Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος"

Transcript

1 Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 17 Μαρτίου 2013, Βόλος

2 Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x).

3 Γραμμικές Σ Ε 2ης τάξης ή A(x)y + B(x)y + C(x)y = F(x). y + p(x)y + q(x)y = f(x). (1)

4 Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x). ή y + p(x)y + q(x)y = f(x). (1) Ομογενής γραμμική εξίσωση όταν f(x) = 0.

5 Παραδείγματα y + k 2 y = 0 υο λύσεις: y 1 = cos kx, y 2 = sin kx. y k 2 y = 0 υο λύσεις: y 1 = e kx, y 2 = e kx.

6 Θεώρημα Υπέρθεσης Αν y 1 και y 2 είναι δύο λύσεις της ομογενούς εξίσωσης τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x), είναι επίσης λύση της, για οποιεσδήποτε σταθερές C 1 και C 2. Μπορούμε να προσθέσουμε λύσεις (ή να πολλαπλασιάσουμε λύσεις με κάποιον αριθμό) και το αποτέλεσμα να είναι επίσης λύση.

7 Θεώρημα Υπέρθεσης - Απόδειξη Εστω y = C 1 y 1 + C 2 y 2. Τότε y + py + qy = (C 1 y 1 + C 2 y 2 ) + p(c 1 y 1 + C 2 y 2 ) + q(c 1 y 1 + C 2 y 2 ) = C 1 y 1 + C 2y 2 + C 1py 1 + C 2py 2 + C 1qy 1 + C 2 qy 2 = C 1 (y 1 + py 1 + qy 1) + C 2 (y 2 + py 2 + qy 2) = C C 2 0 = 0

8 Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1.

9 Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1. Παραδείγματα, y + y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cos x + b 1 sin x. y y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cosh x + b 1 sinh x.

10 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6.

11 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx

12 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

13 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

14 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

15 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

16 Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

17 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6.

18 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx

19 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

20 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

21 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

22 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

23 Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

24 Γενικά ay + by + cy = 0

25 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0.

26 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0.

27 Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0. Θεώρημα: Εστω r 1 και r 2 οι ρίζες της χαρακτηριστικής εξίσωσης. (i) Αν r 1 r 2 R y = C 1 e r 1x + C2 e r2x. (ii) Αν r 1 = r 2 R y = (C 1 + C 2 x) e r1x.

28 Παραδείγματα y k 2 y = 0

29 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0

30 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx

31 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0

32 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0

33 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x.

34 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις;

35 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x

36 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0

37 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x

38 Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x x = C

39 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη.

40 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση;

41 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση.

42 Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση. Όταν r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 (e rx ) = xe rx, επίσης λύση.

43 Τύπος του Euler e iθ = cos θ + i sin θ e iθ = cos θ i sin θ.

44 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a

45 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x.

46 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx.

47 Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx. Κάθε γραμμικός συνδυασμός λύσεων είναι και αυτός λύση. y 3 = y 1 + y 2 = e 2 αx cos βx, y 4 = y 1 y 2 = e 2i αx sin βx.

48 Θεώρημα Θεώρημα Αν οι ρίζες της χαρακτηριστικής εξίσωσης της διαφορικής εξίσωσης ay + by + cy = 0. είναι οι α ± iβ, τότε η γενική της λύση είναι y = C 1 e αx cos βx + C 2 e αx sin βx.

49 Παράδειγμα y + k 2 y = 0 k >0.

50 Παράδειγμα y + k 2 y = 0 k >0. Χαρακτηριστική εξίσωση r 2 + k 2 = 0 Ρίζες r = ±ik Γενική λύση y = C 1 cos kx + C 2 sin kx.

51 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10.

52 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x

53 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x

54 Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x 10 = y (0) = 2C 2, ή C 2 = 5. Άρα y = 5e 3x sin 2x

55 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2)

56 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n.

57 Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n. Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι συναρτήσεις p 0, p 1,..., p n 1, και f είναι συνεχείς και οι a, b 0, b 1,..., b n 1 είναι σταθερές. Η εξίσωση y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = f(x),. έχει ακριβώς μια λύση y(x) οι οποία ικανοποιεί τις παρακάτω αρχικές συνθήκες y(a) = b 0, y (a) = b 1,..., y (n 1 )(a) = b n 1.

58 Γραμμική Ανεξαρτησία Ορισμός y 1, y 2,..., y n είναι γραμμικά ανεξάρτητες αν η εξίσωση c 1 y 1 + c 2 y c n y n = 0, έχει μόνον την τετριμμένη λύση c 1 = c 2 = = c n = 0.

59 Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες;

60 Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες; sinh x = ex e x 2

61 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες;

62 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x

63 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0

64 Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0 3. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 + c 2 e x + c 3 e 2x = 0 Με x = 0 παίρνουμε c 1 + c 2 + c 3 = 0. Παραγωγίζοντας και τα δύο μέρη έχουμε... c 2 e x + 2c 3 e 2x = 0,

65 Παράδειγμα y 3y y + 3y = 0,

66 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3

67 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0

68 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x

69 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3.

70 Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3. C 1 = 1/4, C 2 = 1 και C 3 = 1/4 y = 1 4 e x + e x e3x

71 Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0

72 Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0 y = r 4 3r 3 + 3r 2 r = 0 r(r 1) 3 = 0 (c 0 + c 1 x + c 2 x 2 ) e x } {{ } + c }{{} 4. όροι προερχόμενοι από την r = 1 από την r = 0 (c 0 +c 1 x+ +c k 1 x k ) e αx cos βx+(d 0 +d 1 x+ +d k 1 x k ) e αx sin βx. όπου c 0,..., c k 1, d 0,..., d k 1 είναι τυχαίες σταθερές.

73 Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0

74 Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0 r 4 4r 3 + 8r 2 8r + 4 = 0, (r 2 2r + 2) 2 = 0, ( (r 1) ) 2 = 0. y = (c 0 + c 1 x) e x cos x + (d 0 + d 1 x) e x sin x.

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Η Θεωρια Αριθμων στην Εκπαιδευση

Η Θεωρια Αριθμων στην Εκπαιδευση Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K Θεωρία Τομών Επίπεδων Καμπυλών Εργασία στο πλαίσιο τού μαθήματος Αλγεβρικές Καμπύλες (με κωδ. αριθμό Α 19) Χειμερινό Εξάμηνο 2008-2009 Μιχαήλ Γκίκας 1 Αριθμός τομής δυο συσχετικών επίπεδων καμπυλών Εστω

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Περαιτέρω εξειδίκευση του υποδείγματος Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/61 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση 1: (α) Να προσεγγισθεί η τιµή του e µε ακρίβεια 0.001. (ϐ) Να προσεγγισθεί ο ln µε ακρίβεια 0.1. Λύση : Αν ξεκινήσουµε

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Απλό γραμμικό υπόδειγμα και η μέθοδος ελαχίστων τετραγώνων Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε 1 Prìblhma 2 και α Εχουμε ότι a 11 =1 a 21 = a 12 = 1 a 22 = b 11 = b 21 = b 12 = b 22 =1 A = B = ( 1 1 ( και επομένως det A =detb =, οπότε οι συνθήκες είναι αμιγείς. β Εχουμε ότι ( ( 1 2 1 A =, B = 1

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ Καηηγορημαηικός Λογιζμός Μοπθέρ Θεωπημάηων Υπάξρεη έλα αληηθείκελν ώζηε λα ηζρύεη θάηη. Υπαξμηαθόο πνζνδείθηεο Γηα θάζε αληηθείκελν ηζρύεη όηη θάηη. Καζνιηθόο πνζνδείθηεο 2 Καηηγοπήμαηα

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/96 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)

Διαβάστε περισσότερα

Μορφές και πρόσημο τριωνύμου

Μορφές και πρόσημο τριωνύμου 16 Φεβρουαρίου 214 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Μορφές τριωνύμου

Διαβάστε περισσότερα

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ 1 ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ Οι τάξεις της Β και Γ Λυκείου είναι χωρισμένες σε τρείς Κατευθύνσεις Θεωρητική, Θετική, Τεχνολογική Οι Σχολές είναι ταξινομημένες σε πέντε επιστημονικά πεδία 1 ο ΕΠΙΣΤΗΜΟΝΙΚΟ

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση.

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Αναγνώριση Προτύπων Η κατάρα της διαστατικότητας Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Η κατάρα της διαστατικότητας

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Τ Ε Τ Υ Π Κ Εφαρμοσμένα Μαθηματικά Σημειώσεις Διαλέξεων Σ Σ Copyright 2016 2017 Σταμάτης Σταματιάδης, stamatis@uoc.gr Το έργο αυτό αδειοδοτείται από την άδεια Creative Commons Αναφορά Δημιουργού - Μη Εμπορική

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις Π Δ Μ Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Συνήθεις Διαφορικές Εξισώσεις Δρ. Θεόδωρος Ζυγκιρίδης 28 Δεκεμβρίου 211 2 Περιεχόμενα 1 Εισαγωγή 1 1.1 Ορισμοί.........................................

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/56 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133 ÅéêïóéäùäåêÜåäñïí Ìáèçìáôéêü Äåëôßï Ôåý ïò 3ï Ïêôþâñéïò 04 www.mathematica.gr ISSN: 4-733 Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή

Διαβάστε περισσότερα

Συναρτήσεις ΙΙ. Σημερινό μάθημα

Συναρτήσεις ΙΙ. Σημερινό μάθημα Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό μιας οικονομικής μονάδος: Α) Υποχρεώσεις προς τον Παπαδόπουλο, συνιδιοκτήτη της επιχείρησης.

Διαβάστε περισσότερα

ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK

ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK ΚΩΝ/ΝΟΣ Β. ΜΑΝΕΣ ΠΕΙΡΑΙΑΣ 2014 Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Διατριβή για

Διαβάστε περισσότερα

y + P (x)y + Q(x)y = 0 (1.1) y(x) = g(x)y (x), (1.2) gy + (P g + 2g )Y + (g + P g + Qg)Y = 0, (1.3)

y + P (x)y + Q(x)y = 0 (1.1) y(x) = g(x)y (x), (1.2) gy + (P g + 2g )Y + (g + P g + Qg)Y = 0, (1.3) κ ε φ ά λ α ι ο 1 ΧΡΟΝΑΝΕΞΑΡΤΗΤΑ ΕΠΙΛΥΣΙΜΑ ΥΝΑΜΙΚΑ Ι ΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ DARBOUX ΚΑΙ LIOUVILLE 1. Μετασχηµατισµοί σε δευτεροτάξιες γραµµικές εξισώσεις: Η κανονική µορφή Ξεκινάµε από την τυπική µορφή µιας

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ ΙΣΤΟΡΙΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΜΕΣΟΓΕΙΟΥ ΜΑΘΗΤΡΙΕΣ ΤΟΥ Β2 ΠΕΤΡΑ ΠΕΤΣΟΥ ΔΕΣΠΟΙΝΑ ΜΠΟΖΙΝΗ ΜΑΡΙΑ ΧΡΥΣΟΣΤΟΜΙΔΟΥ Yπεύθυνοι καθηγητές Μπουρμπούλιας Βασίλης - φιλόλογος Τσατσούλα Μαρία - φυσικός 1 Η ΜΕΣΟΓΕΙΟΣ: Η Μεσόγειος

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Εισαγωγή στο MATLAB. (συνέχεια)

Εισαγωγή στο MATLAB. (συνέχεια) Εισαγωγή στο MATLAB (συνέχεια) 6. Διαγράμματα Εντολές clf Διαγράφει το ενεργό σχήμα. Εισαγωγή στο MATLAB: Δ13-3 figure(h) Καθιστά το h ως το ενεργό παράθυρο και το εμφανίζει στην οθόνη μπροστά από όλα

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Βασικά Μαθηµατικά ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 04 Μαρτίου 009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια περίληψη των ϐασικών µα- ϑηµατικών γνώσεων που

Διαβάστε περισσότερα

Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Η βελτιστοποίηση για απλή πραγματική στοχική συνάρτηση

Διαβάστε περισσότερα

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Θέμα : Βαθμολογούμενοι Αγώνες, Τρόπος Βαθμολόγησης. Οι βαθμολογούμενοι αγώνες για το έτος 2013 είναι οι κάτωθι : - Πανελλήνιο Πρωτάθλημα 2x18μ. - Ανοιχτό Πρωτάθλημα 2x70μ. για

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών γραμματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 2014 15 ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΡΗΣΚΕΥΤΙΚΑ Δ.Ε. 3. Θρησκεία: ένα πανανθρώπινο φαινόμενο: β, σελ. 28 30 Δ.Ε. 7. «Τίνα με λέγουσιν οι άνθρωποι είναι;»: γ, σελ. 68 70 Δ.Ε. 9. Αρχή και πορεία του κόσμου:

Διαβάστε περισσότερα