Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος"

Transcript

1 Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 17 Μαρτίου 2013, Βόλος

2 Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x).

3 Γραμμικές Σ Ε 2ης τάξης ή A(x)y + B(x)y + C(x)y = F(x). y + p(x)y + q(x)y = f(x). (1)

4 Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x). ή y + p(x)y + q(x)y = f(x). (1) Ομογενής γραμμική εξίσωση όταν f(x) = 0.

5 Παραδείγματα y + k 2 y = 0 υο λύσεις: y 1 = cos kx, y 2 = sin kx. y k 2 y = 0 υο λύσεις: y 1 = e kx, y 2 = e kx.

6 Θεώρημα Υπέρθεσης Αν y 1 και y 2 είναι δύο λύσεις της ομογενούς εξίσωσης τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x), είναι επίσης λύση της, για οποιεσδήποτε σταθερές C 1 και C 2. Μπορούμε να προσθέσουμε λύσεις (ή να πολλαπλασιάσουμε λύσεις με κάποιον αριθμό) και το αποτέλεσμα να είναι επίσης λύση.

7 Θεώρημα Υπέρθεσης - Απόδειξη Εστω y = C 1 y 1 + C 2 y 2. Τότε y + py + qy = (C 1 y 1 + C 2 y 2 ) + p(c 1 y 1 + C 2 y 2 ) + q(c 1 y 1 + C 2 y 2 ) = C 1 y 1 + C 2y 2 + C 1py 1 + C 2py 2 + C 1qy 1 + C 2 qy 2 = C 1 (y 1 + py 1 + qy 1) + C 2 (y 2 + py 2 + qy 2) = C C 2 0 = 0

8 Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1.

9 Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1. Παραδείγματα, y + y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cos x + b 1 sin x. y y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cosh x + b 1 sinh x.

10 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6.

11 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx

12 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

13 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

14 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

15 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

16 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

17 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6.

18 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx

19 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

20 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

21 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

22 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

23 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

24 Γενικά ay + by + cy = 0

25 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0.

26 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0.

27 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0. Θεώρημα: Εστω r 1 και r 2 οι ρίζες της χαρακτηριστικής εξίσωσης. (i) Αν r 1 r 2 R y = C 1 e r 1x + C2 e r2x. (ii) Αν r 1 = r 2 R y = (C 1 + C 2 x) e r1x.

28 Παραδείγματα y k 2 y = 0

29 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0

30 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx

31 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0

32 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0

33 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x.

34 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις;

35 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x

36 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0

37 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x

38 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x x = C

39 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη.

40 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση;

41 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση.

42 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση. Όταν r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 (e rx ) = xe rx, επίσης λύση.

43 Τύπος του Euler e iθ = cos θ + i sin θ e iθ = cos θ i sin θ.

44 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a

45 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x.

46 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx.

47 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx. Κάθε γραμμικός συνδυασμός λύσεων είναι και αυτός λύση. y 3 = y 1 + y 2 = e 2 αx cos βx, y 4 = y 1 y 2 = e 2i αx sin βx.

48 Θεώρημα Θεώρημα Αν οι ρίζες της χαρακτηριστικής εξίσωσης της διαφορικής εξίσωσης ay + by + cy = 0. είναι οι α ± iβ, τότε η γενική της λύση είναι y = C 1 e αx cos βx + C 2 e αx sin βx.

49 Παράδειγμα y + k 2 y = 0 k >0.

50 Παράδειγμα y + k 2 y = 0 k >0. Χαρακτηριστική εξίσωση r 2 + k 2 = 0 Ρίζες r = ±ik Γενική λύση y = C 1 cos kx + C 2 sin kx.

51 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10.

52 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x

53 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x

54 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x 10 = y (0) = 2C 2, ή C 2 = 5. Άρα y = 5e 3x sin 2x

55 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2)

56 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n.

57 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n. Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι συναρτήσεις p 0, p 1,..., p n 1, και f είναι συνεχείς και οι a, b 0, b 1,..., b n 1 είναι σταθερές. Η εξίσωση y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = f(x),. έχει ακριβώς μια λύση y(x) οι οποία ικανοποιεί τις παρακάτω αρχικές συνθήκες y(a) = b 0, y (a) = b 1,..., y (n 1 )(a) = b n 1.

58 Γραμμική Ανεξαρτησία Ορισμός y 1, y 2,..., y n είναι γραμμικά ανεξάρτητες αν η εξίσωση c 1 y 1 + c 2 y c n y n = 0, έχει μόνον την τετριμμένη λύση c 1 = c 2 = = c n = 0.

59 Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες;

60 Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες; sinh x = ex e x 2

61 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες;

62 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x

63 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0

64 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0 3. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 + c 2 e x + c 3 e 2x = 0 Με x = 0 παίρνουμε c 1 + c 2 + c 3 = 0. Παραγωγίζοντας και τα δύο μέρη έχουμε... c 2 e x + 2c 3 e 2x = 0,

65 Παράδειγμα y 3y y + 3y = 0,

66 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3

67 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0

68 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x

69 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3.

70 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3. C 1 = 1/4, C 2 = 1 και C 3 = 1/4 y = 1 4 e x + e x e3x

71 Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0

72 Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0 y = r 4 3r 3 + 3r 2 r = 0 r(r 1) 3 = 0 (c 0 + c 1 x + c 2 x 2 ) e x } {{ } + c }{{} 4. όροι προερχόμενοι από την r = 1 από την r = 0 (c 0 +c 1 x+ +c k 1 x k ) e αx cos βx+(d 0 +d 1 x+ +d k 1 x k ) e αx sin βx. όπου c 0,..., c k 1, d 0,..., d k 1 είναι τυχαίες σταθερές.

73 Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0

74 Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0 r 4 4r 3 + 8r 2 8r + 4 = 0, (r 2 2r + 2) 2 = 0, ( (r 1) ) 2 = 0. y = (c 0 + c 1 x) e x cos x + (d 0 + d 1 x) e x sin x.

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον

Διαβάστε περισσότερα

ιαφορικές Εξισώσεις 1

ιαφορικές Εξισώσεις 1 Κεφάλαιο 6 ιαφορικές Εξισώσεις 1 6.1 Γενικά Για τη επίλυση των διαφόρων προβληµάτων υπάρχουν γενικά δύο τύποι µαθηµατικών µοντέλων. 1. Στατικά µοντέλα, π.χ. το κυκλοφοριακό σύστηµα µιας πόλης, ελαχιστοποίηση

Διαβάστε περισσότερα

Η Θεωρια Αριθμων στην Εκπαιδευση

Η Θεωρια Αριθμων στην Εκπαιδευση Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής

Διαβάστε περισσότερα

Διανυσματικές Συναρτήσεις

Διανυσματικές Συναρτήσεις Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K Θεωρία Τομών Επίπεδων Καμπυλών Εργασία στο πλαίσιο τού μαθήματος Αλγεβρικές Καμπύλες (με κωδ. αριθμό Α 19) Χειμερινό Εξάμηνο 2008-2009 Μιχαήλ Γκίκας 1 Αριθμός τομής δυο συσχετικών επίπεδων καμπυλών Εστω

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. Κεφάλαιο Ι. Συνήθεις ιαφορικές Εξισώσεις

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. Κεφάλαιο Ι. Συνήθεις ιαφορικές Εξισώσεις http : //www.math.uoc.gr/gr/m embers/tersenov ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα... 1 Κεφάλαιο Ι. Συνήθεις ιαφορικές Εξισώσεις. Εισαγωγή...2 1. Εξισώσεις

Διαβάστε περισσότερα

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή) Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση 1: (α) Να προσεγγισθεί η τιµή του e µε ακρίβεια 0.001. (ϐ) Να προσεγγισθεί ο ln µε ακρίβεια 0.1. Λύση : Αν ξεκινήσουµε

Διαβάστε περισσότερα

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Περαιτέρω εξειδίκευση του υποδείγματος Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/61 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Βασικά θεωρήματα για τις γραμμικές Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2 Το Μέτρο και η Διάσταση Hausdorff Γεωργακόπουλος Νίκος Τερεζάκης Αλέξης Περίληψη Αναπτύσσουμε τη ϑεωρία του μέτρου και της διάστασης Hausdorff με εφαρμογές στον υπολογισμό διαστάσεων συνόλων fractal (Θεώρημα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Απλό γραμμικό υπόδειγμα και η μέθοδος ελαχίστων τετραγώνων Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1 έως 1.3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann

σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann Κ Ε Ο μετασχηματισμός Riesz σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann Διπλωματική Εργασία στα Εφαρμοσμένα Μαθηματικά Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 213 Αφιερώνεται

Διαβάστε περισσότερα

( ) Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ

( ) Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 03: ΑΣΥΜΠΤΩΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ Ενδιαφερόμαστε μεν για τους αλγορίθμους αλλά εντός ενός συγκεκριμμένου πλαισίου: (α) ως λύσεις προβλημάτων,

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγή στις Διακριτές Πιθανότηες Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 27 Δεκεμβρίου 2010 2 Κεφάλαιο 1 Συνδιαστική Ανάλυση και Μαθηματικές Τεχνικές Η απαρίθμηση των στοιχείων

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε 1 Prìblhma 2 και α Εχουμε ότι a 11 =1 a 21 = a 12 = 1 a 22 = b 11 = b 21 = b 12 = b 22 =1 A = B = ( 1 1 ( και επομένως det A =detb =, οπότε οι συνθήκες είναι αμιγείς. β Εχουμε ότι ( ( 1 2 1 A =, B = 1

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α.Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Εισαγωγικές έννοιες - Ταξινόμηση προβλημάτων - Παραδείγματα ΠΕΡΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

Το Θεώρημα Μοναδικότητας των Stone και von Neumann

Το Θεώρημα Μοναδικότητας των Stone και von Neumann Κ Ε Το Θεώρημα Μοναδικότητας των Stone και von Neumann Διπλωματική Εργασία Ειδίκευσης στα Θεωρητικά Μαθηματικά Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 2011 Αφιερώνεται στην οικογένεια μου ii Περίληψη

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ Καηηγορημαηικός Λογιζμός Μοπθέρ Θεωπημάηων Υπάξρεη έλα αληηθείκελν ώζηε λα ηζρύεη θάηη. Υπαξμηαθόο πνζνδείθηεο Γηα θάζε αληηθείκελν ηζρύεη όηη θάηη. Καζνιηθόο πνζνδείθηεο 2 Καηηγοπήμαηα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/96 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)

Διαβάστε περισσότερα

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης Θεωρία Αριθμών και Εφαρμογές Η έκδοση αυτή είναι υπό προετοιμασία Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης 9 Φεβρουαρίου 2015 2 Περιεχόμενα I ΑΡΙΘΜΟΘΕΩΡΙΑ ΤΩΝ ΡΗΤΩΝ ΑΡΙΘΜΩΝ 7 1 ΔΙΑΙΡΕΤΟΤΗΤΑ ΚΑΙ ΠΡΩΤΟΙ

Διαβάστε περισσότερα

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ 1 ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ Οι τάξεις της Β και Γ Λυκείου είναι χωρισμένες σε τρείς Κατευθύνσεις Θεωρητική, Θετική, Τεχνολογική Οι Σχολές είναι ταξινομημένες σε πέντε επιστημονικά πεδία 1 ο ΕΠΙΣΤΗΜΟΝΙΚΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Μορφές και πρόσημο τριωνύμου

Μορφές και πρόσημο τριωνύμου 16 Φεβρουαρίου 214 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Μορφές τριωνύμου

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα