Relative unitary RZ-spaces and the Arithmetic Fundamental Lemma
|
|
- Φαίδρα Οικονόμου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Relative unitary RZ-spaces and the Arithmetic Fundamental Lemma Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andreas Johannes Mihatsch aus Würzburg Bonn 2016
2 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Michael Rapoport 2. Gutachter: Prof. Dr. Gerd Faltings Tag der mündlichen Prüfung: Erscheinungsjahr: 2017
3 s ss r r t st ä s r t t s t s s st r t t t ss tt r t tär rt ä ss 2t s s rü s r s ss ö t r r t s r tr s t t r3 s 33 r n 1 s E/E 0 r3 t q r t s r t r r p s r ör r (V,J) n s r r ts r E t rr s ss detj E 0 r st s t str r r r s N E0,n s r p s r 3 s t P s t3 t 3ü r r t r E/E 0 s st s ür s t rt tär r U E0,n := U(V,J) r rt tür r s N E0,n ÿ r t s ür n 2 tür tt r r r t 3 δ : N E0,n 1 N E0,n, ür s t s r är s g U E0,n r r s tt r t Int(g) :=,(1,g) N E0,n 1 N E0,n ÿ r r r ss 2t s s r O(g) s t r r p s r ür t r s r tt 1t r t ür s r är g U E0,n t s r 3 t O(g) = Int(g) log(q). r 3 q 3 r t st ss ör r E 0 t r t n 3 r 3 rt r r t r s ür s n r s s g s s st st r s rä g s tr s t t r r r t ässt s t r r σ s t E/E 0 r ss σ Qp 2 id ä r3 r ϑ E r rs r t E 0 /Q p t tr E0/Q p (ϑ E ) = 1 r Q p 2/Q p r ts r J Qp 2 := tr E/Qp 2 (ϑ EJ). t t rr V r s t3t 3 t t 1t r r t ür r t r E/E 0 ür r t r Q p 2/Q p ür s g U E0,n 3 r t Z p 2[g] End(V) g r3 t Z p 2 r ÿ r 3 r t d r [E 0 : Q p ] t i s r tär r U E0,n U(J Qp 2) r r p 2
4 r g U E0,n r är t r s t ss O E Z p 2[g] t st s ür g r ör r E 0 s äq t 3 ür i(g) r ör r Q p s s r t s ür i(g) s n 3 r s t P t s s r s st str t r tt N E0,n N Qp,nd. s str t r t r r t s 2s s r r ü rt t ss t t r str t r s s r O s 2s π s r O s r r rt rst t r t t t t s s s t rt P r s s r s r s s t t s t s Pr t rt r r t r t r r p s r s r t t t s t t
5 t t r2 s s t r t t t r s ts t r t ts tr t t t r2 s s s t s t r t r s t t r r r 2 s t r2 s s t t t r t t t 2t s t r t t t 2t s t r t t t s ts t 1 str t r O s s r 3 t s s
6 t r s r s
7 tr t tr s s s r t t t t r s s t r t t2 t rt r t s r t t r s p s2 tr s s rt t rs t r ts t r2 rt s s s r t s s n 3 s t s s q t r rt rst r 2 t r r tr r2 n s s r ts g t r s t r r 2 r s s t r r tr r2 n t r r str t t s g s t t s r 2 rt r rs r s s r s s r s s t r t rt s s r r s 2 r t P r s r p s r s r str t r O s s r s r s t t r2 s 2 s 2 s r r s s r s r r s s r s t t r rt t r s s r r r s r 3 t s t t st r s s t t r 3 t str t r O s t t s s r 3 t t r 2 p s r tr t t s r t 1 t s r 2 t t rs r t rst t s r t t r t t r ss Pr s t r s s r s r 3 t t r ss r r s r r t t tr t r r r t t s s ts t r s r t r r q r t 1t s t rt s2st t tr t t r r ts t r s t t s r r r s ts r t P rt t t r2 s s 2 r t r r r s s r rs t r t t s t t E/E 0 r q r t 1t s p s t r s t rs O E0 O E s t σ t 2 Ĕ t t 1 r 1t s E t r t rs OĔ r s F t t S s r SpfOĔ r t O E r S s tr (X,ι,λ) r X/S s s rs r str t O E0 ι : O E End(X) t λ : X X r r 3 t t t s t t t s t t s t r t O E (X,ι,λ) r S s s t r (r,s) r a O E charpol(ι(a) Lie(X))(T) = (T a) r (T σ(a)) s O S [T]. t q s s 2 t r s q r t O E (X E0,(r,s),ι,λ) s t r (r,s) r F r t t s r ss p 2 t s OĔ s s t t p s 2 t t O S
8 t r OĔ s S t 2 S := S F ts s r t N E0,(r,s) t s t t r t t r2 s s r SpfOĔ 2 S ss t t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s r t O E s t r (r,s) r ρ : X S S X E0,(r,s) F S s E r q s s 2 s t t ρ λ = λ Pr s t t r N E0,(r,s) s r r s t 2 r s s 2 r 2 t t2 r 2 s t s rs r SpfOĔ r r s r r r rst E 0 = Q p t t s r s P t2 t s s rt s 2 tr st E 0 Q p t t s r s t r 2 t r s s t t r 3 t λ s r 3 t s str t O E0 N E0,(r,s) r t rt s s t r 2 r s r t str t O E0 s s s t p s r s t r s N Qp,(1,n 1) r 3 s t s rs r s rt t r2 r r t2 s t ss t 2 t s s r t 2 r t s r t t r r t2 t r s r t s s r s t s t r t r s s N E0,(1,n 1) r r s t r r s t t r r s t r P rt st t r t r r 2 r r t r s st t t r r 1 sts s N E0/Q p,(r,s) P t2 t s s t t r t s r s N E0/Q p,(r,s) = N E0,(r,s). s s r s s q r t t r s t t t t r2 r t t s s rt r t s N E0/Q p,(r,s) s s t r SpfOĔ s s r r s t s 2 t s t r t r E 0 /Q p st s r2 s tt t3 t r t r N E0/Q p,(r,s) 2 t tt t3 t s t r t 1 r t r t Q p E0 u E 0 t t ss 2 ψ 0 : E0 u Ĕ s t r t rs s s r t2 t t s t t q t t t t t t r t r t s t 2 r t st t t rs s t s st t t t r r r s r t s r s t t t 2 t s ss t t E = E 0 Q p 2 t d := [E 0 : Q p ] t s s r tt t O E0 t s N E0/Q p,(r,n r) N Qp,(r,nd r). r = 1 t ts t t t t rt 2 2s r t t r s 1 s r
9 P rt t t t r t t t rst r r t t t r t s r rs t t 1t s s r t t r r t r r t r r t r t s rs t s 1 t r n 2 t W 0 (n 1) s E 0 t r s t W := E W 0 V := W Eu GL(W) t GL(V) s h diag(h,1) t s 2 GL(W) ts 2 t End(V) t γ End(V) s s t r r s s ts st 3 r r t s t s tr ts r t s r s s t S(E 0 ) t t s2 tr s S(E 0 ) := {γ End(V) γγ = 1}. t s st r t t GL(W 0 ) t ts r r s s ts 2 S(E 0 ) rs r t s t t r t q t t [S(E 0 ) rs ] := GL(W 0 )\S(E 0 ) rs. r r r s s t γ S(E 0 ) rs r t st t f Cc (S(E 0 )) r 1 r t r s C t r t t r O γ (f,s) := f(h 1 γh)η(deth) deth s dh, GL(W 0) r η : E 0 {±1} s t q r t r t r ss t t E/E 0 2 ss t r2 r := q v( ) s t r 3 s t s r t s O γ (f) := O γ (f,0) t r r t t r O γ (f) := d ds O γ (f,s). s=0 t t t O γ (f) tr s r s t η det r t t GL(W 0 ) γ tr s r t r Ω(γ) {±1} s s η r t t r t Ω(γ)O γ (f) s s t t q t t [S(E 0 ) rs ] t J0 r s J1 r t r t s r t r s s r t W r i = 0,1 1t Ji t r J i V 2 J i (u,u) = 1 u W t r2 r U(Ji ) ts 2 t t r r s s ts U(J i ) rs r t q t t [U(J i ) rs ] := U(J i)\u(j i ) rs. t ts δ U(J i ) rs γ S(E 0 ) rs r s t t t 2 r t r GL(W) t End(V) t r t s t α : [S(E 0 ) rs ] = [U(J 0 ) rs ] [U(J 1 ) rs ]. t Y E0 r s X E0(1,n 2) r t O E r F s t r (0,1) r s s t r (1,n 2) r X E0,(1,n 1) := X E0,(1,n 2) Y E0 s s t r (1,n 1) s r t ss t s s N E0,(1,n 2) N E0,(1,n 1) t t t t r s q r t Y E0 Y E0 t SpfOĔ 2 Pr s t s s s rs δ : N E0,(1,n 2) N E0,(1,n 1) X X Y E0.
10 ts t t t rt s r Z(u) ss t t t r s u := 0 id : Y E0 X E0,(1,n 2) Y E0 s t 2 t r Aut(X E0,(1,n 2),λ,ι) t U(J 1) U(J 1) ts N E0,(1,n 2) 2 s t t r g.(x,λ,ι,ρ) = (X,λ,ι,gρ) r 2 2 t 2 Aut(X E0,(1,n 1),λ,ι) t U(J 1 ) s t t t s 2 t t δ s q r t t r s t t t U(J 1) U(J 1 ) t r t g U(J 1 ) t 2 Z(g) N E0,(1,n 1) t s (X,ρ) r ρ 1 gρ End(X) s Pr s t t g U(J 1 ) s rt t t rs t Im(δ) Z(g) s rt s r rt g t t rs t r Int(g) := len OĔO Im(δ) Z(g). t 2 s t rs t r t r r r s s ts g U(J 1 ) rs t s t t rs t Im(δ) Z(g) 2 r s r r t r s r s t t t t t t r s ts t s r 2 2 t t rt s r r 2 t st t t t r r rt ts t Λ 0 W 0 s tt s t Λ := (Λ 0 O E ) O E u S(O E0 ) := S(E 0 ) End(Λ) t ts r t r st t 2 1 S(OE0 ) t r t r r r2 t γ S(E 0 ) rs t t t s rt t g U(J 1 ) rs t r s q t2 Ω(γ) O γ (1 S(OE0 )) = Int(g)log(q). AFL E0,(V,J 1),u,g r t 1 q r (E 0,(V,J 1 ),u,g) s s s 2 t t t s s r str t t t r s t q t (AFL E0,(V,J 1),u,g) st t t r t r r s ts r t s t r t s ss t t σ Qp 2 id t r r s ss t t E = E 0 Q p 2 t d := [E 0 : Q p ] t r t f := [E 0 : Q p ] inert t rt r t 1t s E 0 /Q p t s r t V Qp 2 r t t r s V t r r s Q p 2 t r s t ϑ E r t r t rs r t E 0 /Q p s t t tr E/Qp (ϑ E ) = 1 t J 1,Qp 2 t r t r V Qp 2 J 1,Qp 2 := tr E/Qp 2 (ϑ EJ 1 ). t t t J 1,Qp 2(u,u) = 1 ts s t t s t t t r t 1t s Q p 2/Q p t t r s V Qp 2 t Y Qp r s X Qp,(1,nd 1) r t Z p 2 s t r (0,1) r s s t r (1,nd 1) r F s t t End(V Qp 2) = End(X Qp,(1,nd 1)) t t s q r t r t t t J 1,Qp 2 t t t s t t t r t s s t t U(J 1,Qp 2) = Aut(X Qp,(1,nd 1)) ss t t X Qp,(1,nd 1) t s N Qp,(1,nd 1) r t Z p 2 s s t r (1,nd 1) t t t t t O E X Qp,(1,nd 1)
11 2 q s r s s t 2 Z(O E ) N Qp,(1,nd 1) t s rs (X,ρ) s t t ρ 1 O E ρ End(X) t t t 2 g U(J 1,Qp 2) ss t 2 Z(g) N Qp,(1,nd 1) 2 t s 2 2 s t Z p 2 r s 2 g End(V) t t g U(J 1 ) rs s t t2 t r s s O E Z p 2[g] r t r t s t s t Z p 2 r s 2 g End(V) t s s r t s i : U(J 1 ) U(J 1,Qp 2) g U(J 1 ) rs s t t2 t t t r t Z(i(g)) Z(O E ). r r s s r s r s s Z(O E ) = f i=1 N E0,(1,n 1). s s r s s t t t r t Z(g) t s s g U(J 1 ) rs s t t2 t Z(i(g)) = f Z(g) Z(O E ). i=1 r t s t r r s r t s st t r r s t t t r s t s tt r t g U(J 1 ) rs r r s s rt t t2 t r s q (AFL E0,V,u,g) (AFL Qp,V Qp 2,u,i(g) ). t s r r n 3 t t r r2 r r2 t g r r s s rt t t2 t n 3 t r g r Q p (AFL Qp,V Qp 2,u,i(g) ) s t t 1t r 2 r ts t s r s t s t r r s t s r ts s r t r rs t t r rs t 2 r s s 2 t r s t r rt r r s r t s ét r E 0 /Q p t s rt t t t t t s s s r r r s t r s s t r s r r t r s ss s t t t r t r rs r rt ts s t
12 ts t t rt 2 t 2 s r rt r s st t t t t r 2 s ss s r t 2 r r s r r r ts t s r s t t t r s t s O s 2s r s r r s r r rs t 1 s t t t r rr P 3 r s s ss s s r s t t r s P t s s t t rs t2 t t t r t r t r ts s rt r t st t 2 rs
13 P rt t t r2 s s s t s t s t r r t r P t2 s 2 rt t r 3 s t r r r rt r t s s ss t t t r2 r r r q r t 1t s p s t t p > 2 r t E/E 0 r q r t 1t s p s t d := [E 0 : Q p ] t d = ef r e t s t r t 1 f t rt r t t s t E/E 0 2 σ t r s t rs 2 O E0 O E t s r t E (V,, ) s E t r s t t r t r t t r t Q p r r, : V V Q p s t t a, =,a σ r a E s r s s r t E s (V,, ) (V,, ) s E r s tr2 V = V t 2 U(V) t r t r s s (V,, ) r r2 n t r 1 st t s r s ss s s r t E s (V,, ) s n s 2 t t V s t r 1 sts s O E tt V t r s V s st s s t t s r s ss s t t t (V,, ) s r s 2 t 1 [M : M] s r s r r2 Z p tt M V t r2 s r t E s s t t t t V 1 V 2 r s r t E s t t s s t s r s : Hom E (V 1,V 2 ) = Hom E (V 2,V 1 ) f f : V 2 = V 2 f V 1 = V 1 r t t t s V 1 = V 1 V 2 = V 2 r 2 t s r t r s r r t O E s t q s s 2 s s Qp t s t t 1 r 1t s Q p t 2 E u E t 1 s s r r Q p Ψ := Hom Qp (E u, Q p ) s s t Ψ = Ψ 0 Ψ 1 s t t σ(ψ 0 ) = Ψ 1 1 t ψ 0 Ψ 0 2 Ĕ := E E u,ψ 0 Qp s t t 1 r 1t s E t t r t rs Q p r s Ĕ 2 Z p r s OĔ t F t r r s t x F x t t r s Q p
14 r s t r t t O E Zp Zp = ψ ΨOĔ s t t t r s 1 F s s ts s 2 tr s t t 1 s t t t S s r Spf Z p s rs r r t O E Z p r S s tr (X, ι, λ) r X/S s s rs r p s r t t r t t ι : O E End(X) r r 3 t λ : X X s t t λ 1 ι(a )λ = ι(a σ ). s r s r s q s s 2 t r t O E Z p s (X,ι,λ) (X,ι,λ ) s O E r s r s r s q s s 2 µ : X X t r 2 p s r s s t t µ λ = λ s 2 t t t r t O E Z p (X,ι,λ) s r n t t X s p s r s 2nd s s dimx = nd t t r2 r t O E Z p s r s S s t t s t t (X 1,ι 1,λ 1 ) (X 2,ι 2,λ 2 ) r t s s t t s s t s r s : Hom OE (X 1,X 2 ) = Hom OE (X 2,X 1 ) f f := λ 1 1 f λ 2. 2 é t r2 t t r2 r t O E Z p s t q s s 2 r Spec F s q t t t t r2 s r t E s r2st s s t t s rs r s r t E s r2st s t (N,,, F, ι) r N s t Q p t r s, : N N Q p s t r t r t r F : N N s F r s r s t s s 1/2 s t t F,F = p F, ι : E End(N,F) s t E s t t a, =,a σ r a E Pr s t r s q t r s {s r t E s (V,, )} = {s r t E s r2st s (N,,, F, ι)}. t t s t t t t t s t s s rt r r r n t r r r s 2 t r t O E Z p s r F t q s s 2 t s r t E s r2st s r s t rr s s t r s s r t E r t q t r s Pr s r t E (V,, ) s r t E s r2st s s rst 1t s rs r Q p t Q p N := V Qp Qp. t t t t s r t E s r2st s s st s t s s r t E s
15 1t t r, t Q p r 2 t N t t t N s r E Q p r r t N = ψ ΨN ψ. F r r t r α := id V F N s s t s s t t α(n ψ ) = NF ψ rt r r t r s t s s, Nψ N ψ 0 ψ σψ. s rs r r s F = F ψ N { pα ψ ψ Ψ 0 [F ψ : N ψ NF ψ] := α ψ ψ Ψ 1. r α ψ : N ψ NF ψ s t ψ t α t s s t t (N,F) s s rs r s F 2f = p f V rt r t r 1 sts Z p tt M N s t t F 2f M = p f M rt r r t r s 2 r, s r 3 t (N, F) s t s t r (x,y) N ψ N σψ t t Fx,Fy = p αx,αy = p F ( x,y ). r t rst q t2 s t t r s 2 t {ψ,σψ} s Ψ 0 2 N t t E t t rst t r N = V Q p s t s t t, t s t F t s t rs str t s r t E s r2st (N,,, F, ι) t F r r t r α = α ψ s { p 1 F ψ ψ Ψ 0 [α ψ : N ψ NF ψ] := F ψ ψ Ψ 1. V := N α=1 r str t t r, t V t t t α s s s 0 s N s s rs r rt r r α,α = p 1 F,F = F,. V t r, t s s t F r ts Q p r t Q p 2 t E t t s t α t s E ts V s s s t t (V,, ) s s r t E s t t V Q p = N t s r t t t r str t s r t r t t t t t s rt s s t r,s Z 0 s t n := r +s
16 t r a E t 2 s P (0,1) (a;t) := ψ(charpol E/E u(a;t)) E u [t]. ψ Ψ 1 P (1,0) (a;t) := P (0,1) (a;t)(t a)(t a σ ) 1 P (r,s) (a;t) := P (1,0) (a;t) r P (0,1) (a;t) s E[t]. E[t]. X s r t O E Z p r Spf Z p s S t ts r s Ψ r Lie(X) = ψ ΨLie ψ (X). r Lie ψ (X) s t r t s O E u ts t ψ : O E u Z p t t 2 t OĔ = O E OE u,ψ 0 Zp. s r 2 SpfOĔ s s O E s t rst s Z p s t s r t t t S s r SpfOĔ r t O E Z p r n r S s s t r (r,s) t t t s charpol(ι(a) Lie(X);t) = P (r,s) (a;t) a O E. (ι(a) a)) Lieψ0 (X)= 0 a O E. r P (r,s) (a;t) s t O S [t] t str t r r s t s t t O E ts Lie ψ0 (X) t str t r r s r t s E 0 = Q p r t s t r r s t t r r r 2 t s r 1t s E/Q p t t s t t 2 s t s t t s t 2 r a O E u q t 2 r 2 t r t r s t s s q t r s s 0 ψ Ψ 0 \{ψ 0 } r ψ = ψ 0 rk OS Lie ψ (X) = ne ψ Ψ 1 \{σψ 0 } ne r ψ = σψ 0. 2 s P (0,n) (a;t) ts E u Q p t s s t r (0,n) t r t r s s r Z p t t s s r t q s s 2 ss r t O E Z p r F rr s t s r t E (V,, ) r n r 1 sts r r t O E Z p (X,ι,λ) s t r (r,s) t s ss 2 t r t2 V s t t r t2 r r r t r t s t t t r t r α r q t
17 t V s r t E t N := V Qp Qp t s rs r s r2st t r s t { s OE tt s Λ V } { } s O E st é tt s =. M N s t r (0,n) s t s 2 Λ Λ Zp Zp M M α=id Pr s s ss t 2 tr t t t Λ s t rr t s t r 2 t F s t t t M s st r α s t s s t r (0,n) Pr rst r t 1 st r t O E Z p s r s t r s t s t s r t s s s t r (0,1) (1,0) r t r ts t s tt t r s s s t r (0,1) s t r 2 s r t t t s (1,0) t (V,, ) 2 s r t E r 1 t (N,F,ι,, ) t ss t s r2st 1 r 3 r π E E O E tt Λ V s t t π E Λ = Λ t M := Λ Z p t ss t O E st Z tt t s s s M = ψ ΨM ψ. M := ψ Ψ M ψ s M ψ := { M ψ ψ { F ψ 0, F2 ψ 0,..., Ff ψ 0 } π 1 E M ψ t r s. s tt s st r O E st r F st r pf 1 rt r r t s s s t r (1, 0) s s s t r 1 st t (X,ι,λ)/F s t r (r,s) t N = ψ Ψ N ψ t s r2st X t t r t t t r t r, 2 λ r 2 OĔ tt L ψ0 N ψ0 t 2 L ψ 0 N σψ0 ts t r s t t t r, t X rr s t t OĔ tt M N t s s t s M ψ 0 = M σψ0 s t r t r M s t t [α f M ψ0 : M ψ 0 ] = r. s r r2 OĔ tt L ψ0 N ψ0 [α f L ψ0 : L ψ 0 ] r 2 2 Pr s t t r r r s 2 t q s s 2 ss s r r t O E Z p s r F rt r r r t O E Z p s X X r F s t r s (r,s) (r,s ) r s t 2 r q s s s 2 r r 2 2 r V t s r t2 r 2 s t r (r,s) 1 r t O E Z p X E0/Q p,(r,s) r F t t s t r t t 1 2 tr (X,ι,λ) q s s s t r t OE Z p s t r (r, s)
18 t r s t r (r, s) s r t s t t r N E0/Q p,(r,s) s s r SpfOĔ t ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s r t O E Z p s t r (r,s) r S r ρ : X S S X E0/Q p,(r,s) F S s q s s 2 r t O E Z p s r S t s t s r S = S Spf OĔ SpecF q s s 2 ρ s r X E0/Q p,(r,s) s t r t t r N E0/Q p,(r,s) s r r s t 2 r s s 2 r 2 t t2 r SpfOĔ Pr s s r Pr s t r s N E0/Q p,(r,s) s r 2 s t r SpfOĔ r t s rs r s t s r t r t ss r r t X N E0/Q p,(r,s)(s) t 2 D X ts r t r2st t r2st s t S S S s t t D X (S ) s 2 r O S r 2nd ts tr t D X (S ) := D X (S ) OE Zp O S O S. Pr s t t X/S p s r t t r t t 2 O E t 1 r r s ét r E/Q p r t s S S D X (S ) s 2 r r O E Zp O S r r2 r 2 t S S t O S D X (S ) s 2 r r n r O S Pr r ss D X (S ) s r t r s r s t r t t tr ts S s r é t r2 Pr Pr s t s r t tr t F D X (S) t X N E0/Q p,(r,s)(s) s r O E O S s s t r r s t s F = F ψ D X (S) = D X (S) ψ r t s t r t t s t t D X (S) ψ0 /F ψ0 s r t r r r O S F σψ0 D X (S) σψ0 q s Fψ 0 F ψ = D X (S) ψ ψ Ψ 0 \{ψ 0 } F ψ = 0 ψ Ψ 1 \{σψ 0 }. rt r r O E ts t q t t Lie ψ0 (X) = D X (S) ψ0 /F ψ0 t str t r r s O E OĔ O S t r r s Lie ψ0 (X) s q t t D X (S) s r t S S t t tr t F t F D X (S ) s t t F s O E st s tr s t t O E ts F ψ 0 t r 2 s q t t t t q t t D X (S) Lie ψ0 (X) s r t r s r 2 s t r t s rs
19 t r t t K/Q p t 1t s t r t rs O K r 2 t t r 3 t t s t r s s t r p s r s t str t r O K s r r t t 1 r t t str t r O K s t r r 3 t s t t t r2 t r s 2s r t t s s t 1 r 3 r π K O K r 3 t s str t r O K s r t t r s t t t s r 3 r s r 2 t r s s r t O K (X,ι) 2s t r t t r s r t s t t r2 s s t Q p K E 0 t 1t s s t E/E 0 r q r t 1 t s t s t σ t E u 0 E u t t 1 s s r r r K s s K t s t t 1 r 1t s K s s t s t t σ(ψ 0 ) = Ψ 1 Ψ := Hom K (E u, K) = Ψ 0 Ψ 1 t t S s r SpfO K s rs r r t O E O K r S s tr (X,ι,λ) r X/S s s rs r str t O K t t r t t ι : O E End(X) r r 3 t λ : X X s t t λ 1 ι(a )λ = ι(a σ ). s r s r s q s s 2 t r t O E O K s (X,ι,λ) (X,ι,λ ) s O E r s r s r s q s s 2 µ : X X t r 2 str t O K s s t t µ λ = λ s 2 t t t r t O E O K (X,ι,λ) s r n t t X s str t O K s 2n[E 0 : K] s s dimx = n[e 0 : K] r SpfOĔ s S t t s t r r t O E O K r S s t 2 s t t t s p s r s t r s q r t (X E0/K,(r,s),ι,λ)/F s t r (r,s) t q s s 2 t t N E0/K,(r,s) t t t r t t r2 s s r SpfOĔ t ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ)/S s r t O E O K s t r (r,s) r ρ s O E r q s s 2 t t r s r s t r 3 t ρ : X S S X E0/K,(r,s) F S t s r t t N E0/K,(r,s) s r r s t 2 r s 2 r 2 t t2 r SpfOĔ s s t t s s X s str t OK r q t 1/2 r r s t t2 r s t s s 2 r 3 r p s r s t OK s 2 t t t t t t O K t ts r t r t t t t t t t t s str t r s t s t s r
20 r s N E0/K,(r,s) s r 2 s t r t s rs r SpfOĔ Pr r s t ss s r t t s r ts s t s p s r s s Pr s t t t rt t s s s t t K = E 0 s 2 t t t t N E0,(r,s) := N E0/E 0,(r,s) s 2 s 2 r t O E st r t O E Z p t t t N E0,(r,s) s r s 2 t r r r t t r t s tt str t O E0 s t rs t r t t r t t t t r s t t r r r t (V,, ) s r t E s t t K t r t Q p K E 0 s r t r ϑ K t rs r t K/Q p r 1 sts q r t K r t r t r, K : V V K s t t tr K/Qp (ϑ K, K ) =, rt r r t s r s E r t t s s t t a, K =,a σ K, a E. r s E r s tr s,, K r t t s t t t tt Λ V s s t r s t t t t r, K 2 t s s r t r r, r 2 s t r t K 1 r 3 r π K O K r r t t t r 3 t s str t r O K s s r N := (V,, K ) K K t r 3 K s r2st s t r Pr s t rr s q s s 2 ss r t O E O K s r F t s s t r (r,s) 2 r V t s r t2 s r s t s p s r s s Pr s t r V t s r t2 t V s r s t 2 r ts {X E0/K,(r,s)} Qp K E 0 t t 2 q s s s t t r2 r U(V) r r s t t s s t s t t t rr s s s r s r r t (V,, ) s r t E t r t s r t2 s V r 2 t r t Q p K E 0 t r s U(V) q r t s r s c : N E0/K,(r,s) = N E0,(r,s). rt r t r s N E0/K,(r,s) s t t t s t Ψ = Ψ 0 Ψ 1 r r s t q t r s s r t t r2 /SpfOĔ 2 t r s s r SpfOĔ t t r t t r s t 2
21 t t 2 O E O K r t st r t O E O K s (X,ι,λ) t t s t r r /SpfOĔ 2 t t t t 2 r t r s t 2 t r t O E O K s s t r (r,s) r s t rs r,s Z 0 r s s t s t r2 r t O E r r s s p s r s r t t t r t O E r r t st r t O E s r r s s r s st s /SpfOĔ C : O E O K r = O E r t t s t s s t r rt s t s q r t r t s t t t s s ts s t r (r,s) t ts s t r (r,s) s s t s t t t r t s t t r s r s Pr s t s r t r t Q p K E 0 t E u 0 E 0 t 1 s s r r K t r s s r s st s C : O E O K r = O E O E u 0 r t t s q r t r t s t t s s s ts s t r (r,s) t ts s t r (r, s) Pr str t t t r C ts q s rs t S = SpecR s r SpfOĔ t (X,ι,λ) r t O E O K s t r (r,s) r R s t t t r t t (P,Q,F, F) t O K s 2 (X,ι,λ) t 2, : P P W OK (R) t t r t r 2 t r 3 t λ t t Ψ = Hom K (E u, K) t t t t r 1 sts t r r s O E u W OK (R) O K r s t t ts t r s O E u R s s r s s r s P = ψ Ψ P ψ, Q = ψ ΨQ ψ with Q ψ = Q P ψ. r ψ / {ψ 0,σψ 0 } t r s r s r s { F ψ ψ Ψ 0 \{ψ 0 } [F ψ : P ψ PF ψ] := F ψ ψ Ψ 1 \{σψ 0 }. r s t t (X,ι,λ) s s t r s Q ψ = P ψ r ψ Ψ 0 \{ψ 0 } s t P := P ψ0 P σψ0 t s Q := Q ψ0 Q σψ0 t Ff r r t rs F, F P Q s F := F f 1 F, F := F f 1 F.
22 P := (P,Q,F, F ) s f O K s 2 t s s s r r s O E t W OK (R) t r t r, :=, P P t t t f O K s 2s r t s s s r t O E u 0 r A OE u 0 /O K (R) := (W OK (R),I OK (R), Ff, Ff 1 V 1 ). r s t r, t s s A OE u 0 /O K (R) t s s t t F, F = Ff 1 V 1, s t 2 r t t t s F, F = F,F = F, r t r, P t r r s t r s r r 3 t t f O K s 2 P s Pr s t s 1 t 1 s t t r str t r s r s A OE u 0 /O K (R) (W OE u 0 (R),I OE u 0 (R), F, V 1 ) s r 2 r 3 str t r O E u 0 C(X) t t r t t O E t s s s t r (r,s) t O E O E u 0 r (S) str t q s rs C t P := (P,Q,F, F ) t f O K s 2 ss t t r t O E O E u 0 (X,ι,λ) r S 2 t r t2 t s t O E t t r r 3 t str t t ss t r t O E O K 2 s t 2 rs t str t r t r Pr s t t t t t O E t s r P = P 0 P 1 Q = Q 0 Q 1 s t r i = 1,...,f 1 P ψ0 := P 0 P σψ0 := P 1, Q ψ0 := Q 0 Q σψ0 := Q 1. P F i+1 ψ 0 := P (F) F i ψ 0, P F i+1 σψ 0 := P (F) F i σψ 0. s t r t r s s t s t r ψ / {ψ 0,σψ 0 } { P ψ ψ Ψ 0 \{ψ 0 } Q ψ = I OK (R)P ψ ψ Ψ 1 \{σψ 0 }. s 2 str t r s 2 r s t t (P = L T,φ) r s t P r s t (P = L T,Φ) s L = L ψ0 L σψ0 P ψ, t F r r t r T = T ψ0 T σψ0 1 Φ = 1 1 ψ Ψ 0\{ψ 0} ψ Ψ 1\{σψ 0} φ F P ψ
23 t r s t t t s t P = (P ψ0 P σψ0 ) (P ψ0 P σψ0 ) (F)... (P ψ0 P σψ0 ) (Ff 1) s r 2 s f O K s 2 P := (P,Q,F, F) q t O E t t rr t s t r str t t r 3 t s O K s 2 P t t r t r, ψ0 : P ψ0 P σψ0 W OK (R). r s t st 2 t 1t t s r t r, P s t t t r t s r 3 t r s t s t s 1 t s r t r t s PF ψ 0 PF σψ 0 l+t L ψ0 T ψ0 l +t L σψ0 T σψ0 t t s t Φ(l+t),Φ(l +t ) := F(l)+F(t), F(l )+F(t ) = V 1 l,l ψ0 + F l,t ψ0 + F t,l ψ0 +π F t,t ψ0. Φ s r s r s r s t s s 1t s q 2 t PF ψ 0 PF σψ 0 2 t s r s t, P F i+1 ψ 0 P F i+1 σψ 0 r i = 1,...,f 2 t t t t t s r t r s t t t s s t, PF i+1 ψ0 P F i+1 σψ0 =, (F) P F i ψ0 P F i σψ0. t t t r r t t t t s s r r 3 t P s s t r r t t t t s t ss t R t r 2 t s ss t t r s t t t t 2 r s Pr s t t Q p K E 0 t r t s t t E 0 /K s t t 2 r r s s r s st s r /SpfOĔ C : O E O K r = O E r t t s q r t r t s t t t t s s ts s t r (r, s) t ts s t r (r, s) r s sts t r st s rst str t t t r C Pr r t t C s q r OĔ s s r t r st p 2 r t t C t s t r t t r s X C(X) t r t t r str t t t r s s t s 2 t st t t rst st str t t t r C t S = SpecR s r SpfOĔ r t str t C s t t r rt s t O K s 2 r t O E O K (X,ι,λ) s t r (r,s) r S s t t t r t r t t s t 2 Ψ t {0,1} s t t ψ 0 rr s s t 0 t P := (P,Q,F, F) t O K s 2 X t ι O E X s t O E t s 2 s s P Q t O E W OK (R) s t F F r O E r t t r rt s r s P = P 0 P 1 Q = Q 0 Q 1 s t t t F F r s r 1
24 s t r t s t t P 0 /Q 0 s r t r r r R t t P 1 /Q 1 s r t r ne r r R rt r r O E ts P 0 /Q 0 t str t r r s t r r s J OE0 (R)P 0 Q 0. t t 2 Pr t P s r t r 2n r O E0 OK W OK (R) r 3 t s r t t r t r, : P P W OK (R) s t s s a, =,a σ r a O E rt r P 0 P 1 r 1 s tr s s s P r t t t2 2, rt r r Q,Q I OK (R) t r s t s s F, F = V 1, t r r s t r t s s t tt O K r r t W OK (R) = (W OK (R),I OK (R),R, F, V 1 ). str t C(X) t (X,ι,λ)/S P s s t r t st str t r 3 P = (P,Q,F, F ) r t r L OE0 /O K (R) t t r t O E t s t s t P := P t ts O E t t ϑ K r t r t rs r t E 0 /K s r t W OK (R) r 1t s t tr tr : O E0 OK W OK (R) W OK (R) a w tr E0/K(ϑ K a)w., s O E0 q r t t r s q t t s r t r t O E0 W OK (R) r t r t r (, ) : P P O E0 W OK (R) s t t, = tr (, ). P s r s t Q 0 := Q 0 r (, ) t t 2 s t s s (a, ) = (,a σ ) Q 0 s t t 2 s tr Q 1 := {p 1 P 1 (p 1,Q 0 ) J OE0 (R)}. t t t (, ) s r t r (P/J OE0 (R)P) (P/J OE0 (R)P) R 2 s Q 1 s t rs (Q 0 /J OE0 (R)P 0 ) r t r t P 1 P 1 /J OE0 (R)P 1 rt r t s s t t P 1 /Q 1 s r t R r s = n r t θ O E0 OK W OK (O E0 ) t s r s t r t θq 1 Q 1. Pr 2 t Q 1 = {p 1 P 1 p 1,Q 0 I OK (R)}. q 1 Q 1 t r 2 t t θq 1,Q 0 = tr((θq 1,Q 0 )) = tr(θ(q 1,Q 0 )) I OK (R).
25 r t s q t2 s t t (, ) s O E0 W OK (R) r t s t s tr(θj OE0 (R)) I OK (R) s r t t t t θj OE0 (R) I OK (R). rt r F 1 : Q 1 P 0 s F 1(q 1 ) := F 1 (θq 1 ). F 1 s r s r r s t s ts S t L OE0 /O K,κ(R) t t O E0 r r 1 t s L OE0 /O K,κ(R) = (O E0 OK W OK (R),J OE0 (R),R,σ, σ) r σ(ξ) = V 1 (θξ). t κ O E0 OK W OK (R) s t t σ(π E 1 1 [π E ]) r π E O E0 s r 1 r 3 r t r s F : P P t r t r t F (x) = κ 1 F ((π E 1 1 [π E ])x). r r 2 t t t s s t str t r L OE0 /O K,κ(R) P = (P,Q,F, F ) r (, ) s r r 3 t t L OE0 /O K,κ(R) P Pr 2 t Q t r s t s s (Q,Q ) J OE0 (R) q 0 Q 0,q 1 Q 1 t t ( F q 0, F q 1 ) = ( Fq 0, F(θq 1 )) = V 1 (q 0,θq 1 ) = V 1 (θ(q 0,q 1 )) = σ(q 0,q 1 ). r 2 r r t s q t2 s s t s r t r, st q t2 s t O E0 r t2 t r (, ) 2 Pr s t t r s str t r s O E0 r s L OE0 /O K,κ(R) L OE0 /O E0,κ(R). s t s r s s s rs r str t O E0 t O E t r r 3 t t s t O E0 r L OE0 /O E0,κ(R) t t2 W OE0 (R) s κ/u s r s t t tt O E0 r L OE0 /O E0,κ(R) W OE0 (R) r u s t t u = V 1 π E (π E [π E ]) r 1 sts t ε W OE0 (OĔ) s t t σ(ε)ε 1 = κ/u.
26 2 t t t ss t r 2 r 3 O E0 s 2 P = (P,Q,F, F ) t O E t rr s str t r O E0 s t t r t O E C(X) t t str t t s s t t C s t r 2 t t t s t t s st C s q r r s s r t r st p str t q s rs t R r SpfOĔ s t P = (P,Q,F, F ) t L OE0 /O K,κ(R) r q t O E t ι r r 3 t λ ss t t r t O E r R ss t t P s s t r (r,s) r κ s t t V 1 (θ(π E 1 1 [π E ])) r t r s r r O E t s r s P = P 0 P 1 Q = Q 0 Q 1 s t P := P t t r t ts O E t r 3 t λ s r t r (, ) : P 0 P 1 O E0 OK W OK (R) s t t s t Q 0 := Q 0 Q 1 = {p 1 P 1 (p 1,Q 0) J OE0 (R)}. Q 1 := {p 1 P 1 (p 1,Q 0 ) O E0 OK I OK (R)}. Q 1 = θq 1 +I OK (R)P 1 r t s r s 2 t t t Q 1 θq 1 I OK (R)P 1 t s t 2 P 0 Q 0 t t q t ts t r s s 2 I OK (R)P t r (, ) s r t r P 0 P 1 O E0 OK R = O E0 /π k OK /π k R. r s t t π K = 0 R π E P 0 Q 0 P 0 π E P 1 Q 1 P 1. 2 t Q 1 s t rt t Q 0 rt r t s r t r r r R 2 r t s P 1 t θ t θ O E0 OK O K /π K = OE0 /π K θ 0 π E θ = 0 t t 2 θ s s r s O E0 /π E R = (π e 1 E )/π K R. s θq 1 s s r r r R 2 r t s P 1 s r t r t θq 1 Q 1 R s r W OK (R) s π K t rs r s t r 1 sts s R i I k i t r t r t s σ(θ) s t 3 r s r O E0 W OK (R). t s r t t t F Q1 s s 2 σ(θ) s σ r r s F : Q 0 Q 1 P 0 P 1 s F = F Q0 σ(θ) 1 F Q1. t t t r r t t t (P,Q,F, F) s O K s 2 t O E t s t r (r,s) t t, := tr (, ) s r r 3 t t t t O E t s s s t str t t q s rs
27 r st t 2 t r t t r s X C(X) t X r t O E O K r S t 2 D r s 2 D t O K r2st X r s t O E0 r2st C(X) t t r2 O K t s S r s t t r2 O E0 t s S t t t t r2st s r r 2 t O E t t t t t t t D(S) = P/I OK (R)P D (S) = P /I OE0 (R)P rt r r t tr t F D(S) s 2 Q/I OK (R)P t 2 D t tr t s t r2st D D( S) := D( S) OE0 OK O S O S, r 2 O K t S S t J t r t r t O E0 OK O S O S t r r s s JD(S) F D(S) D(S) = D(S)/JD(S) t tr t F/JD(S) D(S) t tr t D(S) t S S sq r 3 r t r s O E r t t t tr t D t r2st X t 0 t t r2st C(X) t t S D( S) = D 0( S). s t t s t r X t s S = S t tr t s t s s r r r2 t S S sq r 3 r t t X r t O E O K r S t r s t r t t r t s X t S r t s C(X) t S rt r r Y s t r O E O K r S X, Ỹ r r t t t s t S t O E r r s f : X Y ts t X Ỹ 2 C(f) ts t C( X) C(Ỹ) Pr s r r S = S 2 t (P,Q,F, F) t O K s 2 X t (P,Q,F, F ) t O E0 s 2 C(X) 2 str t D(S) = (P 0 /J OE0 (R)P 0 ) = (P 0/J OE0 (R)P 0) = P 0 /I OE0 (R)P 0 = D 0(S). s Q 0 P 0 s t rs t tr t (Q 0 +J OE0 (R)P 0 )/I OK (R)P 0 P 0 /I OK (R)P 0 t tr t s t s s r r tr sq r 3 r t S S r s s 2 S r X t r t O E O K X s t r (r,s) S C( X) s r t C(X) s D( S) D ( S) t t r t s 2s X C( X) t r ts 2 r r2 s t t r t ss r t t r2 2 s 1 t r Pr s t r t s X r s C(X) r t t t s t tr t D(S) r s t tr t D 0(S) s r r s t s r r s s Pr t R t r t n := ker(r (R/p) red ) R s n 2 t 2 r r2 t t s ss q t ts R/n i+1 R/n i t t t ss t s r t t2 2 t ss C R ts s s s t r t r s t r
28 Pr r 1 q s s 2 r ts α : C(X E0/K,(r,s)) = X E0,(r,s). t r t 2 s C(X E0/K,(r,s)) s t r t t t N E0,(r,s) t r t C t s s r s c : N E0/K,(r,s) N E0,(r,s) s s s r s 2 r rt r r c s q r t t r s t t t s r s C : U(X E0/K,(r,s)) U(C(X E0/K,(r,s))) g αgα 1. 2 s t r2 s s t Q p K E 0 t 1t s s t E/E 0 r q r t 1 t s s r 3 rs π K O K π E O E0 r r t s s r 3 t s str t O K s r s str t O E0 s tx E0/K,(r,s) rf t r t r N E0/K,(r,s) t tend 0 E(X E0/K,(r,s)) = M n (E) s s r t tr 1 r r E s Pr s t t r q s r s x End 0 E(X E0/K,(r,s)) t 2 Z(x) N E0/K,(r,s) t s r s s ts (X,ρ) s t t t q s r s ρ 1 xρ s t r s s Pr s t r s r R End 0 E(X E0/K,(r,s)) t 2 Z(R) N E0/K,(1,n 1) t s r s s ts (X,ρ) s t t ρ 1 Rρ End(X) t r r s Z(R) = Z(x). x R r t t t Z(x) = Z(x ) r t s t s t t s t s Z(x) 2 s t O E r O E [x] s 2 x rt r t r r q t s Z(x) = Z(O E [x,x ]) Z(R) = Z(O E [R,R ]). s 2 t t s r s s s t Y E0/K,(0,1) r t O E O K r F s t r (0,1) t s q t s r s t Y E0/K,(0,1) r t t t SpfOĔ r t s q t s r s r t Pr s t s Y E0/K,(0,1) s 2 SpfOĔ s t r 2 q s r s j Hom 0 E(Y E0/K,(0,1),X E0/K,(r,s)) t 2 Z(j) N E0/K,(r,s) t s r s s rs (X,ρ) s t t t q s r s ρ 1 j : Y E0/K,(0,1) X s t r s s t é t r2
29 t 1 st s s r s s s r Pr s t s Z(j) = Z(j ) r j : X E0/K,(r,s) Y E0/K,(0,1) s t s t t j r Z(j ) t s t s (X,ρ) s t t j ρ : X Y E0/K,(r,s) s r s s Z(j) 2 s t s O E j s t r st r t 2 s Z(j) s t t s t r (1,n 1) t s s Z(j) N E0/K,(1,n 1) s s r r j 0 s s rs r rst s r 2 rt s r t C t t r r r t s s q s s 2 E r r s r t r 3 t α : C(X E0/K,(r,s)) = X E0,(r,s) s r s E r r s r t r 3 t β : C(Y E0/K,(0,1)) = Y E0,(0,1). t t s r r t str t c r t t c : Z(x) = Z(αc(x)α 1 ) c : Z(j) = Z(αc(j)β 1 ). r r str t t t s s t r (1,n 1) r r t s 2 t 1 s t 2s ss K = Q p r 3 t t str t r O K s s t t t r r 2 Z(O E ) ss t t d s n s 2 n = dn s ss t t σ s tr Q p 2 E t r r s t rt r f E 0 r Q p s t X Qp,(1,n 1) t r t r N Qp,(1,n 1) s t t 1 E End 0 Q p 2 (X Q p,(1,n 1)) s t t t s t t r s r s E r s t σ 1 sts s d n ss t t t 2 Z(O E ) N Qp,(1,n 1) t Ψ = Hom Qp (E u, Q p ) = Ψ 0 Ψ 1 t q 1t s t s t {0,1} = {0} {1} r Q p 2 t r t t t O E X Qp,(1,n 1) s r t r N E0/Q p,(1,n 1) t t t t t s t r t s t s t ψ 0 Ψ 0 t s t t ss t s 2 N ψ0 E 0/Q p,(1,n 1) r tt t E t s r s N ψ0 E 0/Q p,(1,n 1) N Q p,(1,n 1) s s rs r r t s s r s = Z(O E ). ψ 0 Ψ 0 N ψ0 E 0/Q p,(1,n 1)
