ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ"

Transcript

1 Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια

2 Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία του. Να βρείτε το κέντρο και την ακτίνα του κύκλου που έχει εξίσωση + + = ii) ( ) i) ( x ) ( y 3) 4 iii) ( x+ α) + ( y+ β) = γ x + y+ = 5 i) Η εξίσωση ( x ) + ( y+ 3) = 4 γράφεται ισοδύναµα ( ) ( ) ( ) x + y 3 = και παριστάνει κύκλο µε κέντρο το σηµείο K(, 3) κτίνα ρ=. και α- ΜΕΘΟ ΟΣ Ο κύκλος µε εξίσωση 0 0 ( x- x ) + ( y- y ) = ρ έχει κέντρο το σηµείο Kx ( 0, y 0) και ακτίνα p > 0 ii) H εξίσωση ( ) ( ) ( ) x + y+ = 5 γράφεται ισοδύναµα ( ) ( ) x 0 + y = 5 και παριστάνει κύκλο µε κέντρο το σηµείο (, ) K 0 και ακτίνα ρ= 5. ii) H εξίσωση ( x+ α) + ( y+ β) = γ γράφεται ισοδύναµα ( ) ( ( )) ( ) x α + y β = γ και παριστάνει κύκλο µε κέντρο το σηµείο (, ) K α β και ακτίνα ρ= γ. Εξίσωση ευθείας Β Λυκείου

3 Φροντιστήρια 3 η Κατηγορία : Εσωτερικά και Εξωτερικά Σημεία Κύκλου. Έστω ο κύκλος C µε εξίσωση ( x ) + y = 5. Να αποδείξετε ότι: i) το σηµείο A6 (, 3), ανήκει στον κύκλο C αλλά το σηµείο B(,) 45, δεν ανήκει στον κύκλο αυτό. ii) το σηµείο B(,) 45 είναι εξωτερικό σηµείο του κύκλου. i) Για x= 6 και y= 3 έχουµε: ( 6 ) + ( 3) = 6+ 9= 5. Άρα το σηµείο A6 (, 3), ανήκει στον κύκλο C. Όµοια x= 4 και y= 5 έχουµε: ( 4 ) + ( 5) = 4+ 5= 9 5. Άρα το σηµείο B(,) 45, δεν ανήκει στον κύκλο C. ii) Ο κύκλος C έχει κέντρο K(,) 0 και ακτίνα ρ= 5. Η απόσταση του B(,) 45 από το κέντρο του κύκλου είναι ( ΚΒ) = ( 4 ) + ( 5 0) = 9 > 5 οπότε ( ΚΒ) > ρ. Άρα το σηµείο B(,) 45 είναι εξωτρικό σηµείο του κύκλου C. ΜΕΘΟ ΟΣ ίνεται ο κύκλος (C) µε κέντρο το σηµείο 0 0 Kx ( 0, y 0) και ακτίνα ρ > 0, που έχει εξίσωση ( x- x ) + ( y- y ) = ρ. Ένα σηµείο Α( x, y) ανήκει στον κύκλο (C), αν και µόνο αν οι συντεταγµένες του 0 0 ικανοποιούν την εξίσωση του κύκλου, δηλαδή ( x - x ) + ( y - y ) = ρ Γενικότερα, για την απόσταση 0 0 ( ΚΑ) = ( x - x ) + ( y - y ), ισχύουν οι ισοδυναµίες: ( ΚΑ)= ρ Α ( C) ( ΚΑ) < ρ Α εσωτερικό του ( C) ( ΚΑ) > ρ Α εξωτερικό του ( C) Εξίσωση Ευθείας Β Λυκείου

4 4 Φροντιστήρια 3η Κατηγορία : Εύρεση της Εξίσωσης Κύκλου.3 Να βρείτε την εξίσωση του κύκλου όταν: i) έχει κέντρο Κ( 3, ) και ακτίνα ρ= 5. ii) έχει κέντρο Κ( 30, ) και ακτίνα ρ= 5. i) Ο κύκλος µε κέντρο το σηµείο Κ( 3, ) και ακτίνα ρ= 5 έχει εξίσωση ( x ( 3) ) ( y ( ) ) ( 5) + =, δηλαδή ( ) ( ) x+ 3 + y+ = 5. ΜΕΘΟ ΟΣ Ο κύκλος µε κέντρο το ση- µείο Kx ( 0, y 0) και ακτίνα p > 0 έχει εξίσωση 0 0 ( x- x ) + ( y- y ) = ρ ii) Ο κύκλος µε κέντρο το σηµείο Κ( 30, ) και ακτίνα ρ= 5 έχει εξίσωση ( ( )) ( ) x 3 + y 0 = 5, δηλαδή ( ) x+ 3 + y = 5 Εξίσωση ευθείας Β Λυκείου

5 Φροντιστήρια 5.4 * Να βρείτε την εξίσωση του κύκλου σε καθεµιά από τις παρακάτω περιπτώσεις: i) Όταν έχει κέντρο (,) Κ 0 και διέρχεται από το σηµείο Α( 30, ) ii) Όταν έχει διάµετρο το τµήµα µε άκρα Α(, ) και Β(, 78 ) i) Η ακτίνα του κύκλου είναι ΜΕΘΟ ΟΣ ii) ( ) ( ) ( ) ρ= KA = = 3+ = και εποµένως η εξίσωση του είναι x + ( y ) =. Το κέντρο Κ του κύκλου είναι το µέσον του ΑΒ και εποµένως έχει τετµηµένη x 7 0= + = 3 και τεταγµένη y 8 0= + = 5, δηλαδή το κέντρο του κύκλου είναι το σηµείο K(,) 35. Γενικά για να βρούµε την εξίσωση ενός κύκλου, πρέπει από τα δεδοµένα του προβλήµατος να προσδιορίσουµε το κέντρο Kx ( 0, y 0) και την ακτίνα p > 0 του κύκλου. Τότε ο κύκλος έχει εξίσωση 0 0 ( x- x ) + ( y- y ) = ρ Η ακτίνα του κύκλου είναι ίση µε το µισό της διαµέτρου ΑΒ, δηλαδή: ρ= AB = ( 7+ ) + ( 8 ) = 00 = 5. A(,) ρ K ρ Άρα, η εξίσωση του κύκλου είναι ( x 3) + ( y 5) = 5. B (7,8) K µέσο του ΑΒ ρ= ( AB) Εξίσωση Ευθείας Β Λυκείου

6 6 Φροντιστήρια 4η Κατηγορία : Γενική Μορφή της Εξίσωσης Κύκλου.5 *Να βρείτε το κέντρο και η ακτίνα του κύκλου που έχει εξίσωση x + y + 4x 6 y 3= 0 Η εξίσωση µορφής x + y + 4x 6y 3= 0 είναι της x + y + Αx+ Βy+ Γ= 0, µε Α= 4, Β= 6 και Γ= 3. Είναι + 4 ( 6) 4( 3) A B 4Γ = + = 64> 0. Άρα παριστάνει κύκλο µε κέντρο το σηµείο Κ 4 (, 6 ) δηλαδή Κ( 3, ) ρ= 64 = 4. και ακτίνα Η εξίσωση ΜΕΘΟ ΟΣ x + y + Ax+ By + Γ = 0 παριστάνει κύκλο µόνο όταν A + B - 4Γ > 0. Το κέντρο του κύκλου αυτού είναι το σηµείο Κ (-A,- B ) και η ακτίνα του είναι ρ = A + B -4Γ Εξίσωση ευθείας Β Λυκείου

7 Φροντιστήρια 7 5η Κατηγορία : Σχετική Θέση ευθείας και κύκλου.6 ίνεται η ευθεία y = λx + κ, κ,λ και ο κύκλος Ο κύκλος ρ> 0. Να αποδείξετε ότι: x + y = ρ, µε i) η ευθεία τέµνει τον κύκλο, αν, και µόνο αν κ < ρ ( + λ ) ii) η ευθεία εφάπτεται του κύκλου αν, και µόνο αν κ = ρ ( + λ ) iii) η ευθεία δεν έχει κοινά σηµεία µε τον κύκλο, αν, και µόνο αν κ > ρ ( + λ ) x + y = ρ έχει κέντρο το σηµείο O00 (,) και ακτίνα ρ> 0. Επίσης η εξίσωση της ευθείας y = λx + κ γράφεται ισοδύναµα λx y + κ = 0. Άρα η απόσταση του κέντρου του κύκλου από την ευθεία (ε) είναι: d( Οε, ) = λ κ λ + ( ) = κ λ + ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΥΚΛΟΥ i) η ευθεία τέµνει τον κύκλο, αν, και µόνο αν: d( Οε, ) < ρ κ < ρ λ + κ < ρ λ + κ < ρ ( + λ ). Η ευθεία (ε) τέµνει τον κύκλο (c), µόνο όταν dkε (, ) < ρ K d ε ρ Εξίσωση Ευθείας Β Λυκείου

8 8 Φροντιστήρια ii) η ευθεία εφάπτεται του κύκλου αν, και µόνο αν d( Οε, ) = ρ κ = ρ λ + κ = ρ λ + κ = ρ ( + λ ) iii) η ευθεία δεν έχει κοινά σηµεία µε τον κύκλο, αν, και µόνο αν d( Οε, ) > ρ κ > ρ λ + κ > ρ λ + κ > ρ ( + λ ) Η ευθεία (ε) εφάπτεται στον κύκλο (c) µόνο όταν dkε (, ) = ρ Η ευθεία (ε) δεν έχει κοινά σηµεία µε τον κύκλο (c) µόνο όταν dkε (, ) > ρ K ε d K ρ ε d ρ Εξίσωση ευθείας Β Λυκείου

9 Φροντιστήρια 9 6η Κατηγορία : Χορδές Κύκλου.7 *Να βρείτε την εξίσωση της χορδής του κύκλου µέσο το σηµείο Μ (, ). x + y = 4 που έχει Αν η χορδή ΑΒ έχει µέσον το Μ, τότε είναι ΟΜ ΑΒ δηλαδή το ΟΜ είναι το απόστηµα της O A B M, ( ) χορδής ΑΒ. Ο συντελεστής διεύθυνσης της ευθείας ΟΜ είναι λ= 0 = 0 και εποµένως ο συντελεστής διεύθυνσης της χορδής ΑΒ θα είναι ίσος µε. Άρα, η εξίσωση της χορδής είναι: y+= ( x ) y= x. ΣΧΟΛΙΟ Από τη Γεωµετρία γνωρίζουµε ότι: Αν ΑΒ είναι χορδή ενός κύκλου, τότε το ευθύγραµµο τµήµα ΟΜ που συνδέει το κέντρο του κύκλου µε το µέσο Μ της χορδής ΑΒ είναι κάθετο στη χορδή αυτή και λέγεται απόστηµα της χορδής. Στην περίπτωση αυτή, (όπως φαίνεται και στην επόµενη άσκηση) µπρούµε να εφαρ- µόσουµε το Πυθαγόρειο Θεώρηµα στο ορθογώνιο τρίγωνο που σχηµατίζεται. Εξίσωση Ευθείας Β Λυκείου

10 0 Φροντιστήρια 7η Κατηγορία : Εύρεση Εξίσωσης Εφαπτομένης Κύκλου.8 Να βρείτε την εξίσωση της εφαπτοµένης του κύκλου i) ii) x + y = 0 στο σηµείο του Α(, 3 ) x + y = 3 στο σηµείο του Α(, β). i) Το σηµείο Α(, 3 ) ανήκει στον κύκλο x + y = 0, γιατί οι συντεταγµένες του Α ι- κανοποιούν την εξίσωση του κύκλου: + 3 = 0. Η εφαπτοµένη του κύκλου στο Α έχει εξίσωση x + y 3= 0 x + 3 y = 0 ii) Το σηµείο Α(, β) ανήκει στον κύκλο x + y = 3, µόνο όταν οι συντεταγµένες του Α ικανοποιούν την εξίσωση του κύκλου: ( ) + β = 3 β = 9 β=± 3. Άρα υπάρχουν δυο σηµεία του κύκλου µε τετµηµένη : το σηµείο Α ( 3, ) µε εφαπτοµένη την ευθεία ε µε εξίσωση x + 3y = 3, και το σηµείο Α (, 3) µε εφαπτοµένη την ευθεία ε µε εξίσωση x 3y = 3. ΜΕΘΟ ΟΣ Η εφαπτοµένη του κύκλου x + y = ρ στο σηµείο του A ( x, y) έχει εξίσωση xx + = yy ρ. ΠΡΟΣΟΧΗ: Η παραπάνω εξίσωση της εφαπτοµένης ισχύει βέβαια µε την προϋπόθεση ότι το σηµείο A ( x, y) να ανήκει στον κύκλο, δηλαδή οι συντεταγµένες του Α να ικανοποιούν την εξίσωση του κύκλου: x + y = ρ. Εξίσωση ευθείας Β Λυκείου

11 Φροντιστήρια.9 * Να βρείτε την εξίσωση της εφαπτοµένης του κύκλου x + y = 5 σε καθεµιά από τις παρακάτω περιπτώσεις: i) Όταν είναι παράλληλη στην ευθεία y = x + 3. ii) Όταν είναι κάθετη στην ευθεία y = x. i) α τρόπος: (µε σηµείο επαφής) Αν Ax (, y ) είναι το σηµείο επαφής, τότε η εφαπτοµένη του κύκλου στο ση- µείο Α θα έχει εξίσωση xx+ yy= 5 και επειδή είναι παράλληλη στην ευθεία y= x+ 3 θα ισχύει =. Άρα x= y (). x y Επίσης το σηµείο Ax (, y ) ανήκει στον κύκλο οπότε Από το σύστηµα των εξισώσεων () και (), έχουµε: x y = ( y) + y= 5 x y = y=± x + y = 5 (). x y = x+ y= 5 x x = = ή y= y= Οπότε υπάρχουν δύο σηµεία επαφής, τα Α( -, ) και Β(, - ) και οι αντίστοιχες εφαπτόµενες είναι οι x+ y= 5 και x y= 5. β τρόπος: (µε διπλή λύση σύστηµατος) Η ζητούµενη εφαπτοµένη (ε) είναι παράλληλη στην ευθεία y= x+ 3, άρα έχει εξίσωση της µορφής y= x+ β, β. Για να εφάπτεται του κύκλου x + y = 5, αρ- ΜΕΘΟ ΟΣ Μια ευθεία (ε) εφάπτεται σε ένα κύκλο (c) αν, και µόνο αν, το σύστηµα των εξισώσεών τους έχει διπλή λύση. (δηλαδή µε α- Εξίσωση Ευθείας Β Λυκείου

12 Φροντιστήρια κεί το σύστηµα λύση. x y 5 + = να έχει διπλή y= x+ β ντικατάσταση, προκύπτει εξίσωση ου βαθµού µε διακρίνουσα ίση µε 0) x y 5 Για το σύστηµα έχουµε: + = y= x+ β x 4x 4βx β = y= x+ β Εποµένως αρκεί η εξίσωση x ( x β) = y= x+ β 5x 4βx β = y= x+ β 5x + 4βx+ β 5= 0 να έχει διακρίνουσα = 0 ( 4β) 45( β 5) = 0 4β + 00= 0 β = 5 β= 5 ή β= 5. Άρα υπάρχουν δύο εφαπτόµενες του κύκλου παράλληλες προς την ευθεία y= x+ 3: οι ευθείες µε εξισώσεις y= x+ 5 και y= x 5. ii) Αν Ax (, y ) είναι το σηµείο επαφής, τότε η εφαπτοµένη του κύκλου στο Α θα έχει εξίσωση xx+ yy= 5 και, επειδή είναι κάθετη στην ευθεία y= x, x θα είναι x = y - =- x y = y (). Επειδή το σηµείο Ax (, y ) είναι σηµείο του κύκλου, θα ισχύει Από το σύστηµα των εξισώσεων () και (), έχουµε: Ô Ï x= y Ô Ì Ôx+ y= 5 Ó Ô Ï Ô x= y Ô Ì Ô4 y+ y= 5 Ó Ô x y = y=± x + y = 5. x x = = ή y= y= Οπότε υπάρχουν δύο σηµεία επαφής, τα Α(,) και Β( -,- ) και οι αντίστοιχες εφαπτόµενες είναι οι x+ y= 5 και x y= 5. Εξίσωση ευθείας Β Λυκείου

13 Φροντιστήρια 3.0 Να βρείτε την εξίσωση της εφαπτοµένης του κύκλου ( x ) + ( y+ 3) = 5 στο σηµείο του Α(, ). Το σηµείο Α(, ) ανήκει στον κύκλο ( x ) + ( y+ 3) = 5, γιατί οι συντεταγ- µένες του Α ικανοποιούν την εξίσωση του κύκλου: ( ) + ( + 3) = + 4= 5. Η εφαπτοµένη (ε) διέρχεται απο το ση- µείο επαφής Α(, ) και είναι κάθετη στην ακτίνα ΚΑ. Η ακτίνα ΚΑ έχει συντελεστή διεύθυνσης λ 3 ΑΚ= + =, οπότε η εφαπτοµένη (ε) έχει συντελεστή διεύθυνσης λ ε =. Άρα η εξίσωση της (ε) είναι: y ( ) = ( x ) y= x 3 ΜΕΘΟ ΟΣ Για την εξίσωση της εφαπτοµένης ενός κύκλου κέντρου Κ, σε ένα σηµείο του Α, µπορούµε να στηριχτούµε και στην καθετότητα της εφαπτοµένης στην ακτίνα ΚΑ, και έτσι να προσδιορίσουµε το συντελεστή διεύθυνσης της εφαπτοµένης. y O A(, ) K(, 3) ε x Εξίσωση Ευθείας Β Λυκείου

14 4 Φροντιστήρια 8η Κατηγορία : Εξισώσεις εφαπτομένων που άγονται από σημείο εκτός κύκλου. Να βρεθούν οι εξισώσεις των εφαπτοµένων του κύκλου C: x + y = 5 που διέρχονται από το σηµείο A3 (,), και να αποδειχτεί ότι οι εφαπτό- µενες αυτές είναι κάθετες. α τρόπος: Έστω ε µια εφαπτοµένη του κύκλου C που διέρχεται από το σηµείο Α. Αν Mx (, y ) είναι το σηµείο επαφής, τότε η ε θα έχει εξίσωση xx+ yy= 5 () και επειδή διέρχεται από το σηµείο A3 (,), θα ισχύει 3x+ y= 5. () Όµως, το σηµείο Mx (, y ) ανήκει στον κύκλο C. Άρα x + y = 5. (3) Από () και (3) έχουµε το σύστηµα: 3x+ y= 5 x+ y= 5 y= 5 3x x+ ( 5 3x) = 5 y= 5 3x 0x 30x+ 0= 0 y= 5 3x y= 5 3x y= y= ή x 3x+ = 0 x = ή x= x = x= Εποµένως, υπάρχουν δύο σηµεία επαφής, άρα και δυο εφαπτοµένες του κύκλου C που διέρχονται από το σηµείο A3 (,): Η εφαπτοµένη στο σηµείο M(, ) µε εξίσωση (από την ()) ε: x+ y= 5 και η εφαπτοµένη στο σηµείο M (, ) µε εξίσωση (από την ()) ε : x y= 5. Εξίσωση ευθείας Β Λυκείου

15 Φροντιστήρια 5 Επειδή οι συντελεστές διεύθυνσης των ε και ε είναι λ = και λ=, οι ευθείες ε και ε είναι κάθετες. β τρόπος: Από το σηµείο A3 (,) διέρχονται άπειρες ευθείες: Η κατακόρυφη ευθεία µε εξίσωση x= 3 () και οι πλάγιες ευθείες µε συντελεστή διέυθυνσης λ και εξισώσεις της µορφής y = λ( x 3) λ x y 3λ+ = 0 (). Η κατακόρυφη ευθεία µε εξίσωση x= 3 δεν είναι εφαπτοµένη του κύκλου C: x + y = 5, γιατί απέχει από το κέντρο του κύκλου απόσταση ίση µε doε (, ) = 3 ρ, αφού ρ= 5. Για να είναι µια ευθεία µε εξίσωση της µορφής () εφαπτοµένη του κύκλου C: x + y = 5, πρέπει: doε (, ) = ρ λ 0 0 3λ+ = λ + 5 3λ ( 5) ( λ ) 3λ+ = 5 λ + + = + 9λ 6 λ+ = 5 ( λ + ) 4λ 6 λ 4= 0 λ 3λ = 0 λ= ή λ= Εποµένως, υπάρχουν δυο εφαπτοµένες του κύκλου C µε εξισώσεις της µορφής () που διέρχονται από το σηµείο A3 (,): Για λ= η ευθεία ε : x y 3 + = 0 x y 5= 0 και για λ = η ευθεία : ( ) ε x y 3 + = 0 x+ y 5= 0. Επειδή οι συντελεστές διεύθυνσης των ε και ε είναι λ= και λ =, οι ευ- θείες ε και ε είναι κάθετες. Εξίσωση Ευθείας Β Λυκείου

16 6 Φροντιστήρια 9η Κατηγορία : Σχετική Θέση δύο κύκλων ΣΧΕΤΙΚΗ ΘΕΣΗ ΥΟ ΚΥΚΛΩΝ K ρ ρ Λ A ρ K Λ ρ ύο κύκλου είναι ξένοι µεταξύ τους όταν ( ΚΛ) > ρ + ρ ή όταν ( ΚΛ) < ρ ρ K ρ ρ Λ ρ ρ K Λ ύο κύκλου εφάπτονται µεταξύ τους εξωτερικά, όταν ( ΚΛ) = ρ + ρ ύο κύκλου εφάπτονται µεταξύ τους εσωτερικά, όταν ( ΚΛ) = ρ ρ K ρ Λ ρ ύο κύκλου τέµνονται όταν ρ ρ < ( ΚΛ) < ρ + ρ Εξίσωση ευθείας Β Λυκείου

17 Φροντιστήρια 7. *Να βρείτε τη σχετική θέση των κύκλων: c : x + y = και c : ( x ) + y = 4. Ο κύκλος c έχει κέντρο το σηµείο O00 (,) y και ακτίνα ρ=, ενώ το κύκλος c έχει κέντρο το σηµείο K (, 0 ) και ακτίνα ρ=. Η απόσταση των κέντρων τους (διάκεντρος) A Ο K x είναι ( OK) = ( 0) + ( 0 0) = και η διαφορά των ακτίνων τους είναι ρ ρ=. ηλαδή ( OK) = ρ ρ Άρα ο κύκλος c εφάπτεται εσωτερικά του κύκλου c. Το σηµείο επαφής των κύκλων, έχει συντεταγµένες τις λύσεις του συστήµατος: x + y = x y + = ( x ) + y = 4 x x+ + y = 4 x y + = x + y = x+ 3 x y + = x+ 3= x y + = x= ( ) y + = x= y= 0 x = Άρα οι κύκλοι c και c εφάπτονται εσωτερικά στο σηµείο A( - 0, ). Εξίσωση Ευθείας Β Λυκείου

18 8 Φροντιστήρια ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΑΠΟΣΤΑΣΗ ΤΩΝ ΣΗΜΕΙΩΝ ΥΟ ΚΥΚΛΩΝ ίνονται δυο κύκλοι c και c, µε κέντρα Κ, Λ και ακτίνες ρ, ρ αντίστοιχα. Αν Α τυχαίο σηµείο του κύκλου c και Β τυχαίο σηµείο του κύκλου c, όπως µπορούµε να διαπιστώσουµε εύκολα σε όλα τα παρακάτω σχήµατα: Η µέγιστη τιµή της απόστασης των σηµείων Α και Β είναι ( ΑΒ) = ( ΚΛ) + ρ + ρ Για την ελάχιστη τιµή όµως της απόστασης των σηµείων Α και Β, έχουµε: A K Α Β Λ ρ ρ ρ ρ B Β ρ AΛ K ρ ρ B Όταν ( ΚΛ) > ρ + ρ ελάχιστη τιµή: ( Α Β ) = ( ΚΛ) ρ ρ Όταν ( ΚΛ) < ρ ρ ελάχιστη τιµή: ( ΑΒ ) = ρ ρ ( ΚΛ) A ρ K ρ ρ Λ ρ B A ρ Λ K ρ ρ B Όταν ( ΚΛ) = ρ + ρ ελάχιστη τιµή: ( Α Β ) = 0 Όταν ( ΚΛ) = ρ ρ ελάχιστη τιµή: ( ΑΒ ) = 0 A ρ K Λ ρ B Όταν ρ ρ < ( ΚΛ) < ρ + ρ ελάχιστη τιµή: ( Α Β ) = 0 Εξίσωση ευθείας Β Λυκείου

19 Φροντιστήρια 9.3 ίνονται οι κύκλοι C :( x ) y + + = και C :( x 3) + ( y ) = 4. i) Να βρείτε το µήκος της διακέντρου. ii) Να δείξετε ότι οι κύκλοι δεν έχουν κοινό σηµείο. iii) ίνονται τα µεταβλητά σηµεία Α και Β, όπου το Α ανήκει στον C και το Β στον C. Να βρείτε τη µέγιστη και την ελάχιστη τιµή της απόστασης ( ΑΒ ). i) Ο κύκλος C έχει κέντρο την αρχή Κ ( 0, ) των αξόνων, ενώ ο κύκλος C έχει κέντρο το σηµείο Λ(,) 3. Εποµένως η διάκεντρος έχει µήκος ( ΚΛ) = ( 3+ ) + ( 0) = 0= 5. ii) Οι ακτίνες των δυο κύκλων C και C είναι ρ= και ρ= αντίστοιχα. Παρατηρούµε ότι ισχύει: ( ΚΛ) > ρ+ ρ 5 >+ ( ) 5 3 > 0> 9. Εποµένως οι κύκλοι C και C δεν έχουν κοινό σηµείο και µάλιστα τα ση- µεία του ενός είναι εξωτερικά των σηµείων του άλλου. iii) Η µέγιστη τιµή της ( ΑΒ ) είναι ( ΚΛ) + ρ+ ρ= 5+ + = 5+ 3, ενώ η ελάχιστη τιµή της είναι ( ΚΛ) ρ ρ= 5 = 5 3 Εξίσωση Ευθείας Β Λυκείου

20 0 Φροντιστήρια 0η Κατηγορία : Κοινές Εφαπτομένες δύο Κύκλων.4 * ίνονται οι κύκλοι C :( x ) + ( y 3) = 5 και C : x + ( y+ ) = 3. i) Να βρεθεί η εξίσωση της εφαπτοµένης ε του κύκλου C στο ση- µείο του A5 (, ). ii) Να αποδειχτεί ότι η ε εφάπτεται και του κύκλου C. i) Ο κύκλος C έχει κέντρο K(,) 3. Το σηµείο A5 (, ) ανήκει προφανώς στον y C κύκλο C γιατί ( 5 ) + ( 3) = 5. K(,3) ε Η ακτίνα ΚΑ έχει συντελεστή διεύθυνσης λ KA = 3= 4, οπότε η εφαπτοµένη ε του 5 3 C στο Α, που είναι κάθετη στην ακτίνα ΚΑ έχει συντελεστή διεύθυνσης λ 3 ε=, και επειδή 4 C Ο Λ(0, ) διέρχεται από το σηµείο A5 (, ), η εξίσωση της εφαπτοµένης είναι: A(5, ) x y ( ) = 3 ( x 5) 4( y+ ) = 3( x 5) 3x 4y 9= 0 () 4 ii) O κύκλος C έχει κέντρο Λ(, 0 ) και ακτίνα 3. Η απόσταση του κέντρου Λ(, 0 ) του C από την ε είναι ίση µε 30 4( ) 9 d( Λε, 5 ) = = = Άρα η ε εφάπτεται του κύκλου C, γιατί η απόσταση του κέντρου Λ(, 0 ) του C από την ε είναι ίση µε την ακτίνα του C, δηλαδή ίση µε 3. Εξίσωση ευθείας Β Λυκείου

21 Φροντιστήρια η Κατηγορία : Οικογένειες Κύκλων.5 * ίνεται η εξίσωση x + y λx = 0 (), όπου λ R. i) Να αποδείξετε ότι για κάθε τιµή του λ, η () παριστάνει κύκλο του οποίου να βρείτε το κέντρο και η ακτίνα. ii) Να αποδείξετε ότι όλοι οι κύκλοι C λ που ορίζονται από την () για τις διάφορες τιµές του λ διέρχονται από δύο σταθερά σηµεία. Ποια είναι η εξίσωση της κοινής χορδής όλων αυτών των κύκλων; i) Η εξίσωση x + y λx = 0 είναι της µορφής µε Α= λ, Β= 0 και Γ=. Είναι A B 4Γ = + ( ) + ( λ) 0 4( ) κύκλο µε κέντρο το σηµείο (, ) x + y + Αx+ Βy+ Γ= 0, = 4 λ + > 0. Άρα παριστάνει Κ λ 0 και ακτίνα ( ) ρ= 4 λ + = λ +. ii) Θα θεωρήσουµε δύο από τους παραπάνω κύκλους και αφού βρούµε τα κοινά τους σηµεία θα αποδείξουµε ότι κάθε άλλος κύκλος που ορίζεται από την ε- ξίσωση () διέρχεται από τα σηµεία αυτά. Για λ= 0, λ= έχουµε τους κύκλους: C : x + y = 0 και C : x + y x = 0 (). 0 Τα σηµεία τοµής των κύκλων αυτών έχουν συντεταγµένες τις λύσεις του συστήµατος των εξισώσεων (): + = x y 0 x + y x = 0 x + y = y = x= 0 x= 0 x= 0 ή x= 0 y = y= Άρα, οι κύκλοι C 0 και C τέµνονται στα σηµεία A0 (,) και B(, 0 ). Εξίσωση Ευθείας Β Λυκείου

22 Φροντιστήρια Από τα σηµεία αυτά διέρχονται όλοι οι κύκλοι που ορίζονται από την εξίσωση (), αφού οι συντεταγµένες των Α και Β επαληθεύουν την εξίσωση x + y λx = 0 () για κάθε λ. y A(0,) Ο B(0, ) x Πράγµατι 0 + λ0 = 0 και 0 + ( ) λ0 = 0. Η εξίσωση της κοινής χορδής είναι η x= 0. Εξίσωση ευθείας Β Λυκείου

23 Φροντιστήρια 3 η Κατηγορία : Γεωμετρικοί Τόποι.6 ίνονται τα σηµεία Α(, ) και Β ( 5, ). Να βρεθεί ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου για τα οποία ισχύει ( MA) = ( MB). Έστω Mxy (,) τυχαίο σηµείο το ζητούµενου γεωµετρικού τόπου. Τότε ( MA) = ( MB) ( x ( ) ) + ( y ) = ( x ( 5) ) + ( y ( ) ) ( x+ ) + ( y ) = 4 ( x+ 5) + ( y+ ) x 4x 4 y y = 4( x + 0x+ 5+ y + 4 y+ 4) :(-3) fi x + y + 4x y+ 5 3x 3y 36x 8y = 0 x + y + x+ 6 y+ 37= 0 = 4x + 4y + 40x+ 6y+ 6 Είναι A + B 4Γ = = = 3> 0. Άρα ο γεωµετρικός τόπος των σηµείων Μ είναι ο κύκλος µε εξίσωση x + y + x+ 6 y+ 37= 0 που έχει κέντρο το σηµείο K( 6, 3) και ακτίνα ρ= 3 = 4 =. Εξίσωση Ευθείας Β Λυκείου

24 4 Φροντιστήρια.7 Να βρείτε το γεωµετρικό τόπο των σηµείων Μ, από τα οποία οι εφαπτόµενες προς τον κύκλο x + y = ρ είναι κάθετες. Έστω Mxy (,) τυχαίο σηµείο το ζητούµενου γεωµε- y M(x,y) τρικού τόπου. Τότε οι εφαπτόµενες ΜΑ και ΜΒ προς τον κύκλο x + y = ρ είναι κάθετες. Αυτό συµβαίνει, αν και µόνο αν το τετράπλευρο B ρ O ρ A x ΟΑΜΒ είναι τετράγωνο ή, ισοδύναµα, ( OM) = ( OA) + ( AM) x + y = ρ + ρ x + y = ρ, δηλαδή, ότι ο γεωµετρικός τόπος του Μ είναι ο κύκλος x + y = ( ρ ). Εξίσωση ευθείας Β Λυκείου

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

Θετικής-Τεχνολογικής Κατεύθυνσης

Θετικής-Τεχνολογικής Κατεύθυνσης Mα θ η μ α τ ι κ ά Β Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Μαθηματικά Β Λυκείου Θετικής-Τεχνολογικής

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_ΜλΘΤ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Μαΐου 01 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή. ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ Θεωρούμε μια ομάδα 5 μαθητών Κάθε μαθητής χαρακτηρίζεται από έναν αριθμό μ =,,,,5 και κινείται στο καρτεσιανό επίπεδο Ο xy διαγράφοντας τροχιά με εξίσωση: Cμ x y μx μy μ μ : + + + 6 6

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzερυυξnmηq σwωψerβνtyuςiopasdρfghjklzcvbn mqwertyuiopasdfghjklzcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Προχωρώντας από τη Β στη Γ Λυκείου klzcvλοπbnαmqwertyuiopasdfghjklz «5 βασικά

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ 1 3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ ΘΕΩΡΙΑ 1. Σχετική θέση ευθείας και κωνικής τοµής Έστω η ευθεία ε : y = λx + β και µία κωνική τοµή C µε εξίσωση την φ(x, y) =. Το πλήθος των κοινών σηµείων της ε και

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ 1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου Κωνσταντίνος Παπασταματίου Μιγαδικοί Αριθμοί Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος Τηλ. 40598 Κεφ. ο ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ. Η έννοια

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4) σκήσεις σχ. ιβλίου σελίδας 5 5 ενικές ασκήσεις. ανονικό εξάγωνο ΕΖ είναι εγγεγραµµένο σε κύκλο (Ο, ) και έστω, Λ,, Ν, Ρ, Σ τα µέσα των πλευρών του. Να αποδείξετε ότι το ΛΝΡΣ είναι κανονικό εξάγωνο µε κέντρο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 1ο κεφάλαιο: Διανύσματα Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Μια νέα (;) ιδιότητα της παραβολής

Μια νέα (;) ιδιότητα της παραβολής Σελίδα 1 από 6 Μια νέα (;) ιδιότητα της παραβολής Γιάννης Καμπούρογλου Μαθηματικός (4 ο ΛΥΚΕΙΟ ΧΑΛΚΙΔΑΣ) Γιάννης Αλεξίου Μαθηματικός (4 ο ΛΥΚΕΙΟ ΧΑΛΚΙΔΑΣ) Περίληψη Παρουσιάζουμε με απόδειξη μια νέα (;)

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) :

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ανδριοπούλου Τασιάννα Ανδρονίκου Γιώργος Βασσάλου Γιάννα Βελλίκης Γιώργος Καρατσιώλης Δημήτρης Κασλής Κώστας Λαλούμης Νίκος Μπέκας Χρήστος Μπίτζας

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

Η έννοια της γραμμικής εξίσωσης

Η έννοια της γραμμικής εξίσωσης Η έννοια της γραμμικής εξίσωσης Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση αx+βy = γ Λύση της εξίσωσης α x + β y = γ ονομάζεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ!

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! - Κύριε, πόσο μας χρειάζονται αυτά που μάθαμε πέρσι στα μαθηματικά της κατεύθυνσης; - Σοφία, αν όχι όλα, αρκετά από αυτά. - Για πείτε

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα