( A) P( A B) + P( B) P( A B) = P( A B) P( A B) P Θ 5 3 = = 8 8 : ΘΕΜΑ Δ Δ. Άρα Δ. Ο πίνακας γίνεται: Χρόνος (σε λεπτά) Κεντρική τιμή x [ 8,8+ c) [ 8+ c,8+ c) 8+ c+ 8+ c 6+ 3c = = 6+ 3c= 8 3c= c= Χρόνος (σε λεπτά) Κεντρική τιμή x Συχνότητα v x v [ 8, ) 0 0 00 [,6 ) 5 0 [ 6,0 ) 8 0 80 [ 0, ) v v Σύνολο 5 v + 590+ v Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 Οπότε Σ x v 590 v x= = ν 5+ v = + (5+ v ) = 590+ v 630+ v = 590+ v 0= 8v v = 5 Άρα ο τελικός πίνακας γίνεται Χρόνος (σε λεπτά) Κεντρική τιμή x Συχνότητα v x v [ 8, ) 0 0 00 [,6 ) 5 0 [ 6,0 ) 8 0 80 [ 0, ) 5 0 Σύνολο 50 700 Δ3. Πάνω από 9 λεπτά χρειάστηκαν Δ. Έχουμε Χρόνος (σε λεπτά) 3 3 v+ v+ v3+ v = 0+ 5+ 0+ 5= 5 υπολογιστές Κεντρική τιμή x Συχνότητα v x x ( x x) x x v [ 8, ) 0 0-6 30 [,6 ) 5 0 0 0 [ 6,0 ) 8 0 6 60 [ 0, ) 5 8 6 30 Σύνολο 50 56 800 Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team 5

http://lsar.blogspot.gr Γ Λυκείου 0 05 06 Άρα s= και Σ( x x) v = 800 s = = = 6 v 50 s CVx = = 0, 8> 0, x ή ( 8% > 0% ) άρα το δείγμα είναι ανομοιογενές Δ5. Έχουμε x : αρχικός χρόνος y : τελικός χρόνος Συνδέονται με την σχέση { } y = 0,8x,,,3...50 y = 0,8 x s y = 0,8 s x CV y s 0,8 s s y 0,8x x y x x = = = = CV x Το CV παραμένει αμετάβλητο, άρα το δείγμα είναι ανομοιογενές Πανελλαδικές Εξετάσεις 06: Αναλυτικές λύσεις από τη lsar team 6