30 Pr t s s t t t rr s r s t t Z(O E ) 2 t s Z(O E ) N ψ0 E 0/Q p,(1,n 1) t s S ts t S t t (X,ι,λ,ρ) Z(O E )(S) t r s s s Lie(X) = ψ ΨLie(X) ψ t s s t 1t s t r r t Z p 2 t t ψ 0 Ψ 0 t q 1 st t s Ψ 0 s t t Lie(X) ψ0 0 s s s t S O E t Lie(X) ψ0 s r s S SpfO E OE u,ψ 0 O Zp 2 = SpfO Ĕ. s 1 s 2 r str t rs s t t s s t r (1,n 1) 2 t X s S t N ψ0 E 0/Q p,(1,n 1) r t t t t s str t s t t t r t t 2 Z(R) t s s ss t t R End 0 Q p 2 (X Q p,(1,n 1)) s s t t O E R Z(R) Z(O E ) c : ψ 0 Ψ 0 Z(R) ψ0 = Z(R). r t s r r t 2 s t s s N ψ0 E 0/Q p,(1,n 1) rt r r t Z(R) ψ0 r s r s s 2 t 2 t N ψ0 E 0/Q p,(1,n 1) t N E0,(1,n 1) s r 1 r t r ϑ E t rs r t E 0 /Q p s O E0 r s r s φ : O E0 Hom Zp (O E0,Z p ), a φ(a)( ) := tr E0/Q p (ϑ E a ). t 2 r t Z p 2 (Y,ι,λ) ss t r t O E Z p (O E0 Y,ι,λ ) s s p s r O E0 Y s 2 t rr t s r str t O E = O E0 Z p 2 t ι s s 2 2 t t r O E0 t t rst t r λ s s λ (a y) := φ(a) λ(y). tj Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1)) q s r s t ss t s r Z(j) N Qp,(1,n 1) r s s r s r t O E Z p s r F r 2 r t r r t s t SpfOĔ O E0 Y Qp,(0,1) = Y E0/Q p,(0,1). O E0 Y Qp,(0,1) = Y E0/Q p,(0,1).
31 Pr t s r s t r s q O E Z p s t r (0,1) r F t st t t r s t t t t t O E0 Y Qp,(0,1) s s t r (0,1) s r t N ψ0 E 0/Q p,(1,n 1) N Q p,(1,n 1) t r r id OE0 j s t r s Z(j) N ψ0 E 0/Q p,(1,n 1) = Z(id O E0 j) Y E0/Q p,(0,1) = O E0 Y Qp,(0,1) id j X Qp,(1,n 1). Pr rs p s r r N ψ0 E 0/Q p,(1,n 1) s O E 0 t s t r t rs 2 id j : O E0 Y Qp,(0,1) X Qp,(1,n 1) ts t s s ts s t t Y Qp,(0,1) 1 id O E0 Y Qp,(0,1). r t r ét r s rst r t N E0/Q p,(0,n) r s t q r t 1t s E = E 0 E 0 s t Ĕ := Ĕ0 s t s t s s s t Ψ := Hom(E u,ĕ) = Ψ 0 Ψ 1 s t t σ(ψ 0 ) = Ψ 1 t s rs r r t O E Z p (X,ι,λ) s t r (0,n) r SpfOĔ s S s t t 2 s t t t t s t s t t t t t X s rs r s s s r str t s r r s 2 s r t O E Z p s 1 st 2 f s 1 t 2 t ts Ψ 0 t r r t rst t E E 0 0 r ss t t t s t s s t s 1 r t O E Z p (X E/E0/Q p,ι,λ) s t r (0,n) r F s s q t q s s 2 t t r N E/E0/Q p,(0,n) s s r SpfOĔ ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s s rs r r t O E Z p s t r (0,n) r ρ : X S S X E/E0/Q p,(0,n) F S s O E r q s s 2 r s r s t r 3 t s s t s t s s t t N E/E0/Q p,(0,n) s r s s ét r SpfOĔ Pr s t t E/E 0 q r t ét r t U := U(X E/E0/Q p,(0,n)) r s K t t r E r q s s s r s t r s s t r t t t r s r t r 3 t s r s s N E/E0/Q p,(0,n) = t r s U q r t s r SpfOĔ. U/K
32 Pr r U ts N E/E0/Q p,(0,n) 2 s t t r g.(x,ρ) = (X,gρ). st 3 r (X E/E0/Q p,(0,n),id) s t s r K U t U s tr s t F ts s s s r t s t q r t 1t s E = E 0 E 0 N E/E0/Q p,(0,n) s ét r SpfOĔ t r s t s t E 0 /Q p 2 t ét r s t E := E 0 Q p 2 t s t σ = σ id t E 0 := i IE 0,i ts s t t s s t E i := E 0,i Q p 2 1 E End 0 Q p 2 (X Q p,(1,n 1)) t t s q r t r σ t s t t s t s t s r2st N := N(X Qp,(1,n 1)) X Qp,(1,n 1) t E Q p t N = i IN i ts s t t E i Q p s s s t s r s r 2 t r s s rt t r s t t t s r t Q p r N t r N i s s r t E i /E 0,i s r2st s t n i := rk Ei Q p (N i ) t 1 i I s E i /E 0,i s 1t s N i s s r t E i s Pr s t t r s t r 1 sts s r s st O Ei Z p tt s t r (0,n i ) N i i q t 2 t t r t2 1 s s s t α t r t r r t V := N α=1 V s s r t E t r s s t V = i I V i s t t V i s s r t E i 1 i s r s t r 1 sts r s s t 1 st s O Ei tt V i N ts s t r s r s t t Z(O E ) N Qp,(1,n 1) t s t s t t O E t ts t r s r t 1 t Z(O E ) = Pr s t t ts O E = i I O E i 2 t (X,ι,λ) Z(O E )(S) s rt s t (X,ι,λ) = i I(X i,ι,λ) r t r (X i,ι,λ) s s rs r r t O Ei Z p s ss t t S s t t r s s t r (r i,s i ) t s s t r s t (1,n 1) rt r t r s 1 t 2 1 i 0 I t r i0 = 1 r i = 0 r i i 0 N i0 s t r s r 2
33 r ss t t t r s q 1 i 0 t 2 U Ei (N i ) t r E i r t r s s N i r s r t r 3 t r 2 U E (N) = i I U E i (N i ) t s t r E r t r s s N r s r t r 3 t r i s 1 s s O Ei st é tt M i N i s t r (0,n i ) t 2 K i U Ei (N i ) ts st 3 r t t 1 i 0 s t s t Ψ := Hom(E u i 0,Ĕi 0 ) = Ψ 0 Ψ 1 1t s t s t r Q p 2 r s t t s s2 t r t Pr s t r s U E (N) q r t s r s r s s r SpfOĔ Z(O E ) = ( N ψ0 E 0,i0 /Q p,(1,n i0 1) ) U Ei (N i )/K i. ψ 0 Ψ 0 i i 0 rs rt r r t 2 t t t N E0,i0,(1,n i0 1)
34 P rt t t t r t t t t t s t s r t q t s t t r t t t t t r t r rs t r t s r t t r s r t t r s t r s tt s r s t s r s ts t r r t t t 2 r r r s t s r s t t r t t r r r s 2t s t 2 tr s s t p > 2 r t E/E 0 r q r t 1t s p s t t r r s t rs 2 O E0 O E t q t r t2 t r s O E0 t σ r a a t t s t E t v t r 3 t E 0 t = q v( ) t ss t s t t η : E 0 {±1},a ( 1)v(a) t q r t r t r ss t t E/E 0 2 ss t r2 1 E 0 t r s W 0 s n 1 t n 2 s t W := E W 0 s r V 0 := W 0 E 0 u V := E V 0 r u s s t t r t GL(W) GL(V), g ( g 1 ), GL(W) ts 2 t End(V) t t γ End(V) s r r s s t r s t t t s t V = W Eu ts st 3 r GL(W) s tr ts r t s r s s r 2 s s t X End(V) t 2 X rs t r r s s ts X t γ End(V) s r r s s 2 {γ i u} i 0 {u γ i } i 0 r t V r s V r u : W Eu E s t r r (w,λu) λ t S(E 0 ) t s2 tr s S(E 0 ) := {γ GL(V) γγ = 1}. t s st r t t GL(W 0 ) r t s t t r t q t t r t t t [S(E 0 ) rs ] := GL(W 0 )\S(E 0 ) rs. t s 1 s O E0 tt Λ 0 W 0 s t Λ := (O E Λ 0 ) O E u r 3 t r s r GL(W 0 ) s t t t GL(Λ 0 ) s 1
35 r r r s s t γ S(E 0 ) rs r t st t f Cc (S(E 0 )) r 1 r t r s C t r t t r O γ (f,s) := f(h 1 γh)η(deth) deth s dh, GL(W 0) t s O γ (f) := O γ (f,0) r t O γ (f) := d ds O γ (f,s). s=0 s t r s r s t 2 t t t O γ (f) tr s r s t η det r t t GL(W 0 ) γ t r γ End(V) rs l(γ) := [span{γ i u} n 1 i=0 r t 1 t t O E tt s span{γ i u} Λ : Λ] Z t t tr s r t r t r s t t Λ 0 Ω : End(V) rs {±1} s t t Ω(γ) := ( 1) l(γ). t t t Ω s s η det r t t r t Ω(γ)O γ (f) s s t t q t t [S(E 0 ) rs ] s tr t t s rs t t s s r t s(e 0 ) := {y End(V) y +y = 0} t t t s t 1 S(E 0 ) r t q t t 2 t GL(W 0 ) t [s(e 0 ) rs ] := GL(W 0 )\s(e 0 ) rs. r y s(e 0 ) rs r t st t f C c (s(e 0 )) r 1 r t r s C t r t t r s O y (f,s),o y (f) O y (f) 2 t s r s s y Ω(y)O y (f) s s t t q t t [s(e 0 ) rs ] t r2 r t t t J 0 J 1 t r t r s W s t t J 0 s s t t J 1 s 2 t s t t t r 1 sts s tt r J 0 r s s tt r J 1 q t 2 ss t t η(det(j 0)) = 1 η(det(j 1)) = 1 r i = 0,1 1t t r J i t r J i V 2 s tt J i (u,u) = 1 u W t U(J i ) r s U(J i ) t ss t t r2 r s U(J i ) r s s ts End(V) r t r r s s s t t t t r U(J i ) 2 u(j i ) r U(Ji ) ts 2 t t U(J i ) u(j i ) r t q t ts [U(J i ) rs ] := U(J i)\u(j i ) rs [u(j i ) rs ] := U(J i)\u(j i ) rs. t ts γ S(E 0 ) rs g U(J i ) rs r s t t t 2 r t r GL(W) t End(V) r 2 t ts y s(e 0 ) rs x u(j i ) rs r s t t t 2 r t r GL(W)
36 t r t s t s α : [S(E 0 ) rs ] = [U(J 0 ) rs ] [U(J 1 ) rs ] α : [s(e 0 ) rs ] = [u(j 0 ) rs ] [u(j 1 ) rs ]. r 3 t r s r U(J 0) 1 s tt L (W,J 0) 1 t ts st 3 r K 0 U(J 0) r 3 t t r s r U(J 1) s t rt t r s r t st t f Cc (U(J i )) r s f Cc (u(j i )) r r s s t g U(J i ) rs r s x u(j i ) rs t r t t r ( ) O g (f ) := f (h 1 gh)dh, r s O x (f ) := f (h 1 xh)dh. U(Ji ) U(Ji ) r 1 f t s t s r t r t t t U(Ji ) g r s x s s t t q t t [U(J i ) rs ] r s [u(j i ) rs ] t t f Cc (S(E 0 )) r t s (f 0,f 1) Cc (U(J 0 )) Cc (U(J 1 )) r s t tr s rs t r r γ S(E 0 ) rs t r s q t2 { O g (f Ω(γ)O γ (f) = 0) γ t s g U(J 0 ) rs O g (f 1) γ t s g U(J 1 ) rs. r 2 t f Cc (s(e 0 )) r t s (f 0,f 1) Cc (u(j 0 )) Cc (u(j 1 )) r s t tr s rs t r r y s(e 0 ) rs t r s q t2 { O x (f Ω(y)O y (f) = 0) y t s x u(j 0 ) rs O x (f 1) y t s x u(j 1 ) rs. q t s t t t r t t t tr s r t r t 1 s O E0 tt Λ 0 W 0 r t tt Λ V S(O E0 ) := S(E 0 ) End(Λ) s(o E0 ) := s(e 0 ) End(Λ) s t K 0 U(J 0 ) t t st 3 r L O E u r L s s s tt (W,J 0) r 2 u(j 0 )(O E0 ) := u(j 0 ) End(L O E u) t r q t s t t 1 S(OE0 ) t r (1 K0,0) r tr s rs t r q t 2 r γ S(E 0 ) rs { O g (1 K0 )) γ t s g U(J 0 ) Ω(γ)O γ (1 S(OE0 )) = E0,(V,J 0 γ t s g U(J 1 ). 0),u,g r t t t t t s s t t t tt Λ 0 2 r t 2 hλ 0 h GL(W 0 ) t Ω s 2 t s ( 1) v(deth) t s O γ (1 hs(oe0 )h 1) = O h 1 γh(1 S(OE0 )) = ( 1) v(deth) O γ (1 S(OE0 )).
37 q r (E 0,(V,J 0 ),u,g) s s t t r t t t q t 2 W := u t r J 0 := J 0 W r J 1 s r tr r 2 s t s t 2 r t t r 2 t t s (JR E0,(V,J 0),u,g) s t t s E 0 str t r W 0 W r r r2 q r t r st t s t r s r 2 t s p > n r t p s r p s t 2 r r t s rt t s g U(J 1 ) t t r s 2 r r2 t r q t s t r rs t 1 s(oe0 ) t r (1 u(j0)(o E0 ),0) r tr s rs t r q t 2 r y s(e 0 ) rs { O x (1 u(j0)(o Ω(y)O y (1 s(oe0 )) = E0 )) y t s x u(j 0 ) jr E0,(V,J 0 y t s x u(j 1 ). 0),u,x s t r rs t t s s t t Λ 0 s r r 2 t q r (E 0,(V,J 0 ),u,x) s t r t q t (jr E0,(V,J 0),u,x) t t s tt r p > n t r rs s s r 2 r t t r r p r t p s t r t t r s r t q t s t 1 r ss t r s tt s r t t s r t t r2 s r t s2 tr s s s r r s t 2 Λ t J 0 tt Λ V t g U(J 0 ) rs r r s s t L = O E [g]u V t g st tt s 2 u O g (1 K0 ) = {Λ V L Λ L,gΛ = Λ,Λ = Λ}. t x u(j 0 ) rs r r s s t L = O E [x]u V t x st tt s 2 u O x (1 u(j0)(o E0 )) = {Λ V L Λ L,xΛ Λ,Λ = Λ}. Pr P rt s r s 2 rt s r t s 2 r t t t t rs t rs t n 2 t N E0,(1,n 2) t s r t t t r t X E0,(1,n 2) t Y E0 = Y E0,(0,1) t r t O E s t r (0,1) r F s q t s r s s X E0,(1,n 1) := X E0,(1,n 2) Y E0 s t r t r N E0,(1,n 1) t s Hom 0 (Y E0,X E0,(1,n 2)) t r t E t r s t r h 2 h(x,y)id YE0 = λ 1 Y E0 x λ XE0,(1,n 2) y,
38 s t s r t r s 2 1 s tr2 (Hom 0 (Y E0,X E0,(1,n 2)),h) = (W,J 1). 1t t s t s tr2 Hom 0 (Y E0,X E0,(1,n 1)) = Hom 0 (Y E0,X E0,(1,n 2)) E id YE0 = W Eu = V 2 s 0 id YE0 t u t s s r s End 0 (X E0,(1,n 1)) ts V s t t End 0 (X E0,(1,n 1)) = End(V) t t s q r t r t s t t t t t t t J 1 t r t r t s t s X E0,(1,n 1) = X E0,(1,n 2) Y E0 V = W Eu r s t r t r s s r t rs t r s r t t r s s End 0 (X E0,(1,n 2)) Hom(Y E0,X E0,(1,n 2)) t End(W),Hom(Eu,W) t t t s t t t s r s s 2 t s r s t s t t r2 r U(J1) r s U(J 1 ) t t r q s s s X E0,(1,n 2) r s X E0,(1,n 1) r t t t t r s s t 2 Pr s t t r s q r t Y E0 t r t O E Y E0 t SpfOĔ Y E0 r2 SpfOĔ s 2 s s s s rs δ : N E0,(1,n 2) N E0,(1,n 1), X X Y E0 s q r t t r s t t t s U(J 1) U(J 1 ) r t r s t t s s 2 s t t r g.(x,ρ) := (X,gρ). t s s r t r δ : N E0,(1,n 2) N E0,(1,n 2) Spf OĔ N E0,(1,n 1). 2 s t t t ts s 2 t t t t s r s r r s n 1 t t r t s r r s 2(n 1) s 2 s r g U(J 1 ) t 2 ts tr s t r g g := (1,g) ss t t E 0 = Q p r r r s s g U(J 1 ) rs t s t t rs t g s r t s r SpfOĔ t t E 0 = Q p t g U(J 1 ) r r s s Int(g) := χ(o L O g ). s r s t 2 t r s r r t t U(J 1 ) rs g Int(g) s s t t q t t [U(J 1 ) rs ]
39 r s 1 t t r s s E 0 t st t s t t s r t2 t t t t s r s s p r 3 t t r t st t t t r s ts rt s t t r 3 t t r s t r t r r s s E 0 r s s rr t t Int(g) r r r s t t rs t g s 0 s t t r s q t2 Int(g) = len OĔO g, t s Pr s t r r t s t t rs t g s t t r t t r r t t δ(n E0,(1,n 2)) N E0,(1,n 1) t t t s r Z(u) r t t s r t g t t t t r s Z(u) Z(g) r Z(g) s t s r r s s t Int(g) s t s E 0 Q p t st r rt g t q s r s x End 0 E(X E0,(1,n 1)) s rt t r s t t t q s r s u Hom 0 (Y E0,X E0,(1,n 1)) t t rs t Z(x) Z(u) s rt s r rt x Int(x) := len OĔO Z(x) Z(u). r r s r t r t r t r 3 t t rt ts U(J 1 ) rs t s s ss t s r t Z(x) Z(u) t s r s Z(u) = δ(n E0,(1,n 2)) x s t r t x = ( ) x v w d End 0 E (X E0,(1,n 2) Y E0 ), Z(x) Z(u) = { d / O E Z(x ) Z(v) Z(w ) t r s r w : Y E0 X E0,(1,n 2) s t s t t w s t r x u(j 1 ) End 0 E(X (1,n 1) ) t x s t r ( ) x = x j j d t x u(j1) d = d t s s { x d / O E = Z(x ) Z(j) t r s t r s q t s t s 1 r ss t r t t r t O γ (1 S(OE0 )) t t r2 s 2 tr st t r t t t t r 2 1 r ss s t r t O γ (1 S(OE0 )) t t r2 s r γ t s t g U(J 1 ) rs t t t r s γ t r t t r O γ (1 S(OE0 )) s s t s O γ (1 S(OE0 )) s η det r t
40 t r r t t t r rs t γ S(E 0 ) rs r r s s t t t t s t g U(J 1 ) ss t t t r E 0 = Q p r t t g s rt t r s q t2 Ω(γ) O γ (1 S(OE0 )) = Int(g)log(q). AFL E0,(V,J 1),u,g r t r rs t r str t t rt ts s t t rs t r t 2 t s s s t t r r t t t r rs r 2 y s(e 0 ) rs t rt t x u(j 1 ) t r s q t2 Ω(y) O y (1 s(oe0 )) = Int(x)log(q). afl E0,(V,J 1),u,x r st s t s t q t s t s r t t s t t t s s t t s tt Λ 0 s t s t t s E 0 str t r W 0 W r t r r s t q r (E 0,(V,J 1 ),u,g) r s (E 0,(V,J 1 ),u,x) s t r t t t t2 (AFL E0,V,u,g) r s (afl E0,V,u,x) st s r t t r t r rs t r r t 2 t r s t Pr s t ss t t q n + 2 t r rt ts g U(J 1 ) rs s q t t t t r r t r rt x u(j 1 ) rs t r s r r n 3 t t t n 3 t 2 r r s s t g U(J 1 ) rs s rt r 1 sts s t s t t s t t r s Pr s t r s s t r 2 n t r r str t t s g r 2 rt rst t t t t s s s g s s rt t t r r r s ts r r t t rs t s r t s dim g 1 tr t t r t s s r t r s s t q t s rs s r s2st t r r t r t t r r t r r t t rt rt t t r t rs s tr r t t r r q r t 1t s E/E 0 r 2 t r n 3 r t t 2 t r r s s t 2 2 t y s(e 0 ) rs t x u(j 1 ) t r ( ) x =. x j j d d s s t r r t tr2 t tr 1 y d / O E t t s s2 t s t t t s s afl E0,V,u,x s st d O E t r y 2 y d id V x 2 x d id V t t t r s afl E0,V,u,x rt r r y d id V s s(e 0 ) rs t s x d id V u(j 1 ) rs t s s r x s (AFlE0,V,u,x) t t (AFL E0,V,u,g) rs 2 rt r t s t s s
41 t {( s(e 0 ) 0 := {( u(j) 0 := ) y w v d x j j d t t r t s t } s(e 0 ) d = 0 } ) u(j) d = 0 [s(e 0 ) 0 rs] = [u(j 0 ) 0 rs] [u(j 1 ) 0 rs] t s t s r t r r t t r x u(j 1 ) 0. 2t s t t s s t r t 1 r ss t r t t r s O γ (1 K ) O γ (1 K ) t r s tt s r t s r s ts r t r r t r t t r s r rs t γ S(E 0 ) rs t t t g U(J 0 ) rs U(J 1 ) rs r s r V t t r t r J {J 0,J 1 } t r 2 g t t V = W Eu t (u,u) = 1 t t t u,gu,...,g n 1 u s s s V s g s r r s s σ r t τ : V V 2 τ(g i u) = g i u r i = 0,...,n 1 r t τ s s s t r u s s r s E[g] s E[g] = E[g]u = V r t s s r s τ rr s s t t t t t r s t t t r t r J E[g] End(V) t L := O E [g]u t g st tt s 2 u t 2 L ts t r s t t J t r i Z M := {Λ V L Λ L, gλ Λ, Λ τ = Λ} Pr r r2 M i := {Λ M len(λ/l) = i}. Ω(γ)O γ (1 S(OE0 ),s) = i Z( 1) i M i q (i+l(γ))s. r l(γ) s t t t s = 0 r s t t r t t s = 0 2 s r r2 r r2 Ω(γ)O γ (1 S(OE0 )) = i Z( 1) i M i t s J = J 1 Ω(γ) O γ (1 S(OE0 )) = log(q) i Z( 1) i i M i.
42 r t t r s r rs t y s(e 0 ) 0 rs t t t ( x = ) x j j u(j 0 ) 0 rs u(j 1 ) 0 rs. t J {J 0,J 1 } t r t r t r 2 x τ : V V s t t t V = E[x]u End(V) τx i u = ( 1) i x i u r i = 0,...,n 1 t L := O E [x]u t x st tt s 2 u t 2 L ts t r i Z M := {Λ V L Λ L, xλ Λ, Λ τ = Λ} M i := {Λ M len(λ/l) = i}. t s r r t r t t r s ts r s t 2 s t t r t r rs r s q t2 Ω(y)O y (1 s(oe0 ),s) = i Z( 1) i M i q (i+l(y))s. r r2 t r s t r t t s = 0 2 s t r s Ω(y)O y (1 S(OE0 )) = i Z( 1) i M i t s J = J 1 Ω(y) O y (1 S(OE0 )) = log(q) i Z( 1) i i M i. t s L := O E [x ]j W t t rt r t V W 2 pr t 2 pr u t r t t Eu Pr s t r s q t2 tt s V = W Eu M = {Λ O E u L Λ L,, x Λ Λ, (Λ ) τ = Λ }. rst t t r r v V xv = x v +(v,u)j (j,v)u. t Λ V 2 tt s t t u Λ pr u (Λ) = O E u Λ = (Λ W) O E u Λ W = pr(λ) r r pr(λ ) = pr(λ) Pr s s t s L L s 2 L L, L = pr(l) L, = pr(l ) t s s
43 Pr rst ss t t L L L = pr(l) O E u pr(l) = pr(l ) 2 t r s t s t s t t L = pr(l) rst t t t pr(l) s st r pr x pr = x s j pr(l) t L pr(l) r t s t s r pr(x i u) L 2 t s i = 0 s r s r pr(x i+1 u) = x x i u+j(x i u,u). rst s s L 2 t 2 t t t t L s x st s s s L s j L (x i u,u) O E 2 t ss t L L rs 2 t s ss t t L L, t s t t (x i u,x j u) O E r i,j x s r t t r2 r t s t r (x i u,u) O E r i r t s 2 t t s s i = 0 1 r t (x i+1 u,u) = (x i u,j) = (x x i 1 u,j)+((x i 1 u,u)j,j) ((j,x i 1 u)u,j). rst s s t r 2 ss t L t s s t r (x i 1 u,u) s t r 2 t t s s s t r 2 ss t L t r s s s Pr Pr s t t Λ M 2 t s r t s Λ = Λ O E u r Λ = pr(λ) λ Λ t x λ = xλ +(j,λ )u Λ Λ s x st rt r r L Λ L, s t s s st t r t t r t L Λ L 2 t t t τ t s t t r t pr Λ s t r rt s r rs 2 t s ss t t Λ s t s s r rt s r t t s t t Λ := Λ O E u M 2 L Λ L rt r r Λ s τ st s t s s r t s s2 t r t t Λ s s st r x s t r r t t t r s ts t r s s t s t tr t t r s t r r s r r s t t s t t s s t V s t t r t t r t r s s 2 J {J 0,J 1 } rt r t t t End(V) x x t tt Λ Λ r t t r s t t t s r t r (x,j) End E (V) V s r r s s E[x]j = V r r s t t x s t st O E [x] = O E [x ] r t t t 2 t x u(j) s t st t g U(J 1 ) s t st 2 g = g 1 O E [g] s q t t g t r r t r st 2 t x End E (V) s t t E[x] = E[x ] t (x,j) r r s s s E[x] (,j) = V rt r x u(j) r x U(J) t x s r r s s t s s 2 (x,u) s r r s s r
44 t t (x, j) r r s s t st r t 2 L(x,j) := O E [x]j t x st tt r t 2 j t σ r t τ(x,j) : V V s s t j s s r s φ : E[x] = E[x]j = V s t τ(x,j)(v) = φ(φ 1 (v) ) s s ss s E[x] = E[x] 2 ss t t s ts M(x,j) := {Λ V L(x,j) Λ L(x,j),xΛ Λ,τ(x,j)Λ = Λ}, M(x,j) i := {Λ M len OE (Λ/L(x,j)) = i}, i Z. r s C t rs O(x,j;s) := i Z ( 1) i M(x,j) i q is O(x,j) := O(x,j;0) = i Z( 1) i M(x,j) i O(x,j) := log(q) 1 d ds O(x,j;s) = s=0 i Z( 1) i i M(x,j) i. s r t t ss t s r J s r t 2 q t s t t s s t J = J 0 s t r t t (x, j) r r s s t st r I(x,j) := {Λ V L(x,j) Λ L(x,j),xΛ Λ,Λ = Λ} r tr st t t s t t r s s t s t t s t t r r t s 1 s s W V t r t t(x,j) End E (V) r r s s t st r I(x,j) = O(x,j). x,j t r st t s s s t 1 t r t t s t r t t q t s t t r t (x,j) s t r t x u(j 0 ) s t V := V Eu t r J 0 1 ( ) x := x j j u(j 0 1) 0. (x,j) s r r s s 2 x s r r s s t r s t t V = V Eu t s s t t r r s s s (FL(x,j)) s q t t (jr E0,V,u,x ) Pr s s r r r2
45 t (g,j) s t r t g U(J 0 ) J 0 (j,j) O E 0 (g,j) s r r s s 2 g s r r s s t r s t t V = j Ej t s s t t r r s s s (FL(g,j)) s q t t (JR E0,V,j,g) Pr s s r r r2 t (g,j) r r s s s t r s t t J 0 (j,j) / O E0 t s s (FL(g,j)) s Pr J 0 (j,j) / O E0 t L(x,j) L(x,j) str t t (g,j) s t r t g U(J 0 ) v(j 0 (j,j)) 1 s ss t t q +1 > n V := V Eũ u := ũ+j 1t J 0 t J 0 V 2 s tt ũ V J 0(u,u ) = 1 W := (u ) s r t s t P(t) O E [t] t r t r st 2 g t t t q +1 s t r r s ss s π E E 1 := {a E Nm E/E0 (a) = 1} 2 ss t t s r s r t deg(p) t r 1 sts a E 1 s t t P(a) 0 π E g := ( g a) U(J 0) r t tr 1 s t s t r s t t V = W Eũ t (g,j) s t r t g U(J 0 ) v(j 0 (j,j)) 1 s ss t t q + 1 > n t V,u g s (g,j) s r r s s 2 g s r r s s t r s t t V = W Eu t s s t t r r s s s (FL(g, j)) s q t t (JR E0,V,u,g ) Pr s 1 (g,u ) s r r s s 2 g s r r s s t r s t t V = W Eu t s s t t s s (JR E0,V,u,g ) s q t t (g,u ) t r t t (g,u ) s r r s s 2 (g,j) s t t t s s (g,u ) s q t t (g, j) t r s a t r s s t O E [g ] = O E [g] O E ts t V = V Eũ s t t r s t s r 2 r s t t t r r s s ss t t t r r t t t t r s t M(g,j) = M(g,u ), Λ Λ O E ũ. rs len(λ/l(g,j)) = len((λ O E ũ)/l(g,u )) O(g,u ) = O(g,j) r 2 ts t t I(g,u ) = I(g,j) t t n = dime (V)
46 r t t t ss t t J = J 1 s t r t r rt r x x t tt Λ Λ M r t r s t t t s r r r r s s s t rs (x, j) t r s q t2 O(x,j) = 0. Pr r t s t r r r2 t s ss t t L(x, j) L(x,j) s t r s M(x,j) = O(x,j) = 0 t s s l := [L(x,j) : L(x,j)] s s J 1 s t r Λ Λ s t t s t M(x,j) s 1 t r s t t r s M(x,j) i M(x,j) l i s M(x,j) i = M(x,j) l i t t s s ( 1) i M(x,j) i ( 1) l i M(x,j) l i t t O(x,j) t r (x, j) s rt t s t t rs t Z(x) Z(j) N E0,(1,n 1) s rt s t s s Int(x,j) := len OĔ(O Z(x) Z(j) ). t r r t t t t (x, j) r r s s s t rt r O(x, j) = Int(x, j). (x, j) 1 t r t t s t r t t r t s r2 s r t t 1 t s r t s J = J 0 t (x,j) s t r t x u(j 1 ) s t V := V Eu t r J 1 1 ( ) x := x j j u(j 1 1) 0. (x,j) s r r s s rt 2 x s r r s s t r s t t V = V Eu t s s t rt t r s t t u t s s t t r r s s rt s (AFL(x, j)) s q t t (afl E0,V,u,x ) Pr s s r r r r2 t (g,j) s t r t g U(J 1 ) J 1 (j,j) O E 0 (g, j) s r r s s rt 2 g s r r s s t r s t t V = j Ej t s s t rt t r s t t j t s s t t r r s s rt s (AFL(g, j)) s q t t (AFL E0,V,j,g) Pr s s r r r r2 t (g, j) r r s s s t rt r s t t J 1 (j,j) / O E0 t s s (x,j) s
47 Pr J 1 (j,j) / O E0 t Z(u) = 2 X N E0,(1,n 1) s s t t j : Y E0 X E0,(1,n 1) ts t r s Y E0 X t s t s t j j End 0 E(Y E0 ) ts t Y E0 t t t t End(Y E0 ) = E t t j j = J 1 (j,j) s J 1 (j,j) / O E0 t L(g,j) L(g,j) t s M = str t t (g,j) s t r t g U(J 1 ) v(j 1 (j,j)) 1 s ss t t q + 1 > n V := V Eũ u := ũ + j 1t J 1 t J 1 V 2 s tt ũ V J 1(u,u ) = 1 W := (u ) s r t s s 1 t r 1 sts a E 1 s t t P(a) 0 π E g := ( g a) U(J 1) r t tr 1 s t s t r s t t V = W Eũ t (g,j) s t r t g U(J 1 ) v(j 1 (j,j)) 1 s ss t t q +1 > n t V,u g s (g,j) s r r s s rt 2 g s r r s s t r s t t V = W Eu t s s t rt t r s t t u t s s t t r r s s rt s t t t2 (AFL(g, j)) s q t t (AFL E0,V,u,g ) Pr s 1 (g,u ) s r r s s rt 2 g s r r s s t r s t t V = W Eu rt t r s t t u t s s (AFL E0,V,u,g ) s q t t (AFL(g,u )) t r t t (g,u ) s r r s s rt 2 (g,j) s s t t t t s (AFL(g,u )) (AFL(g,j)) r q t t r s a t r s s t O E [g ] = O E [g] O E ts t V = V Eũ s t t r s t s r 2 r s t t t r r s s ss t t t J 1(ũ,ũ) O E 0 t t t r r t t t t r s t M(g,j) = M(g,u ), Λ Λ O E ũ. rs len(λ/l(g,j)) = len((λ O E ũ)/l(g,u )) O(g,u ) = O(g,j) st t s Int(g,u ) = Int(g,j) s s r t t r s s Z(g) Z(u) = Z(g ) Z(u ) rst t t t s t s t O E [g ] = O E [g] O E t r s s Z(g ) Z(ũ). tt r t 2 Z(g ) Z(ũ) = N E0,(1,n 1) t t Z(g) r r Z(ũ) Z(u ) = Z(ũ) Z(j) s t t rs t 2 s t s O E ũ+o E u Hom 0 (Y E0,X E0,(1,n 1) Y E0 ). s Z(g ) Z(u ) = Z(g ) Z(ũ) Z(u ) = Z(g) Z(j).
48 s ts t t s s t s 3 t t s E 0 = Q p s s 2 t s 2 t 1 s t r ts r t r s V s n s Q p 2 t r s t r t r J 1 t A 0 /Q p 1t s r d s t t A := A 0 Q p 2 s s A/A 0 s r q r t 1t s t ts s t s 2 σ t A End Qp 2(V) t t s q r t r t s t σ A t t t J 1 End(V) t r r s J 1 (a, ) = J 1 (,σ(a) ), a A. t ϑ A r t r t rs r t A 0 t J A 1 : V V A t A/A 0 r t r r t r 3 2 t r rt2 t t tr A/Qp 2 ϑ AJ A 1 = J 1. t t t r 2 O A tt Λ V t tt Λ t r s t t t r J 1 s s t Λ t r s t t J A 1 rt r (V,J A 1 ) s r t s t X Qp,(1,n 1) t r t r N Qp,(1,n 1) s t n := n/d t A 2 q s r s s X Qp,(1,n 1) s t t r t X A0/Q p,(1,n 1) r N A0/Q p,(1,n 1) s X A0,(1,n 1) := C(X A0/Q p,(1,n 1)) r C s t t r r r r 2 t Y Qp,(0,1) t r t Z p 2 s t r (0,1) r F s q t s r s Y A0/Q p,(0,1) := O A0 Y Qp,(0,1) t r s t t ϑ A s t s t Y A0,(0,1) := C(Y A0/Q p,(0,1)) r s s r s Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1)) = Hom 0 A(Y A0/Q p,(0,1),x Qp,(1,n 1)), j id A0 Qp j s s tr2 t r s t t J A 1 t t t t r r t r t C t s t r s s r s s tr t Hom 0 A(Y A0,(0,1),X A0,(1,n 1)) t s t t 2 r r s s s t rt r (x, j) End Qp 2(V) V s t t x s A r s r s t t t t s r t s Q p r A 0 t 2 (x,j) Qp t r N Qp,(1,n 1) r t A t s t 2 r t 2 (AFL(x,j) A0 ) := (AFL(C(x),C(id A0 j))) t r N A0,(1,n 1) r r s t s t t r ts r r s r t (x,j) End Qp 2(V) V r r s s s t rt r s t t O A Z p 2[x] (x,j) s s r r s s s t rt r A 0 t t t t s (AFL(x,j) Qp ) (AFL(x,j) A0 ) r q t Pr t s t t t L(x,j) τ(x,j) M(x,j) O(x,j),Int(x,j) t r t s tt r Q p t 2 L(x,j) A τ(x,j) A M(x,j) A O(x,j) A,Int(x,j) A t t r s t t s r t s tt r A 0 t s r t t (x,j) s s r r s s s t r A 0 s O A [x]j = Z p 2[x]j 2 ss t r s t 2t s s (AFL(x,j) Qp ) (AFL(x,j) A0 ) t t t s s t t t r s s O A tt V r s r r 1 s tr2 V = Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1))
49 rst t t t x st Z p 2 tt Λ V s t t 2 O A [x] tt s Z p 2[x] = O A [x] rt r L(x,j) = L(x,j) A r 2 t t s τ(x,j) τ(x,j) A r s t 2 2 t st r Q p 2[x] = A[x] j s s t t M(x,j) = M(x,j) A. t f t rt r A 0 /Q p M(x,j) i = f i M(x,j) fi = M(x,j) A i t t t f s s ss t t A 0 Q p 2 s rt r ( 1) i = ( 1) fi O(x,j) = i Z ( 1) i i M(x,j) i = f i Z( 1) i i M(x,j) A i = f O(x,j) A. r s t tr s s (AFL(x,j) Qp ) (AFL(x,j) A0 ) 2 r t 2 Z(x) N Qp,(1,n 1) t t f s Z(x) A r Z(x) A := Z(C(x)) s t rr s 2 N A0,(1,n 1) 2 r t s t t s t t t r t s rs Z(x) Z(j) = f Z(x) A Z(j) A i=1 r Z(j) A = Z(C(id A0 j)) s t r s t 2 N A0,(1,n 1) t s t t (x,j) s s rt r A 0 Int(x,j) = fint(x,j) A. t r s t s tr s t t s t st t ts t t t r r t r t s r r2 t x u(j 1 ) 0 rs r r s s rt t r ( ) x x = j. j t A 0 /Q p 1t s s t t A := A 0 Q p 2 s t t r t O A Z p 2[x ] t t s q r t r t s t σ O A t t t Z p [x ] t V A := W Au A t r t A t r s t r J,A 1 1 x s s t u(j,a 1 1) 0 rs t r s q (afl Qp,V,u,x) (afl A0,V A,u A,x). rt r dim A (W) 2 t (afl Qp,V,u,x) s Pr P rt s t r s t s r r n 3 P rt s r 2 t r t r t s t
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3
I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,
E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
UNIVERSITE DE PERPIGNAN VIA DOMITIA
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
Ανταλλακτικά για Laptop Lenovo
Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-
Ε.Ε. Παρ. I(II) Αρ. 3887,
.. Π. I() Α. 887, 2.7.2004 402 Ν. 25(ΙΙ)/2004 εί Συμλμτικύ Πϋλγισμύ Νόμς (Α. ) τυ 2004 εκδίδετι με δμσίευσ στν ίσμ φμείδ τς Κυικής Δμκτίς σύμφν με τ Αθ 52 τυ Συντάγμτς. Πίμι. 75() τν 200. Συντικός τίτλς.
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
Approximation de haute précision des problèmes de diffraction.
Approximation de haute précision des problèmes de diffraction. Sophie Laurens To cite this version: Sophie Laurens. Approximation de haute précision des problèmes de diffraction.. Mathématiques [math].
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Logique et Interaction : une Étude Sémantique de la
Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].
η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t
La naissance de la cohomologie des groupes
La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m
R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x
t ts P ALEPlot t t P rt P ts r P ts t r P ts
t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Das Pentagramma Mirificum von Gauß
Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz
Ε.Ε. Παρ. 1(H) Αρ. 3496, Ν. 33(IIV2001
Ε.Ε. Πρ. 1(H) Αρ. 496, 4.5.2001 1799 Ν. (IIV2001 περί Συμπληρωμτικύ Πρϋπλγισμύ Νόμς (Αρ. ) τυ 2001 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της Κυπρικής Δημκρτίς σύμφων με τ Αρθρ 52 τυ Συντάγμτς. Αριθμός
VISCOUS FLUID FLOWS Mechanical Engineering
NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation
Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and
E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,
E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ
Aboa Centre for Economics. Discussion paper No. 122 Turku 2018
Joonas Ollonqvist Accounting for the role of tax-benefit changes in shaping income inequality: A new method, with application to income inequality in Finland Aboa Centre for Economics Discussion paper
A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations
A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial
934 Ν. 9<Π)/94. Ε.Ε. Παρ. 1(H) Αρ. 2863,43.94
Ε.Ε. Παρ. 1(H) Αρ. 286,4.94 94 Ν. 9
Une Théorie des Constructions Inductives
Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,
Pathological synchronization in neuronal populations : a control theoretic perspective
Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control
f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)
Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f
TALAR ROSA -. / ',)45$%"67789
TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
". / / / !/!// /!!"/ /! / 1 "&
! "#$ # % &! " '! ( $# ( )* +# ),,- ". / / /!"!0"!/!// /!!"/ /! / 1 "& 023!4 /"&/! 52! 4!4"444 4 "& (( 52! "444444!&/ /! 4. (( 52 " "&"& 4/444!/ 66 "4 / # 52 "&"& 444 "&/ 04 &. # 52! / 7/8 /4 # 52! "9/
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Prés té r t r P Ô P P é té r t q r t t r2 t r t r t q s t r s t s t t s à t té rt rs r r ss r s rs tés r r ss r s rs tés 1 1 t rs r st r ss r s rs tés P r s 13 è îtr ér s r P rr îtr ér s rt r îtr ér s
Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±
Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Ó³ Ÿ , º 3(180).. 313Ä320
Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r