PRIJEMNI ISPIT MATEMATIKA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PRIJEMNI ISPIT MATEMATIKA"

Transcript

1 PRIJEMNI ISPIT MATEMATIKA Skupovi Brojevi Osnovni zkoni Opercije Rcionlizcij Proporcije Polinoi Množenje, deljenje, rstvljnje n činioce, njnji zjednički sdržilc, njveći zjednički delilc Ekvivlentne trnsforcije lgerskih izrz Linern jednčin s jedno nepoznto i siste linernih jednčin s dve nepoznte Linern nejednčin s jedno nepoznto Kvdrtn jednčin Vietove forule Bikvdrtn jednčin Siste jedne linerne i jedne kvdrtne jednčine s dve nepoznte Proste ircionlne jednčine Logrit Osnovne forule Funkcij Linern, kvdrtn, eksponencijln, logritsk Jednostvnije eksponencijlne i logritske jednčine Nizovi, ritetički i geoetrijski Trougo i četvorougo (podel, osoine, podudrnost, sličnost, Pitgorin stv, stvovi o odsečci n hipotenuzi Broj dijgonl i zir unutršljih uglov nogougl Krug (periferijski i centrlni ugo, tetiv, tngent Oi i površin trougl, četvorougl, krug Priz, pirid, vljk, kup i lopt Površin i zprein Prien sličnosti i podudrnosti Eleenti trigonoetrije Rdijn Trigonoetrijski krug Izržvnje trigonoetrijskih funkcij proizvoljnog ugl preko trigonoetrijskih funkcij oštrog ugl Grfici trigonoetrijskih funkcij Adicione teoree Trigonoetrijske jednčine i nejednčine jednostvnijih olik Vektori i nlitičk geoetrij u rvni LITERATURA: Mtetik s zirko zdtk srednjeg orzovnj i vspitnj, grup utor, z I, II, III rzred elektrotehničke ili sorćjne struke (tri udženik u izdnju "Nučn knjig" Beogrd ili "Zvod z udženike i nstvn sredstv ", Beogrd PRIPREMNA NASTAVA IZ MATEMATIKE Škol svke godine orgnizuje i priprenu nstvu z polgnje prijenog ispit iz Mtetike Pripren nstv se orgnizuje vikendo (suoto ili nedeljo u grup do kndidt, i u lokovi od po čsov dnevno Trjnje kurs je čsov u okviru kojih se rdi i proni test Dodtn oveštenj o orgnizciji priprene nstve ogu se doiti u Studentskoj služi Škole n telefone /- i /-, svkog rdnog dn od - čsov

2 ZADACI ZA PRIPREMU PRIJEMNOG ISPITA I ALGEBARSKI IZRAZI LINEARNE JEDNAČINE I NEJEDNAČINE Rstviti n činioce:, Izvršiti opercije s lgerski rzloci, pretpostvljjući d je sve definisno: Rešiti jednčine: ( ( Rešiti nejednčine:

3 > > > II KVADRATNE JEDNAČINE, FUNKCIJE I NEJEDNAČINE Rešiti jednčine: Skicirti grfike kvdrtnih funkcij: Z koju vrednost pretr R će prole ( dodirivti -osu iti stlno pozitivne c iti stlno negtivne Odrediti reln rešenj jednčin:

4 III IRACIONALNE JEDNAČINE ( ( IV EKSPONENCIJALNE JEDNAČINE ( V LOGARITAMSKE JEDNAČINE log ( log ( log ( log log ( log log ( log ( log ( log ( ( log ( log log ( log log ( lg lg ( lg lg VI ARITMETIČKI I GEOMETRIJSKI NIZ Z sledeće ritetičke nizove dto je: ; ; ; ; S Izrčunti: i d c S

5 Z sledeće geoetrijske nizove dto je: ; ; ; ; Izrčunti: i q c S VII TRIGONOMETRIJSKE JEDNAČINE Odrediti rešenj trigonoetrijskih jednčin: sin cos tg ctg sin sin sin π cos π π tg cos sin cos sin sin cos sin cos cos sin sin cos sin sin cos cos VIII PLANIMETRIJA Uglovi trougl su α ; γ Izrčunti oštr ugo koji zklpju sietrle uglov α i β U prvouglo trouglu je dt ktet i ugo α koji on zklp s hipotenuzo c α Izrčunti strnice trougl, c i dužine težišnih duži t, t, tc Izrčunti površinu jednkokrkog trougl koe su krci dužine ugo pri vrhu β Izrčunti površinu jednkokrkog trougl koe su krci dužine ugo n osnovici α Izrčunti površinu trougl koe su dte dve strnice i ugo kog one zklpju ; c ; α ; ; c ; β ; c ; ; γ Dte su tri strnice trougl,, c Izrčunti površinu trougl P, poluprečnik upisnog krug r i poluprečnik opisnog krug R ; ; c ; ; ; c Izrčunti oi i površinu prvougonik koe je dijgonl d ugo koji on zklp s jedno strnico α

6 Dt je ro koe je strnic ; oštr ugo α Izrčunti površinu ro P i proizvod dijgonl d i d Izrčunti oi, površinu i dijgonlu jednkokrkog trpez koe je već osnovic, krk c ugo n osnovici α IX STEREOMETRIJA Osnovne ivice kvdr stoje u rzeri :, dijgonlni presek kvdr je kvdrt strnice Izrčunti zpreinu kvdr Izrčunti površinu i zpreinu prvilne šestostrne prize ko se zn d je presek rvni koj je norln n osnovu i sdrži veću dijgonlu osnove, kvdrt strnice Izrčunti površinu i zpreinu prvilne šestostrne prize ko se zn d je presek rvni koj je norln n osnovu i sdrži nju dijgonlu osnove, kvdrt strnice Izrčunti površinu i zpreinu prvilne trostrne četvorostrne c šestostrne piride ko je osnovn ivic i dt je ugo α koji očn strn zklp s rvni osnove Izrčunti površinu i zpreinu prvilne trostrne četvorostrne c šestostrne piride ko je osnovn ivic i dt je ugo α koji očn ivic zklp s rvni osnove Izrčunti površinu i zpreinu vljk upisnog u prvilnu trostrnu prizu kojoj je strnic i visin H Izrčunti površinu i zpreinu kupe opisne oko četvorostrne piride Osnovn ivic piride je Ngini ugo koji izvodnic kupe zklp s rvni osnove iznosi α X JEDNAČINA PRAVE A i: s pozitivni sero -ose zklp ugo α prleln je prvoj c norln je n prvu d s prvo zklp oštr ugo ϕ Odrediti jednčinu prve koj prolzi kroz tčku (, Odrediti jednčinu prve koj predstvlj sietrlu duži AB ko su tčke A (, i (, Odrediti koordinte tčke N koj je sietričn tčki (, B M u odnosu n prvu (s čij je jednčin

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada.

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada. Многоугао Многоугао, странице и дијагонале. Број дијагонала многоугла 1 Obele`i svki mnogougo, ztim npi{i kojoj vrsti po broju strnic pripd. Petougo Ncrtj osmougo FGH. Obele`i wegov temen. ) Npi{i temen

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću Reltivno irovnje tečnosti Trnsltorno kretnje sud s tečnošću Zdtk Cistern čiji je orečni resek elis oluos i b nunjen je tečnošću ustine i kreće se rvolinijski jednklo ubrzno ubrznje w o orizontlnoj rvni

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

LINEARNE JEDNAČINE. za koji važi: a x b

LINEARNE JEDNAČINE. za koji važi: a x b LINERNE JEDNČINE Pod linernom jednčinom po x podrzumevmo svku jednčinu s nepozntom x koj se ekvivlentnim trnsformijm svodi n jednčinu olik: gde su i dti relni rojevi. x Rešenje ove jednčine je svki reln

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ MATEMATIKE. za prijemni ispit na Vojnoj akademiji

ZBIRKA ZADATAKA IZ MATEMATIKE. za prijemni ispit na Vojnoj akademiji \URI[I] DU[AN BRKI] NADA ZBIRKA ZADATAKA IZ MATEMATIKE z prijemni ispit n Vojnoj kdemiji MINISTARSTVO ODBRANE SEKTOR ZA QUDSKE RESURSE UPRAVA ZA [KOLSTVO VOJNA AKADEMIJA AUTORI Du{n \uri{i}, profesor Nd

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo

7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo 7 Odreženi integrli 63 7 Odreženi integrli Nek je funkcij f(x) definisn n intervlu [, ]. Ako ovj intervl podeo n n delov tčkm = x < x < x

Διαβάστε περισσότερα

γ = 120 a 2, a, a + 2. a + 2

γ = 120 a 2, a, a + 2. a + 2 Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Neodreeni integrali. Glava Teorijski uvod

Neodreeni integrali. Glava Teorijski uvod Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

SADRŽAJ NASTAVNI PROGRAM...1 Hemija...1 Matematika...3 ZADACI IZ HEMIJE...4 ZADACI IZ MATEMATIKE...31 Sređivanje algebarskih izraza...

SADRŽAJ NASTAVNI PROGRAM...1 Hemija...1 Matematika...3 ZADACI IZ HEMIJE...4 ZADACI IZ MATEMATIKE...31 Sređivanje algebarskih izraza... SADRŽAJ NASTAVNI PROGRAM... emij... Mtemtik... ZADACI IZ EMIJE...4 ZADACI IZ MATEMATIKE... Sređivnje lgerskih izrz... Kvdrtn jednčin... Sistemi jednčin... Jednčine... Binomn formul...4 Kvdrtn funkcij...4

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

NASTAVNI PROGRAM HEMIJA

NASTAVNI PROGRAM HEMIJA SADRŽAJ NASTAVNI PROGRAM... emij... Mtemtik... ZADACI IZ EMIJE... ZADACI IZ MATEMATIKE...9 Sređivnje lgerskih izrz...9 Kvdrtn jednčin...0 Sistemi jednčin...0 Jednčine... Binomn formul... Kvdrtn funkcij...

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA

ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA NOVI SAD ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA (MATEMATIKA) NOVI SAD, 0 Izdvč: Fultet tehničih nu Trg Dositej Obrdović 000 Novi

Διαβάστε περισσότερα

Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 2009.

Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 2009. Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 009. Autori: Mr Nada Damljanović Mr Rale Nikolić Recenzenti: Prof. dr Mališa

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu Univerziteta u Sarajevu.

Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu Univerziteta u Sarajevu. Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu Univerziteta u Sarajevu. Izbor je napravljen prema: 1. Zbirka zadataka iz algebre

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

ZI. NEODREðENI INTEGRALI

ZI. NEODREðENI INTEGRALI ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Eksponencijalna i logaritamska funkcija

Eksponencijalna i logaritamska funkcija 16 1. UVOD U ANALIZU Rešenje. Kako je ovo neprava funkcija, deljenjem nalazimo da je (11) f() = 1 + 5 6 + 1 3 5 + 6 = 1 + 5 6 + 1 ( )( 3). Prema postupku navedenom u teoremi 1.7, važi razlaganje odnosno

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Univerzitet u Zenici Mašinski fakultet Akademska 2012/13.

Univerzitet u Zenici Mašinski fakultet Akademska 2012/13. Univerzitet u Zenici Mšinski fkultet Akdemsk /. Svesk s vježbi iz Mtemtike II (II dio) Odsjeci: Inžinjerski dizjn proizvod, Inžinjersk ekologij, Mendžment proizvodnim tehnologijm, Održvnje Zbirke zdtk

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

x bx c + + = 0 po nepoznatoj x, vrijedi da je

x bx c + + = 0 po nepoznatoj x, vrijedi da je Elektrotehnički fakultet u Sarajevu studijska 0/4. ŠIFRA KANDIDATA _ Zadatak. Za rješenja, kvadratne jednačine + = i + = 7. Koliko iznosi? 9 b c + + = 0 po nepoznatoj, vrijedi da je a) 4 b) 6 c) 7 d) 4

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα