Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95"

Transcript

1 Τ Ε Τ Υ Π Κ Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Φεβρουάριος 2015

2 Copyright c Σ. Σταματιάδης, Η στοιχειοθεσία έγινε από τον Σ. Σταματιάδη με τη χρήση του LATEX2ε. Συνεισέφερε ασκήσεις ο Χρήστος Μαθιουδάκης. Τελευταία τροποποίηση του κειμένου έγινε στις 20 Φεβρουαρίου Η πιο πρόσφατη έκδοση βρίσκεται στο

3 Περιεχόμενα Περιεχόμενα i 1 Εισαγωγή Παράδειγμα Δομή Προγράμματος Σχόλια Δήλωση Μεταβλητών Ανάγνωση δεδομένων Υπολογισμοί και Εκχώρηση Εκτύπωση δεδομένων Τύποι και Τελεστές Μεταβλητές Δήλωση Ονομα Εκχώρηση Τιμής Εντολή εκχώρησης Αριθμητικές Σταθερές Ακέραιες Πραγματικές Μιγαδικές Σταθερές Ποσότητες Αριθμητικοί Τελεστές Άλλοι ενσωματωμένοι τύποι Τύπος χαρακτήρα Λογικός τύπος Μιγαδικός Τύπος Ρητή μετατροπή μεταξύ αριθμητικών τύπων Προσδιορισμός του τύπου στην Fortran Προσδιορισμός του είδους αριθμητικών σταθερών Είσοδος/ Εξοδος δεδομένων Ενσωματωμένες αριθμητικές συναρτήσεις Δομή Προγράμματος Εντολή STOP Ασκήσεις i

4 ii Περιεχόμενα 3 Εντολές Ελέγχου Ροής Σχεσιακοί και Λογικοί Τελεστές Εντολές Ελέγχου Ροής IF SELECT CASE Ασκήσεις Εντολή επανάληψης Εισαγωγή DO για συγκεκριμένο πλήθος επαναλήψεων Σύνταξη Χρήση Υπονοούμενο DO DO για απροσδιόριστο αριθμό επαναλήψεων EXIT CYCLE Ονομα βρόχου DO Ασκήσεις Πίνακες Πίνακας γνωστού πλήθους στοιχείων Δήλωση πίνακα Πρόσβαση στα στοιχεία Απόδοση τιμής Πολυδιάστατος πίνακας Παρατηρήσεις Πίνακας άγνωστου πλήθους στοιχείων Σχετικές ενσωματωμένες συναρτήσεις Πράξεις Πινάκων κατά στοιχείο Τμήμα πίνακα Εντολές που αφορούν πίνακες WHERE FORALL Ασκήσεις Παραγόμενοι Τύποι Ασκήσεις Είσοδος/ Εξοδος Δεδομένων Εισαγωγή Περιεχόμενο του FORMAT FORMAT ελέγχου Αλλαγή γραμμής Αρχεία Εξωτερικά Αρχεία Εσωτερικά Αρχεία Ασκήσεις

5 Περιεχόμενα iii 8 Συναρτήσεις Υπορουτίνες Εισαγωγή Η έννοια του υποπρογράμματος Παραδείγματα Κλήση υποπρογράμματος Δήλωση υποπρογράμματος Παράδειγμα Εκτέλεση υποπρογράμματος RETURN Ορισμα υποπρογράμματος Πίνακας ως όρισμα Υποπρόγραμμα ως όρισμα Προαιρετικό όρισμα Στατικές ποσότητες Αναδρομική (recursive) κλήση συνάρτησης Υποπρογράμματα κατά στοιχείο (ELEMENTAL) MODULE Ασκήσεις αʹ Σύνοψη 99 αʹ.1 Σειρά εκτέλεσης αʹ.2 Δηλώσεις αʹ.3 Πίνακες αʹ.4 Ανάθεση τιμής αʹ.5 Εκτέλεση υπό συνθήκη αʹ.6 Εντολή επανάληψης αʹ.7 Υποπρόγραμμα Κατάλογος Πινάκων 103

6 iv Περιεχόμενα

7 Κεφάλαιο 1 Εισαγωγή Ενας ηλεκτρονικός υπολογιστής έχει τη δυνατότητα να προγραμματιστεί ώστε να εκτελέσει μια συγκεκριμένη διαδικασία. Προγραμματισμός είναι η λεπτομερής περιγραφή, σε κάποια γλώσσα προγραμματισμού, των βημάτων που πρέπει να ακολουθήσει ώστε να ολοκληρώσει την επιθυμητή διεργασία. Το σύνολο των βημάτων, το πρόγραμμα δηλαδή, συνήθως απαιτεί δεδομένα που πρόκειται να επεξεργαστεί ώστε να παράγει κάποιο αποτέλεσμα σχεδιάζεται, όμως, ανεξάρτητα από συγκεκριμένες τιμές των δεδομένων αυτών. Οι πιο διαδεδομένες γλώσσες προγραμματισμού στις εφαρμοσμένες επιστήμες (Fortran, C, C++) χρησιμοποιούν σταθερές και μεταβλητές ποσότητες, δηλαδή, ϑέσεις στη μνήμη του υπολογιστή, για την αποθήκευση των ποσοτήτων (δεδομένων και αποτελεσμάτων) του προγράμματος. Ο υπολογιστής επιδρά στις τιμές αυτών των ποσοτήτων ακολουθώντας διαδοχικά τις εντολές που περιλαμβάνονται στο πρόγραμμα. Υπάρχει η δυνατότητα εκχώρησης τιμής στις μεταβλητές, επιλογής της εντολής που ϑα εκτελεστεί στο επόμενο βήμα, ανάλογα με κάποια συνθήκη, καθώς και η δυνατότητα επανάληψης μιας ή περισσότερων εντολών. Η βασική δομή και ο τρόπος λειτουργίας ενός προγράμματος στις προαναφερθείσες γλώσσες δε διαφέρει ουσιαστικά από τη μία στην άλλη. Αυτό δεν σημαίνει ότι κάποιες γλώσσες προγραματισμού δεν είναι πιο εξελιγμένες από άλλες παρέχουν, δηλαδή, περισσότερες δυνατότητες ή είναι πιο κατάλληλες για συγκεκριμένες εφαρμογές. Στις παρούσες σημειώσεις ϑα περιγράψουμε έννοιες της γλώσσας προγραμματισμού Fortran 95 και ϑα αναφερθούμε στις βασικές δομές που αυτή παρέχει. 1.1 Παράδειγμα Ας εξετάσουμε μία απλή εργασία που ϑέλουμε να εκτελεστεί από ένα ηλεκτρονικό υπολογιστή: να μας ζητά έναν ακέραιο αριθμό και να τυπώνει στην οθόνη το διπλάσιό του. Η διαδικασία που ακολουθούμε, ο αλγόριθμος, είναι ο εξής: 1. Ανάγνωση αριθμού από το πληκτρολόγιο [εισαγωγή του στη μνήμη]. 2. [ανάκληση του αριθμού από τη μνήμη] υπολογισμός του διπλάσιου [εισαγωγή του αποτελέσματος στη μνήμη]. 1

8 2 Κεφάλαιο 1. Εισαγωγή 3. [ανάκληση του αποτελέσματος από τη μνήμη] Εκτύπωση στην οθόνη. Η ενέργειες που περιλαμβάνονται σε αγκύλες μπορεί να μη φαίνονται αναγκαίες σε πρώτη ανάγνωση. Είναι όμως, καθώς ο υπολογιστής κρατά στη μνήμη του (RAM) οποιαδήποτε πληροφορία, σε μεταβλητές ή σταθερές ποσότητες. Πολλές γλώσσες προγραμματισμού, ανάμεσά τους και η Fortran, χρειάζονται ένα επιλέον, προκαταρτικό, βήμα αυτής της διαδικασίας. Προτού μεταφέρουμε τον αλγόριθμο πρέπει να κάνουμε το: 0. Δήλωση μεταβλητών (δηλαδή, ρητή δέσμευση μνήμης). Ας δούμε καταρχήν ένα πλήρες πρόγραμμα Fortran 95 που εκτελεί την παραπάνω εργασία ακολουθώντας τα βήματα που περιγράψαμε. Με αυτό έχουμε την ευκαιρία να δούμε βασικά στοιχεία της δομής του κώδικα: PROGRAM d i p l a s i o IMPLICIT NONE! βήμα 0 INTEGER : : a, b! βήμα 1 READ *, a! βήμα 2 b 2 * a! βήμα 3 PRINT *, "To d i p l a s i o einai " PRINT *, b END PROGRAM d i p l a s i o Ας το αναλύσουμε: 1.2 Δομή Προγράμματος Οι εντολές του κυρίως προγράμματός μας (καλό είναι να) περιλαμβάνονται μεταξύ των PROGRAM... END PROGRAM: PROGRAM d i p l a s i o IMPLICIT NONE END PROGRAM d i p l a s i o Με την πρώτη εντολή το πρόγραμμά μας έχει ονομαστεί diplasio. Καλό είναι να αποδίδουμε ονόματα στα προγράμματά μας που υποδηλώνουν με κάποιον τρόπο τι κάνουν αυτά. Το όνομα πρέπει να είναι μονολεκτικό.

9 1.3. Σχόλια 3 Ολες οι εντολές/γραμμές μπορούν να ξεκινούν από οποιαδήποτε στήλη πρέπει να έχουν ολοκληρωθεί στη στήλη 132 καθώς οι χαρακτήρες που υπάρχουν μετά από αυτή αγνοούνται. Οι πρώτες γραμμές μετά το PROGRAM... συγκεντρώνουν τις δηλώσεις όλων των ποσοτήτων. Η πρώτη γραμμή από αυτές (καλό είναι να) είναι η IMPLICIT NONE. Αφού παρατεθούν οι δηλώσεις, ακολουθούν οι υπόλοιπες εντολές, με τη σειρά που ϑέλουμε να εκτελεστούν. Η τελική εντολή είναι το END PROGRAM... Σε ένα αρχείο με κώδικα σε Fortran 95 επιτρέπονται περισσότερα του ενός κενά μεταξύ λέξεων και κενές γραμμές μεταξύ εντολών. 1.3 Σχόλια Ο compiler αγνοεί τους χαρακτήρες που υπάρχουν μεταξύ του χαρακτήρα `! και μέχρι το τέλος της γραμμής που εμφανίζεται αυτός. Επομένως, γραμμές ή τμήματα γραμμών που αρχίζουν με `! μπορούν να περιλάβουν επεξηγηματικά μηνύματα από τον προγραμματιστή, για τη δική του διευκόλυνση. 1.4 Δήλωση Μεταβλητών Οι μεταβλητές (variables) είναι ϑέσεις στη μνήμη που χρησιμοποιούνται για την αποθήκευση των ποσοτήτων (δεδομένων, αποτελεσμάτων) του προγράμματος. Προτού χρησιμοποιηθούν πρέπει να δηλωθούν, δηλαδή να ενημερωθεί ο compiler για το όνομά τους και τον τύπο τους, αλλά και να πάρουν τιμή. Η εντολή INTEGER : : a, b αποτελεί τη δήλωση των μεταβλητών του προγράμματός μας. Παρατηρήστε ότι στον αλγόριθμό μας έχουμε δύο εισαγωγές ακεραίων στη μνήμη, οπότε ϑέλουμε δύο κατάλληλες μεταβλητές. Η συγκεκριμένη εντολή ζητά από τον compiler να δεσμεύσει χώρο στη μνήμη για δύο ακέραιους αριθμούς (INTEGER) με ονόματα a και b. 1.5 Ανάγνωση δεδομένων Η εντολή READ *, a διαβάζει από το πληκτρολόγιο έναν ακέραιο αριθμό και τον τοποθετεί στη μεταβλητή a. Το σύμβολο * υποδεικνύει στον μεταγλωττιστή ότι το πλήθος, τον τύπο και τη μορφή των δεδομένων που ϑα δεχθεί, πρέπει να τα προσδιορίσει αυτόματα από τις μεταβλητές που παρατίθενται στην εντολή READ. Θα δούμε αργότερα πώς μπορούμε να του προσδιορίσουμε εμείς τις συγκεκριμένες πληροφορίες. Η συγκεκριμένη εντολή αποτελεί τον ένα από τρεις τρόπους για απόδοση τιμής σε μεταβλητή. Οι άλλοι είναι η εντολή εκχώρησης (2.2) και η απόδοη τιμής κατά τη δήλωση (αρχικοποίηση).

10 4 Κεφάλαιο 1. Εισαγωγή 1.6 Υπολογισμοί και Εκχώρηση Η εντολή b 2*a εκτελείται ως εξής: Καταρχήν, υπολογίζεται το δεξί μέλος: ανακαλείται από τη μνήμη ο αριθμός που είναι αποθηκευμένος στη μεταβλητή a και εκτελείται ο πολλαπλασιασμός με το 2. Ο πολλαπλασιασμός υποδηλώνεται με το *. Κατόπιν, το αποτέλεσμα της πράξης αποθηκεύεται στη μεταβλητή του αριστερού μέλους. 1.7 Εκτύπωση δεδομένων Οι εντολές PRINT *, "To d i p l a s i o einai " PRINT *, b προκαλούν διαδοχική εκτύπωση στην οθόνη δύο πληροφοριών: συγκεκριμένου κειμένου (σειρά χαρακτήρων εντός εισαγωγικών) και της τιμής που είχε αποθηκευτεί στη μεταβλητή b (και η οποία ανακαλείται από τη μνήμη). Στο επόμενο κεφάλαιο ακολουθούν πιο αναλυτικές περιγραφές όσων αναφέραμε στο παράδειγμα.

11 Κεφάλαιο 2 Τύποι και Τελεστές 2.1 Μεταβλητές Οι ενσωματωμένοι τύποι των μεταβλητών στη Fortran είναι οι INTEGER, REAL και DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER. Α- ντιστοιχούν με τη σειρά, σε ποσότητες ακέραιες, πραγματικές απλής ακρίβειας, πραγματικές διπλής ακρίβειας, μιγαδικές, λογικές και ποσότητες χαρακτήρα Δήλωση Η δήλωση μιας ακέραιας μεταβλητής με όνομα π.χ. abc γίνεται με την α- κόλουθη εντολή: INTEGER : : abc Η δήλωση δύο πραγματικών μεταβλητών απλής ακρίβειας με ονόματα π.χ. value1, value2, γίνεται με τις ακόλουθες εντολές: REAL : : REAL : : value1 value2 ή, ισοδύναμα, με την REAL : : value1, value2 Οι πραγματικές μεταβλητές απλής ακρίβειας έχουν στους περισσότερους compilers ακρίβεια 6 σημαντικών ψηφίων 1. Σε επιστημονικούς κώδικες, η ακρίβεια των μεταβλητών τύπου REAL συχνά δεν είναι ικανοποιητική. Γι αυτό υπάρχει ενσωματωμένος ένας πραγματικός τύπος με μεγαλύτερη ακρίβεια. Ο τρόπος που ορίζεται αυτός στη Fortran 95 είναι σχετικά πολύπλοκος, διευκολύνει, όμως, αρκετά την ανάπτυξη μεγάλων κωδίκων. Εδώ ϑα παρουσιάσουμε τον τρόπο που κληρονομήθηκε από τη Fortran 77. Η δήλωση πραγματικής μεταβλητής διπλής ακρίβειας με όνομα π.χ. ab, γίνεται με την ακόλουθη εντολή: DOUBLE PRECISION : : ab 1 Σε ένα πραγματικό αριθμό γραμμένο σε δεκαδική μορφή, σημαντικά χαρακτηρίζονται τα ψηφία μεταξύ του πρώτου από αριστερά, μη μηδενικού ψηφίου και του τελευταίου μη μηδενικού ψηφίου. 5

12 6 Κεφάλαιο 2. Τύποι και Τελεστές Οι πραγματικές μεταβλητές διπλής ακρίβειας έχουν στους περισσότερους compilers ακρίβεια 15 σημαντικών ψηφίων. Δήλωση μιγαδικής μεταβλητής (απλής ακρίβειας) γίνεται ως εξής: COMPLEX : : z Περισσότερα για μιγαδικούς ϑα αναπτύξουμε παρακάτω Ονομα Τα ονόματα των μεταβλητών, συναρτήσεων, προγράμματος, και, γενικότερα, των οντοτήτων του κώδικα, είναι μονολεκτικά και της επιλογής του προγραμματιστή. Σχηματίζονται με τους λατινικούς χαρακτήρες a z, τα αριθμητικά ψηφία 0 9 και το χαρακτήρα `_. Το μέγιστο μήκος κάθε ονόματος είναι 31 χαρακτήρες. Το όνομα δεν μπορεί να αρχίζει με αριθμητικό ψηφίο. Κεφαλαία και πεζά γράμματα είναι ίδια. Καλό είναι να μην αρχίζει ούτε από `_ καθώς ονόματα με αυτόν για πρώτο χαρακτήρα χρησιμοποιούνται εσωτερικά από τον μεταγλωττιστή. Είναι προφανές ότι δεν μπορεί να χρησιμοποιηθεί το ίδιο όνομα για την αναπαράσταση διαφορετικών οντοτήτων που συνυπάρχουν Εκχώρηση Τιμής Μια μεταβλητή παίρνει τιμή διαβάζοντάς τη από το πληκτρολόγιο, από αρχείο κλπ. με την εντολή READ. Π.χ. για είσοδο από το πληκτρολόγιο ακέραιου αριθμού και αποθήκευση στη μεταβλητή a έχουμε INTEGER : : a..... READ *, a ή, ισοδύναμα, αλλά και πιο γενικά, INTEGER : : a..... READ ( *, * ) a με εντολή εκχώρησης (2.2), της μορφής μεταβλητή [ έκφραση με σταθερές και μεταβλητές ] Π.χ. REAL : : a, b b * a κατά τη δήλωσή της (αρχική τιμή). Π.χ. INTEGER : : k 3 Η παραπάνω εντολή δηλώνει ότι η μεταβλητή με όνομα k είναι ακέραια και της δίνει την αρχική τιμή 3. Μπορούμε να αλλάξουμε τιμή μιας μεταβλητής κατά τη διάρκεια εκτέλεσης του προγράμματος.

13 2.2. Εντολή εκχώρησης Εντολή εκχώρησης Είναι εντολή της μορφής μεταβλητή [ έκφραση με σταθερές και μεταβλητές ] Σε αυτή την εντολή εκτελούνται καταρχήν όλες οι πράξεις που πιθανόν εμφανίζονται στο δεξί μέλος και, κατόπιν, το αποτέλεσμα μετατρέπεται στον τύπο της μεταβλητής του αριστερού μέλους και η τιμή του εκχωρείται σε αυτή. 2.3 Αριθμητικές Σταθερές Ακέραιες Μία σειρά αριθμητικών ψηφίων χωρίς κενά ή άλλα σύμβολα, αποτελεί μία ακέραια σταθερά. Ο πρώτος χαρακτήρας της μπορεί να είναι το πρόσημο `+ ή `. Π.χ., τρεις ακέραιες σταθερές είναι οι παρακάτω 3, 12, Πραγματικές Μία σειρά αριθμητικών ψηφίων χωρίς κενά, που περιλαμβάνει τελεία (στη ϑέση της υποδιαστολής) συμβολίζει πραγματική σταθερά απλής ακρίβειας (συνήθως 6 σημαντικών ψηφίων). Πριν ή μετά την υποδιαστολή μπορεί να μην υπάρχουν ψηφία. Ο χαρακτήρας E, αν υπάρχει, ακολουθείται από τον ακέραιο εκθέτη του 10 με τη δύναμη του οποίου πολλαπλασιάζεται ο αμέσως προηγο- ύμενος του E αριθμός: 2.034, 0.23,.44, 23., 2e 4 ( ), 2.3E2 ( 230.0). Μία σειρά αριθμητικών ψηφίων χωρίς κενά, που περιλαμβάνει τελεία (στη ϑέση της υποδιαστολής) και ακολουθείται από το χαρακτήρα D και τον ακέραιο εκ- ϑέτη του 10 με τη δύναμη του οποίου πολλαπλασιάζεται συμβολίζει πραγματική σταθερά διπλής ακρίβειας (συνήθως 15 σημαντικών ψηφίων). Π.χ., 2d 4 ( d0), 2.3D2 ( 230.0d0). Προσέξτε ότι ο ίδιος πραγματικός αριθμός μπορεί να γραφεί στη Fortran ως πραγματικός είτε απλής είτε διπλής ακρίβειας 2. Οι δύο μορφές είναι διαφορετικές παρόλο που αντιστοιχούν στον ίδιο αριθμό. Στην περίπτωση που εμφανίζονται στην ίδια έκφραση, π.χ. σε μια πρόσθεση, ο μεταγλωττιστής μετατρέπει τη σταθερά απλής ακρίβειας σε διπλής προτού προχωρήσει. Ο συμβολισμός ενός πραγματικού αριθμού στη μορφή που περιλαμβάνει το E ή το D είναι ο λεγόμενος επιστημονικός. Παρατηρήστε ότι μόνο με την ε- πιστημονική μορφή μπορούμε να προσδιορίσουμε ότι μια πραγματική σταθερά είναι διπλής ακρίβειας. Δηλαδή, το 3.2 της αριθμητικής, πρέπει να γραφεί στη Fortran ως 3.2D0 για να αποθηκευθεί ως διπλής ακρίβειας. Επίσης, δεν έχει σημασία πόσα δεκαδικά ψηφία παραθέτουμε σε μία πραγματική σταθερά. Αν 2 είτε, βέβαια, ως μιγαδικός ή και ως ακέραιος, αν τυχαίνει να είναι ακέραιος στα μαθηματικά.

14 8 Κεφάλαιο 2. Τύποι και Τελεστές είναι απλής ακρίβειας ϑα αγνοηθούν τα ψηφία πέρα από το έκτο ή έβδομο σημαντικό. Αντίστοιχα, σε διπλή ακρίβεια τα πρώτα 15 ή 16 σημαντικά ψηφία κρατούνται, και ϑεωρούνται 0 όσα δεκαδικά μέχρι το 15ο ή 16ο δεν προσδιορίζονται. Ετσι, η μαθηματική σταθερά π = μπορεί να γραφεί στη Fortran ως (τα επιπλέον δεκαδικά ψηφία αγνοούνται, ακόμα και αν τα γράψουμε) ή ως D Μιγαδικές Η μιγαδική σταθερά συμβολίζεται στη Fortran με ζεύγος πραγματικών αριθμών εντός παρενθέσεων, με (,) μεταξύ τους. Ο πρώτος αριθμός είναι το πραγματικό μέρος ενώ ο δεύτερος είναι το φανταστικό. Π.χ., ο μιγαδικός αριθμός 3.1+2i των μαθηματικών γράφεται ως (3.1, 2.0), ενώ ο i γράφεται ως (0.0, 1.0). 2.4 Σταθερές Ποσότητες Μια ποσότητα, οποιουδήποτε τύπου, που επιθυμούμε να πάρει τιμή και να μην μπορεί να αλλάξει κατά τη διάρκεια εκτέλεσης του προγράμματος, δηλώνεται με τη χρήση της λέξης PARAMETER. Είναι απαραίτητο να της δώσουμε αρχική (και μόνιμη) τιμή κατά τον ορισμό της (δεν μπορεί, επομένως, να διαβαστεί από το πληκτρολόγιο, αρχείο, κλπ., ή να πάρει τιμή με εντολή εκχώρησης). Π.χ. πραγματική ποσότητα διπλής ακρίβειας με σταθερή, αμετάβλητη τιμή δηλώνεται ως εξής DOUBLE PRECISION, PARAMETER : : pi d0 2.5 Αριθμητικοί Τελεστές Οι τελεστές +,, *, / μεταξύ πραγματικών αριθμών εκτελούν τις πράξεις της πρόσθεσης, αφαίρεσης, πολλαπλασιασμού και διαίρεσης αντίστοιχα. Οι τελεστές +,, * μεταξύ ακεραίων αριθμών εκτελούν τις πράξεις της πρόσθεσης, αφαίρεσης, πολλαπλασιασμού αντίστοιχα. Ο τελεστής / μεταξύ ακεραίων αριθμών εκτελεί τη διαίρεση και αποκόπτει το δεκαδικό μέρος του αποτελέσματος, επιστρέφει, δηλαδή, το πηλίκο της διαίρεσης. Η ενσωματωμένη συνάρτηση MOD( ) επιστρέφει το υπόλοιπο της διαίρεσης ως εξής INTEGER : : a, b, p, y a 4 b 3 p a / b! Πηλίκο y MOD( a, b )! Υπόλοιπο

15 2.5. Αριθμητικοί Τελεστές 9 Ο τελεστής ** εκτελεί την ύψωση σε δύναμη. Π.χ. το x 3 των μαθηματικών γράφεται στη Fortran ως x**3. Οι τελεστές +, έχουν ίδια προτεραιότητα, η οποία είναι χαμηλότερη από την προτεραιότητα των *, / (που έχουν την ίδια), όπως και στα μαθηματικά. Σε μια έκφραση που εμφανίζονται διαδοχικά τελεστές ίδιας προτεραιότητας, εκτελείται πρώτα αυτός που είναι στα αριστερά. Ο τελεστής ** έχει υψηλότερη προτεραιότητα από όλους. Π.χ. INTEGER : : i, j, k i 2 + 3! i 5 j 2 * 3! j 6 i i + j! i 11 i 2 * i + j! i 28 i 17 / j! i 2 k i * j / 3 + 2**3! k 12 Αλλαγή προτεραιότητας γίνεται με τη χρήση παρενθέσεων. Π.χ. INTEGER : : i, j, k i 2 j 6 k 2 * i + j! k 10 k 2 * ( i + j )! k 16 k j * i / 3! k 4 k j * ( i / 3)! k 0 Παρατήρηση: Οταν οι τελεστές +,, *, / εμφανίζονται μεταξύ αριθμών διαφορετικού τύπου (π.χ. ενός ακεραίου και ενός πραγματικού), γίνεται αυτόματη μετατροπή ενός από τους αριθμούς στον τύπο του άλλου ώστε μην έχουμε α- πώλεια ακρίβειας. Ετσι, ο ακέραιος μετατρέπεται στον ισοδύναμο πραγματικό, ο πραγματικός στον ισοδύναμο μιγαδικό, κλπ. Κατόπιν, εκτελούνται οι πράξεις. Π.χ. INTEGER : : i, j REAL : : x, y i 8.3! i 8 j 2 y 3.0 x 4.0 / 3! x 4.0 / 3.0 x x j + y! x x x 5.0 i 4 / 3.0! i 4.0 / 3.0 i i 1 x 4 / 3! x 1 x 1.0 x 2.0 * 4 / 3! x 8.0 / 3 x 8.0 / 3.0! x x 4 / 3 * 2.0! x 1 * 2.0 x 2.0

16 10 Κεφάλαιο 2. Τύποι και Τελεστές 2.6 Άλλοι ενσωματωμένοι τύποι Παρακάτω ϑα παρουσιάσουμε τους υπόλοιπους ενσωματωμένους τύπους που παρέχει η Fortran, πέρα από τους INTEGER, REAL, DOUBLE PRECISION Τύπος χαρακτήρα Για την αναπαράσταση ποσοτήτων που οι δυνατές τιμές τους είναι χαρακτήρες ή σειρές χαρακτήρων, η Fortran παρέχει τον τύπο CHARACTER. Δήλωση μιας μεταβλητής χαρακτήρα με όνομα π.χ. ch γίνεται με την ακόλουθη εντολή: CHARACTER : : ch Οι τιμές που μπορεί να πάρει είναι μονοί χαρακτήρες εντός απλών ( ) ή διπλών (") εισαγωγικών: ch a ch D ch "R" Για την περιγραφή σειράς χαρακτήρων, η δήλωση περιλαμβάνει το μέγιστο δυνατό μήκος των σειρών που πρόκειται να αναπαραστήσουμε. Για παράδειγμα, η σειρά "This is a message" αποτελείται από 17 χαρακτήρες και, επομένως, μπορεί να ανατεθεί σε μεταβλητή τύπου CHARACTER με τουλάχιστον αυτό το μήκος. Η κατάλληλη δήλωση είναι CHARACTER ( 1 7 ) : : ch ch " This i s a message " Λογικός τύπος Μεταβλητή λογικού τύπου (LOGICAL) είναι κατάλληλη για την αναπαράσταση ποσοτήτων που μπορούν να πάρουν δύο τιμές (π.χ. ναι/όχι, αλη- ϑές/ψευδές,... ). Η δήλωση τέτοιας μεταβλητής, με όνομα π.χ. a, γίνεται ως εξής: LOGICAL : : a Οι τιμές που μπορεί να πάρει είναι.true. ή.false.. Η εκχώρηση π.χ. της σταθερής τιμής.true. στην a γίνεται ως εξής a.true Μιγαδικός Τύπος Η Fortran υποστηρίζει με τον ενσωματωμένο τύπο COMPLEX την περιγραφή μιγαδικών μεταβλητών και σταθερών. Η δήλωση είναι ως εξής COMPLEX : : z Εσωτερικά, για τον compiler, αποτελείται από δύο πραγματικούς αριθμούς, απλής ακρίβειας, που αντιστοιχούν στο πραγματικό και φανταστικό μέρος. Στη Fortran 77 δεν υποστηρίζεται μιγαδικός τύπος διπλής ακρίβειας. Αυτή

17 2.6. Άλλοι ενσωματωμένοι τύποι 11 η δυνατότητα υπάρχει στην Fortran 95 αλλά πρέπει να χρησιμοποιηθεί ο δικός της τρόπος (2.7) για τον προσδιορισμό του. Εναλλακτικά, είναι πιθανόν ο μεταγλωττιστής να υποστηρίζει μία επέκταση της Fortran, τον τύπο DOUBLE COMPLEX. Δημιουργία μιγαδικής ποσότητας Ενας αριθμός μιγαδικού τύπου στη Fortran μπορεί να πάρει τιμή με εκχώρηση μιγαδικής σταθεράς, δηλαδή, δύο πραγματικών αριθμών σε ένα ζεύγος παρενθέσεων, με (,) μεταξύ τους. Ο πρώτος αριθμός είναι το πραγματικό μέρος ενώ ο δεύτερος είναι το φανταστικό: COMPLEX : : z z ( 1. 2, 4.56)! z i 4.56 Αν ανατεθεί πραγματική ή ακέραια ποσότητα ϑα γίνει μετατροπή συμπληρώνοντας με το 0 το φανταστικό μέρος COMPLEX : : z z 2! z i 0.0 z 2.3! z i 0.0 Με εκχώρηση έκφρασης που έχει συνολικά μιγαδική τιμή (ή πραγματική ή ακέραια, για τις οποίες ϑα προηγηθεί μετατροπή): COMPLEX : : z, z1, z2 z 1 3! z i 0.0 z2 ( 4. 6, 4.2)! z2 4.6 i 4.2 z z 1 + z ! z 12.7 i 4.2 Στην επόμενη παράγραφο ϑα δούμε περισσότερα για τις εκφράσεις. Με ανάγνωση μιγαδικής σταθεράς από το πληκτρολόγιο ή από αρχείο. Π.χ. ο κώδικας COMPLEX : : z READ *, z αναμένει να του δώσουμε (1.6, -3.8) (περιλαμβάνονται το κόμμα και οι παρενθέσεις). Με τη χρήση της ενσωματωμένης συνάρτησης CMPLX( ). Αυτή δέχεται δύο πραγματικές ποσότητες και δημιουργεί μιγαδικό αριθμό με πραγματικό μέρος την πρώτη ποσότητα και φανταστικό τη δεύτερη

18 12 Κεφάλαιο 2. Τύποι και Τελεστές COMPLEX : : z REAL : : x, y x 3.4 y 9.1 z CMPLX( x, y )! z 3.4 i 9.1 Προσέξτε ότι η έκφραση z ( x, y ) που ίσως να περίμενε κανείς ότι ϑα έκανε σωστά τη δημιουργία, είναι λάθος. Εκφράσεις με μιγαδικές ποσότητες Οι αριθμητικοί τελεστές +,, *, /, ** εκτελούν τις αναμενόμενες πράξεις από τα μαθηματικά ο τελευταίος συμβολίζει την ύψωση σε δύναμη. Υπενθυμίζουμε ότι αν z1 = α + iβ, z2 = γ + iδ, τότε z1 z2 = (αγ βδ) + i(αδ + βγ). Αυτήν ακριβώς την πράξη εκτελεί ο τελεστής * μεταξύ μιγαδικών ποσοτήτων στη Fortran. Αντίστοιχα ισχύουν και για τον τελεστή /. Κατ επέκταση όσων είπαμε στις S2.2, S2.5, ένας μιγαδικός που συμμετέχει σε μία πράξη (δεξιά ή αριστερά ενός τελεστή), προκαλεί τη μετατροπή σε μιγαδικό και του άλλου μέρους της πράξης, προτού αυτή εκτελεστεί. Επίσης, εκχώρηση του μιγαδικού αποτελέσματος μιας έκφρασης προκαλεί μετατροπή της τιμής στον τύπο της μεταβλητής στην οποία ανατίθεται. Οταν η μεταβλητή στην οποία ανατίθεται είναι πραγματική, η μετατροπή συνίσταται στην αποκοπή του φανταστικού τμήματος: COMPLEX : : z REAL : : x z ( 2. 3, 4. 5 )! z i 4.5 x z! x 2.3 Οταν η μεταβλητή στην οποία ανατίθεται είναι ακέραια, η μετατροπή που γίνεται είναι η αποκοπή του φανταστικού τμήματος και η αποκοπή του δεκαδικού τμήματος του πραγματικού μέρους: COMPLEX : : z INTEGER : : i z ( 2. 3, 4. 5 )! z i 4.5 i z! i 2 Ολες οι ενσωματωμένες συναρτήσεις που ϑα δούμε παρακάτω ισχύουν και για μιγαδικούς με την αναμενόμενη από τα μαθηματικά συμπεριφορά.

19 2.6. Άλλοι ενσωματωμένοι τύποι 13 Εξαγωγή πραγματικού/φανταστικού μέρους Συζυγής Μέτρο Το πραγματικό μέρος ενός μιγαδικού αριθμού υπολογίζεται με τη δράση της ενσωματωμένης συνάρτησης REAL( ) βάζοντας ως όρισμα (ποσότητα μεταξύ των παρενθέσεων) τον μιγαδικό αριθμό: COMPLEX : : REAL : : x z z ( 1. 2, 8. 7 )! z 1.2 i 8.7 x REAL( z )! x 1.2 Το φανταστικό μέρος εξάγεται με τη δράση της συνάρτησης AIMAG( ): COMPLEX : : REAL : : x z z ( 1. 2, 8. 7 )! z 1.2 i 8.7 x AIMAG( z )! x 8.7 Αν ο μεταγλωττιστής υποστηρίζει το πρότυπο της Fortran 2008, μπορούμε να χρησιμοποιήσουμε τους τελεστές %RE και %IM για να προσπελάσουμε το πραγματικό και φανταστικό μέρος, αντίστοιχα, ενός μιγαδικού αριθμού: COMPLEX : : z REAL : : x, y z ( 1. 2, 8. 7 )! z 1.2 i 8.7 x z%re! x 1.2 y z%im! y 8.7 Ο μιγαδικός συζυγής ενός αριθμού παράγεται με τη δράση της συνάρτησης CONJG( ): COMPLEX : : z1, z2 z 1 ( 1. 2, 8. 7 )! z1 1.2 i 8.7 z2 CONJG( z 1 )! z i 8.7 Το (πραγματικό) μέτρο z ενός μιγαδικού υπολογίζεται με τη συνάρτηση ABS( ): COMPLEX : : z REAL : : norm z ( 1. 2, 8. 7 )! z 1.2 i 8.7 norm ABS( z )! norm Ρητή μετατροπή μεταξύ αριθμητικών τύπων Υπάρχουν περιπτώσεις που χρειάζεται να κάνουμε ρητά μετατροπή ποσότητας από ένα τύπο σε άλλον και να μη βασιζόμαστε στη μετατροπή που γίνεται κατά την εκχώρηση. Π.χ. προσέξτε τον παρακάτω κώδικα DOUBLE PRECISION : : x INTEGER : : i, j

20 14 Κεφάλαιο 2. Τύποι και Τελεστές i 3 j 2 x i / j! x 1.0d0 Η μεταβλητή x, παρόλο που είναι πραγματικού τύπου, δεν αποκτά την επιθυμητή τιμή (1.5) καθώς της ανατίθεται το πηλίκο της διαίρεσης των δύο ακεραίων αριθμών. Η διαίρεση ϑα γίνει σωστά αν μετατρέψουμε τους ακεραίους που συμμετέχουν σε πραγματικούς με κλήση της κατάλληλης συνάρτησης DOUBLE PRECISION : : x INTEGER : : i, j i 3 j 2 x DBLE( i ) /DBLE( j )! x 1.5d0 Η ρητή μετατροπή αρκεί να γίνει στον ένα από τους δύο ο άλλος ϑα μετατραπεί αυτόματα στον τύπο του έτερου μέλους. Οι συναρτήσεις ρητής μετατροπής της Fortran είναι οι εξής: REAL( ), DBLE( ), INT( ), CMPLX( ). Δέχονται μεταξύ των παρενθέσεων μία ποσότητα οποιουδήποτε αριθμητικού τύπου (INTEGER, REAL, DOUBLE PRECISION, COMPLEX) και επιστρέφουν αντίστοιχα REAL, DOUBLE PRECISION, INTEGER, COMPLEX. Η μετατροπή γίνεται σύμφωνα με όσα έχουμε αναφέρει για την εκχώρηση στους ομώνυμους τύπους. 2.7 Προσδιορισμός του τύπου στην Fortran 95 Στα προηγούμενα έχουμε παρουσιάσει όλους τους στοιχειώδεις τύπους της Fortran για την αναπαράσταση ακεραίων, πραγματικών, μιγαδικών, χαρακτήρων και λογικών ποσοτήτων. Η Fortran 95 παρέχει τουλάχιστον δύο τύπους για πραγματικές ποσότητες, αυτούς που συνήθως χαρακτηρίζουμε ως απλής και διπλής ακρίβειας. Στη Fortran 77 αυτοί είναι οι REAL και DOUBLE PRECISION αντίστοιχα. Η Fortran 95 τους διατήρησε, παρέχει όμως ένα πιο γενικό μηχανισμό για την επιλογή του επιθυμητού τύπου. Αυτόν ϑα παρουσιάσουμε παρακάτω. Η επιλογή του πραγματικού τύπου στην Fortran 95 γίνεται κατά τη δήλωση ως εξής: REAL ( prc ) : : a Με την παραπάνω εντολή, το a ορίζεται ως πραγματική μεταβλητή με είδος (kind) prc. Η ποσότητα εντός των παρενθέσεων είναι μια ακέραια σταθερή ποσότητα, με όνομα της επιλογής μας. Προφανώς, προτού τη χρησιμοποιήσουμε πρέπει να την έχουμε ορίσει και να της έχουμε αποδώσει τιμή. Η επιλογή του είδους του πραγματικού τύπου, η τιμή δηλαδή της ποσότητας prc στο συγκεκριμένο παράδειγμα, γίνεται με έναν από τους ακόλουθους τρόπους:

21 2.7. Προσδιορισμός του τύπου στην Fortran με τη χρήση της ενσωματωμένης συνάρτησης SELECTED_REAL_KIND(). Ως όρισμα τής δίνουμε το πόσα ψηφία (στο δεκαδικό σύστημα) επιθυμούμε να έχουμε σωστά. Π.χ. INTEGER, PARAMETER : : prc SELECTED_REAL_KIND( 1 2 ) Στην παραπάνω δήλωση ορίσαμε μια ακέραια σταθερά με όνομα prc και της δώσαμε την κατάλληλη τιμή για να έχουμε πραγματικούς με τουλάχιστον 12 ψηφία σωστά (όταν τη χρησιμοποιήσουμε σε δήλωση πραγματικού για τον προσδιορισμό του είδους του). με τη χρήση της ενσωματωμένης συνάρτησης KIND(). Ως όρισμα τής δίνουμε έναν πραγματικό αριθμό ή πραγματική ποσότητα και μας επιστρέφει το είδος του. Επομένως η δήλωση INTEGER, PARAMETER : : prc KIND( 1. 0 D0) αποδίδει στη σταθερά prc το είδος των πραγματικών αριθμών διπλής α- κρίβειας. Συνοψίζοντας: επιλέγουμε πρώτα το είδος του πραγματικού αριθμού που ϑέλουμε, είτε με το πόσα σωστά ψηφία επιθυμούμε ή δίνοντας το είδος άλλου πραγματικού αριθμού. Κατόπιν, ορίζουμε τους δικούς μας πραγματικούς αριθμο- ύς συμπληρώνοντας στη δήλωση το REAL με το επιθυμητό είδος σε παρένθεση. Συνήθης εφαρμογή των παραπάνω είναι η εξής: INTEGER, PARAMETER : : prc SELECTED_REAL_KIND( 1 2 ) REAL ( prc ) : : c ή INTEGER, PARAMETER : : prc KIND( 1. 0 D0) REAL ( prc ) : : b Οι παραπάνω εντολές ορίζουν τη μεταβλητή b ως πραγματική ποσότητα με είδος ίδιο με αυτό του αριθμού 1.0D0, δηλαδή γίνεται διπλής ακρίβειας. Ανάλογα, η μεταβλητή c είναι πραγματική με είδος κατάλληλο για να έχουμε τουλάχιστον 12 σωστά ψηφία. Προσέξτε ότι αν ζητήσουμε πολύ μεγάλη ακρίβεια, η τιμή που ϑα πάρει το prc δε ϑα αντιστοιχεί σε κανένα είδος, οπότε ϑα προκύψει λάθος κατά τη μεταγλώττιση. Τα παραπάνω ισχύουν και για τους υπόλοιπους ενσωματωμένους τύπους. Ουσιαστική χρησιμότητα έχει μόνο η δυνατότητα να ορίσουμε μιγαδικούς αριθμούς διπλής ακρίβειας: INTEGER, PARAMETER : : prc KIND( 1. 0 D0) COMPLEX ( prc ) : : z Με τις παραπάνω εντολές ο z είναι μιγαδική μεταβλητή που αποτελείται από δύο πραγματικούς διπλής ακρίβειας.

Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα

Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα Τ Ε Τ Υ Π Κ Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Σεπτέμβριος 2014 Copyright c 2006 2014 Σ. Σταματιάδης, (stamatis@materials.uoc.gr)

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0) 1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 08 Ιουνίου 2011 Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου

Διαβάστε περισσότερα

Εισαγωγή στο MATLAB. Στη συγγραφή των σημειώσεων συνέβαλαν οι μεταπτυχιακές φοιτήτριες Ελισάβετ Πισιάρα και Σπυρούλα Οδυσσέως

Εισαγωγή στο MATLAB. Στη συγγραφή των σημειώσεων συνέβαλαν οι μεταπτυχιακές φοιτήτριες Ελισάβετ Πισιάρα και Σπυρούλα Οδυσσέως Εισαγωγή στο MATLAB Στη συγγραφή των σημειώσεων συνέβαλαν οι μεταπτυχιακές φοιτήτριες Ελισάβετ Πισιάρα και Σπυρούλα Οδυσσέως Περιεχόμενα Εισαγωγή στο MATLAB: Δ12-2 Εισαγωγή Μεταβλητές (Variables) Πίνακες

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1 έως 1.3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Τ Ε Τ Υ Π Κ Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ Σ Copyright 2004 2017 Σταμάτης Σταματιάδης, stamatis@uoc.gr Το έργο αυτό αδειοδοτείται από την άδεια Creative Commons Αναφορά

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

( ) Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ

( ) Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ Ενδιαφερόμαστε μεν για τους αλγορίθμους αλλά εντός ενός συγκεκριμμένου πλαισίου: (α) ως λύσεις προβλημάτων,

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

Περιεχόµενα Περιεχόµενα iii 1 Εισαγωγή STOP

Περιεχόµενα Περιεχόµενα iii 1 Εισαγωγή STOP Τµηµα Επιστηµης και Τεχνολογιας Υλικων Πανεπιστηµιο Κρητης Ηλεκτρονικοί Υπολογιστές Ι : Εισαγωγή στη γλώσσα προγραµµατισµού Fortran 95 Συνοπτικές Σηµειώσεις ιαλέξεων Σ. Σταµατιαδης Ηράκλειο Μάρτιος 2012

Διαβάστε περισσότερα

Περιγραφή Περιγράμματος

Περιγραφή Περιγράμματος Περιγραφή Περιγράμματος Σήμερα! Περιγραφή Περιγράμματος Κώδικας Αλύσσου (chain code) Πολυγωνική γραμμή Υπογραφή (signature) περιγράμματος Μετασχηματισμός Fourier περιγράμματος 1 Περιγραφή Περιγράμματος

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Μεγέθη ταλάντωσης Το απλό εκκρεμές

Μεγέθη ταλάντωσης Το απλό εκκρεμές Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Παραδείγματα απλών προγραμμάτων σε Turbo Pascal

Παραδείγματα απλών προγραμμάτων σε Turbo Pascal Εργαστήριο: Προγραμματισμός Η/Υ Παραδείγματα απλών προγραμμάτων σε Turbo Pascal Β. Ν. Νικολαϊδης Πρόσθετες εκφωνήσεις από: Σ. Οικονομόπουλο, Β. Καψάλη, Μ. Κεσόγλου. Ver.0.2.6 ΑΤΕΙ ΠΑΤΡΑΣ Τμ. Ηλεκτρολογίας

Διαβάστε περισσότερα

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις (3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα

Διαβάστε περισσότερα

Συναρτήσεις ΙΙ. Σημερινό μάθημα

Συναρτήσεις ΙΙ. Σημερινό μάθημα Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις

Διαβάστε περισσότερα

Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ 1) (2 μονάδες) Δεδομένης της περιγραφής που ακολουθεί δώστε το σχεδιασμό κλάσεων του συστήματος:

Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ 1) (2 μονάδες) Δεδομένης της περιγραφής που ακολουθεί δώστε το σχεδιασμό κλάσεων του συστήματος: ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Μάθημα: Μεθοδολογίες και Γλώσσες Προγραμματισμού Ι (C++) Διδάσκουσα: Καβαλλιεράτου Εργίνα Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή) Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: 1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 29 Μαΐου 2012 Σκιαγράφηση της διάλεξης Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου

Διαβάστε περισσότερα

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ.

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ. ΕΓΚΥΚΛΙΟΣ 23 η ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 10 Ιουλίου 2013 ΥΠΟΥΡΓΕΙΟ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ ΣΥΝΤΟΝΙΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Αριθμ. Πρωτ. 153 ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΩΝ ΣΥΛΛΟΓΩΝ ΕΛΛΑΔΟΣ Α Θ Η Ν

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα