Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βασική Εφικτή Λύση. Βασική Εφικτή Λύση"

Transcript

1

2 Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n

3 Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n m περιορισµοί του προβλήµατος και n περιορισµοί µη αρνητικότητας a 11 x a 1n x n b 1. a m1 x a mn x n b m x i 0, i = 1,..., n ή a 11 x a 1n x n = b 1. a m1 x a mn x n = b m x i 0, i = 1,..., n

4 Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n m περιορισµοί του προβλήµατος και n περιορισµοί µη αρνητικότητας a 11 x a 1n x n b 1. a m1 x a mn x n b m x i 0, i = 1,..., n ή a 11 x a 1n x n = b 1. a m1 x a mn x n = b m x i 0, i = 1,..., n Μεγιστοποίηση της συνάρτησης : n z = max x i c i i=1

5 Μετατροπές Εάν οι περιορισµός της µορφής µπορεί να µετατραπέι στην γενική µορφή αντιστρέφοντας τους συντελεστές π.χ. 2x 1 + 3x x 1 3x 2 10

6 Μετατροπές Εάν οι περιορισµός της µορφής µπορεί να µετατραπέι στην γενική µορφή αντιστρέφοντας τους συντελεστές π.χ. 2x 1 + 3x x 1 3x 2 10 Εάν η αντικειµενική συνάρτηση είναι ελαχιστοποίησης αντιστρέφουµε πάλι τους συντελεστές π.χ min(x 1 + 2x 2 ) max( x 1 2x 2 ) (Προσοχή πρέπει µετά να αντιστρέψουµε την τιµή της αντικειµενικής συνάρτησης!)

7 Μετατροπές Εάν οι περιορισµός της µορφής µπορεί να µετατραπέι στην γενική µορφή αντιστρέφοντας τους συντελεστές π.χ. 2x 1 + 3x x 1 3x 2 10 Εάν η αντικειµενική συνάρτηση είναι ελαχιστοποίησης αντιστρέφουµε πάλι τους συντελεστές π.χ min(x 1 + 2x 2 ) max( x 1 2x 2 ) (Προσοχή πρέπει µετά να αντιστρέψουµε την τιµή της αντικειµενικής συνάρτησης!) Εάν έχουµε αντί για περιορισµούς µη αρνητικότητας έχουµε x i a (x i a) αντικαθιστούµε την µεταβλητή µε την x i = x i a (x i = a x i ) ώστε να τηρείται η µη αρνητικότητα για τη µεταβλητή x i

8 Μορφή Πινάκων Θέτουµε x = A i = a 1i. a mi x 1.. x n, c = c 1.. c n, 1 i n και b = b 1.. b m.

9 Μορφή Πινάκων Αντιστοιχία µε πίνακες : Αναλυτική Μορφή n Αντικειµενική max z = c i x i i=1 Μορφή Πινάκων max z = c t x Συνάρτηση Περιορισµοί a j1 + + a jn = b j A 1 x t +... A n x t = b 1 j m Μη αρνητικότητα x i 0 x 0 1 i n

10 Μεταβλητές Απόκλισης Μπορούµε να µετατρέψουµε τους περιορισµούς της µορφής = σε και αντίστροφα!

11 Μεταβλητές Απόκλισης Μπορούµε να µετατρέψουµε τους περιορισµούς της µορφής = σε και αντίστροφα! Αντικαθιστούµε την ισότητα µε δύο ανισότητες π.χ 2x 1 + x 2 = 3 2x 1 + x 2 3 και 2x 1 + x 2 3

12 Μεταβλητές Απόκλισης Μπορούµε να µετατρέψουµε τους περιορισµούς της µορφής = σε και αντίστροφα! Αντικαθιστούµε την ισότητα µε δύο ανισότητες π.χ 2x 1 + x 2 = 3 2x 1 + x 2 3 και 2x 1 + x 2 3 (Αντίστροφα) Εισάγουµε επιπλέον µεταβλητές απόκλισης π.χ. 4x 1 + 3x 2 + x x 1 + 3x 2 + x 3 x 4 = 15

13 Μεταβλητές Απόκλισης Για κάθε περιορισµό µε ανισότητα ϑα εισάγουµε µια µεταβλητή απόφασης

14 Μεταβλητές Απόκλισης Για κάθε περιορισµό µε ανισότητα ϑα εισάγουµε µια µεταβλητή απόφασης Ο συνολικός αριθµός µεταβλητών γίνεται τώρα p όπου n p m + n όπου n µεταβλητές απόφαση και p n µεταβλητές απόκλισης

15 Μεταβλητές Απόκλισης Για κάθε περιορισµό µε ανισότητα ϑα εισάγουµε µια µεταβλητή απόφασης Ο συνολικός αριθµός µεταβλητών γίνεται τώρα p όπου n p m + n όπου n µεταβλητές απόφαση και p n µεταβλητές απόκλισης Στην περίπτωση της Μορφής Πινάκων αλλάζουµε τα διανύσµατα :

16 Μεταβλητές Απόκλισης Για κάθε περιορισµό µε ανισότητα ϑα εισάγουµε µια µεταβλητή απόφασης Ο συνολικός αριθµός µεταβλητών γίνεται τώρα p όπου n p m + n όπου n µεταβλητές απόφαση και p n µεταβλητές απόκλισης Στην περίπτωση της Μορφής Πινάκων αλλάζουµε τα διανύσµατα : x = [ x 1... x n x n+1... x p c = [ c 1... c n ] t A = [ ] A 1... A n A n+1... A p ] t

17 Τάξη Πίνακα Τάξη Πίνακα Η τάξη(rank ) του πίνακα συντελεστών A ισούται µε τον αριθµό των ανεξάρτητων εξισώσεων που τον παράγουν

18 Τάξη Πίνακα Τάξη Πίνακα Η τάξη(rank ) του πίνακα συντελεστών A ισούται µε τον αριθµό των ανεξάρτητων εξισώσεων που τον παράγουν Εφικτή λύση Το σύστηµα Ax = b έχει εφικτή λύση αν η τάξη του A είναι µικρότερη από τον αριθµό των µεταβλητών

19 Τάξη Πίνακα Τάξη Πίνακα Η τάξη(rank ) του πίνακα συντελεστών A ισούται µε τον αριθµό των ανεξάρτητων εξισώσεων που τον παράγουν Εφικτή λύση Το σύστηµα Ax = b έχει εφικτή λύση αν η τάξη του A είναι µικρότερη από τον αριθµό των µεταβλητών Υποθέτοντας πώς η τάξη του A ισούται µε m ισχύει πώς p m

20 Βασικές Μεταβλητές Βάση Βάση ενός προβλήµατος Γραµµικού προγραµµατισµού ϑα ϑεωρούµε ένα σύνολο m µεταβλητών όπου m ο αριθµός των περιορισµών. Τις υπόλοιπες µεταβλητές ϑα ονοµάζονται εκτός ϐάσης B = {x i1,..., x im } EB = {x im+1,..., x ip }

21 Βασικές Μεταβλητές Βάση Βάση ενός προβλήµατος Γραµµικού προγραµµατισµού ϑα ϑεωρούµε ένα σύνολο m µεταβλητών όπου m ο αριθµός των περιορισµών. Τις υπόλοιπες µεταβλητές ϑα ονοµάζονται εκτός ϐάσης B = {x i1,..., x im } EB = {x im+1,..., x ip } Ενα σύστηµα µπορεί να γραφτεί υπό την µορφή x i1 = b 1 + a 11 x i m a 1p m x i p. x im = b m + a m1 x i m a mp m x i p

22 Βασική Λύση Βασική Λύση Μια ϐασική λύση ενός προβλήµατος είναι λύση του συστήµατος Ax = b πού όλες οι µεταβλητές Εκτός Βάσης είναι µηδενικές (σύµφωνα µε την εκάστοτε ϐάση)

23 Βασική Λύση Βασική Λύση Μια ϐασική λύση ενός προβλήµατος είναι λύση του συστήµατος Ax = b πού όλες οι µεταβλητές Εκτός Βάσης είναι µηδενικές (σύµφωνα µε την εκάστοτε ϐάση) x i k x i k = b k για 1 k m = 0 για m + 1 k p

24 Βασική Λύση Βασική Λύση Μια ϐασική λύση ενός προβλήµατος είναι λύση του συστήµατος Ax = b πού όλες οι µεταβλητές Εκτός Βάσης είναι µηδενικές (σύµφωνα µε την εκάστοτε ϐάση) x i k x i k = b k για 1 k m = 0 για m + 1 k p Μια ϐασική εφικτή λύση είναι µια ϐασική λύση όπου όλες οι µεταβλητές εντός ϐάσης είναι µη αρνητικές

25 Simplex Ο αλγόριθµος Simplex ξεκινά από µια αρχική Βασική Εφικτή λύση

26 Simplex Ο αλγόριθµος Simplex ξεκινά από µια αρχική Βασική Εφικτή λύση Σε κάθε ϐήµα του µεταβαίνει από µια σε µια άλλη

27 Simplex Ο αλγόριθµος Simplex ξεκινά από µια αρχική Βασική Εφικτή λύση Σε κάθε ϐήµα του µεταβαίνει από µια σε µια άλλη Αν ο Χώρος των Εφικτών λύσεων είναι ϕραγµένος (στη κατεύθυνση της αντικειµενικής συνάρτησης) ϑα καταλήξει σε ϐέλτιστη

28 Simplex Ο αλγόριθµος Simplex ξεκινά από µια αρχική Βασική Εφικτή λύση Σε κάθε ϐήµα του µεταβαίνει από µια σε µια άλλη Αν ο Χώρος των Εφικτών λύσεων είναι ϕραγµένος (στη κατεύθυνση της αντικειµενικής συνάρτησης) ϑα καταλήξει σε ϐέλτιστη Ακόµη και αν ο Χώρος των Εφικτών Λύσεων είναι ϕραγµένος υπάρχει πάλι ο κίνδυνος απείρων επαναλήψεων (κυκλισµός)

29 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) max z = 8x 1 +6x 2 s.t. 5x 1 +3x x 1 +3x 2 24 x 1 +3x 2 18 x i 0

30 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) max z = 8x 1 +6x 2 s.t. 5x 1 +3x x 1 +3x 2 24 x 1 +3x 2 18 x i 0 Προσθήκη µεταβλητών απόκλισης (x 3, x 4, x 5 ) για κάθε ανισότητα

31 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) max z = 8x 1 +6x 2 s.t. 5x 1 +3x 2 +x 3 = 30 2x 1 +3x 2 +x 4 = 24 x 1 +3x 2 +x 5 = 18 x i 0

32 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Πρώτη Πρώτο λεξικό : Λ 1

33 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Πρώτη Πρώτο λεξικό : Λ 1 Βάση : Β 1 = {3, 4, 5}

34 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Πρώτη Πρώτο λεξικό : Λ 1 Βάση : Β 1 = {3, 4, 5} Εκτός Βάσης : ΕΒ 1 = {1, 2}

35 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Πρώτη Πρώτο λεξικό : Λ 1 Βάση : Β 1 = {3, 4, 5} Εκτός Βάσης : ΕΒ 1 = {1, 2} : ΒΕΛ 1 = {0, 0, 30, 24, 18} x 3 = 5x 1 3x x 4 = 2x 1 3x x 5 = x 1 3x z = 4x 1 +3x 2 +0 = 0

36 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Και οι δύο µεταβλητές έχουν ϑετική συνεισφορά στην αντικειµενική συνάρτηση. Επιλέγουµε τυχαία ποια ϑα εισάγουµε στη ϐάση

37 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Και οι δύο µεταβλητές έχουν ϑετική συνεισφορά στην αντικειµενική συνάρτηση. Επιλέγουµε τυχαία ποια ϑα εισάγουµε στη ϐάση x 2 0 +, x 1 = 0

38 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Και οι δύο µεταβλητές έχουν ϑετική συνεισφορά στην αντικειµενική συνάρτηση. Επιλέγουµε τυχαία ποια ϑα εισάγουµε στη ϐάση x 2 0 +, x 1 = 0 x x 1 3x 2 0 x 2 10 x x 1 3x 2 0 x 2 8 x x 1 3x 2 0 x 2 6

39 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Και οι δύο µεταβλητές έχουν ϑετική συνεισφορά στην αντικειµενική συνάρτηση. Επιλέγουµε τυχαία ποια ϑα εισάγουµε στη ϐάση x 2 0 +, x 1 = 0 x x 1 3x 2 0 x 2 10 x x 1 3x 2 0 x 2 8 x x 1 3x 2 0 x 2 6 Τον πιο αυστηρό περιορισµό επιβάλλει η µεταβλητή x 5 : x 2 = 6, x 5 = 0

40 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Και οι δύο µεταβλητές έχουν ϑετική συνεισφορά στην αντικειµενική συνάρτηση. Επιλέγουµε τυχαία ποια ϑα εισάγουµε στη ϐάση x 2 0 +, x 1 = 0 x x 1 3x 2 0 x 2 10 x x 1 3x 2 0 x 2 8 x x 1 3x 2 0 x 2 6 Τον πιο αυστηρό περιορισµό επιβάλλει η µεταβλητή x 5 : x 2 = 6, x 5 = 0 ηµιουργία νέου λεξικού

41 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) εύτερο λεξικό : Λ 2

42 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) εύτερο λεξικό : Λ 2 Βάση : Β 2 = {2, 3, 4}

43 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) εύτερο λεξικό : Λ 2 Βάση : Β 2 = {2, 3, 4} Εκτός Βάσης : ΕΒ 2 = {1, 5}

44 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) εύτερο λεξικό : Λ 2 Βάση : Β 2 = {2, 3, 4} Εκτός Βάσης : ΕΒ 2 = {1, 5} : ΒΕΛ 2 = {0, 6, 12, 6, 0} x 2 = 1 3 x x 5 +6 x 3 = 4x 1 +x x 4 = x 1 +x 5 +6 z = 3x 1 x = 18

45 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Μόνο η µεταβλητή x 1 έχει ϑετική συνεισφορά

46 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Μόνο η µεταβλητή x 1 έχει ϑετική συνεισφορά x 1 0 +, x 5 = 0

47 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Μόνο η µεταβλητή x 1 έχει ϑετική συνεισφορά x 1 0 +, x 5 = 0 x x x 5 0 x 1 18 x x 1 + x 5 0 x 1 3 x x 1 + x 5 0 x 1 6

48 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Μόνο η µεταβλητή x 1 έχει ϑετική συνεισφορά x 1 0 +, x 5 = 0 x x x 5 0 x 1 18 x x 1 + x 5 0 x 1 3 x x 1 + x 5 0 x 1 6 Τον πιο αυστηρό περιορισµό επιβάλλει η µεταβλητή x 3 : x 1 = 3, x 3 = 0

49 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Μόνο η µεταβλητή x 1 έχει ϑετική συνεισφορά x 1 0 +, x 5 = 0 x x x 5 0 x 1 18 x x 1 + x 5 0 x 1 3 x x 1 + x 5 0 x 1 6 Τον πιο αυστηρό περιορισµό επιβάλλει η µεταβλητή x 3 : x 1 = 3, x 3 = 0 ηµιουργία νέου λεξικού

50 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Τρίτο λεξικό : Λ 3

51 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Τρίτο λεξικό : Λ 3 Βάση : Β 3 = {1, 2, 4}

52 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Τρίτο λεξικό : Λ 3 Βάση : Β 3 = {1, 2, 4} Εκτός Βάσης : ΕΒ 3 = {3, 5}

53 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Τρίτο λεξικό : Λ 3 Βάση : Β 3 = {1, 2, 4} Εκτός Βάσης : ΕΒ 3 = {3, 5} : ΒΕΛ 3 = {3, 5, 0, 3, 0} x 1 = 1 4 x x 5 +3 x 2 = 1 12 x x 5 +5 x 4 = 1 4 x x 5 +3 z = 3 4 x x = 27

54 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Ολες οι µεταβλητές έχουν αρνητική συνεισφορά Βέλτιστη Λύση!!!

55 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Ολες οι µεταβλητές έχουν αρνητική συνεισφορά Βέλτιστη Λύση!!! Τελική Λύση : X = (x 1, x 2 ) = (3, 5) 3 Συµβόλαια Τύπου 1 5 Συµβόλαια Τύπου 2 Συνολικό κέρδος Ευρώ 30 µηχανικοί 18 ώρες λειτουργίας 21 τεχνικοί

56 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Ολες οι µεταβλητές έχουν αρνητική συνεισφορά Βέλτιστη Λύση!!! Τελική Λύση : X = (x 1, x 2 ) = (3, 5) 3 Συµβόλαια Τύπου 1 5 Συµβόλαια Τύπου 2 Συνολικό κέρδος Ευρώ 30 µηχανικοί 18 ώρες λειτουργίας 21 τεχνικοί x 1, x 2 ακέραιες τιµές

57 Επιλογή Συµβολαίων (Αλγεβρική Επίλυση) Ολες οι µεταβλητές έχουν αρνητική συνεισφορά Βέλτιστη Λύση!!! Τελική Λύση : X = (x 1, x 2 ) = (3, 5) 3 Συµβόλαια Τύπου 1 5 Συµβόλαια Τύπου 2 Συνολικό κέρδος Ευρώ 30 µηχανικοί 18 ώρες λειτουργίας 21 τεχνικοί x 1, x 2 ακέραιες τιµές ΕΥΤΥΧΗΣ ΣΥΜΠΤΩΣΗ!

58 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Λεξικό Λ 1 : B = {3, 4, 5}, EB = {1, 2} x A B OABC : Εφικτή Περιοχή O C x 1

59 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Εύρεση κατεύθυνσης για ϐελτίωση της αντικειµενική συνάρτησης x A B OABC : Εφικτή Περιοχή O C x 1

60 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Λεξικό Λ 2 : B = {2, 3, 4}, EB = {1, 5} x A B OABC : Εφικτή Περιοχή O C x 1

61 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Εύρεση κατεύθυνσης για ϐελτίωση της αντικειµενική συνάρτησης x A B OABC : Εφικτή Περιοχή O C x 1

62 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Λεξικό Λ 2 : B = {1, 2, 4}, EB = {3, 5} x A B OABC : Εφικτή Περιοχή O C x 1

63 Simplex : Ενας περίπατος στις ακµές του πολυτόπου! Καµία κατεύθυνση δεν ϐελτιστοποιεί την αντικειµενική συνάρτηση! x A B OABC : Εφικτή Περιοχή O C x 1

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός Πανεπιστήμιο Αιγαίου URL: http://www.aegean.gr Γραμμικός Προγραμματισμός Ευστράτιος Ιωαννίδης Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών 832 Καρλόβασι Σάμος Copyright Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

Branch and Bound. Branch and Bound

Branch and Bound. Branch and Bound Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων

Διαβάστε περισσότερα

Ο Αλγόριθµος της Simplex

Ο Αλγόριθµος της Simplex Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Θεωρία Αποφάσεων και Βελτιστοποίηση

Θεωρία Αποφάσεων και Βελτιστοποίηση Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Αξιολόγηση Ευριστικών Αλγορίθµων

Αξιολόγηση Ευριστικών Αλγορίθµων Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα

Διαβάστε περισσότερα

Γραμμικός και Ακέραιος προγραμματισμός

Γραμμικός και Ακέραιος προγραμματισμός ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΜΠΣ «ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ» Γραμμικός και Ακέραιος προγραμματισμός Διπλωματική εργασία της

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο 5 ο ΜΑΘΗΜΑ ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΕΚ ΟΣΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΥΑΓΓΕΛΟΣ Φ. ΜΑΓΕΙΡΟΥ ΚΑΘΗΓΗΤΗΣ ΟΙΚΟΝΟΜΙΚΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ ΑΘΗΝΑ ΕΚ ΟΣΗ 2.3 ΦΕΒΡΟΥΑΡΙΟΣ 2008 1-1 Κεφάλαιο 1. Μαθηµατικός Προγραµµατισµός...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) Μπουντούρης Ηρακλήs Επιβλέπουσα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,...,

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58 ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex )  1 Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) http://users.uom.gr/~acg 1 Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simplex (simplex table, simplex

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman

Διαβάστε περισσότερα

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

(sensitivity analysis, postoptimality analysis).

(sensitivity analysis, postoptimality analysis). Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER 4.1. ΕΙΣΑΓΩΓΗ Με την "Επίλυση", µπορείτε να βρείτε τη βέλτιστη τιµή για τον τύπο ενός κελιού το οποίο ονοµάζεται κελί προορισµού σε ένα φύλλο εργασίας. Η "Επίλυση" λειτουργεί

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ ΚΕΦΑΛΑΙΟ : ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ. Εισαγωγή Στις αρχές του ου αιώνα ο Ρώσος Μαθηµατικός A. A. Markov στην προσπάθειά του να ερµηνεύσει την «αβεβαιότητα»

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα