|
|
- Τιτάνια Καραβίας
- 6 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR
25
26
27
28
29
30
31
32
33
34
35 µ µ µ µ µ µ
36
37
38
39
40
41
42 Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean )
43 X = X x mean P x = W T X d P x P i, i = 1, 2..., G
44 M s t t << s S T S T = 1 M M (x i µ)(x i µ) T n=1 µ x i W pca t t t s M t t < s S w
45 S b S w = 1 N S b = 1 N N c j (x j i µ j)(x j i µ j) T j=1 i=1 c N j (µ j µ)(µ j µ) T j=1 x j i i j µ j j c N j j N µ det S b det S w S w W S 1 w S b c 1 f c 1 t + c S w t g f
46 U = W X
47 X[k, l] = 2 N c a 1 kc l c k, c l = m=0 n=0 b 1 x[m, n] [ { ( 1 2 ) 1 2, k = 0, l = 0 (2m + 1)kπ ] [ 2N 1, k = 1, 2,..., a 1, l = 1, 2,..., b 1 (2n + 1)lπ ] 2N m n k l
48 m j [y 1j, y 2j,..., y mj ] j k [w 1jk, w 2jk,..., w mjk ] w ijk y ij f [v 1f, v 2f,..., v mf ] v if y ij f j k j = 1, 2,..., p k = 1, 2,..., q D NNfjk = m w ijk v if i=1 f j D NNfjk D NNfgh, j g, k h
49 ψ µ,υ (x) = k2 kµ,υ µ,υ 2 x 2 σ 2 e 2σ 2 [e ikµ,υx e σ2 2 ] µ = 0,..., L 1 u = 0,..., M 1 L M k µ,υ = k max λ υ eiµ π L k max f(x) x 0 x 0 j µ,υ (x 0 ) = f(x) ψ µ,υ (x x 0 ) j(x 0 ) = [j 0,0 (x 0 ), j 1,0 (x 0 ),..., j L 1,M 1 (x 0 )] T
50 x l j(x) j(x l ) = [f 1 (x l ),..., f M (x l )] T f i (x l ) f i M C f (j(x l t), j(x l r)) = j(x l r) j(x l t) = 256 (P, R) P R LBP P,R (x c, y c ) = P 1 p=0 s(g p g c )2 p
51 s = { 1, x 0 0, x < 0 (x c, y c ) (g p, g c )
52
53 I( x, t) = (c( x, t) I( x, t)) t ( x, t) x t c( x, t) I t+1 (x, y) = I t [c N,t(x, y) I N,t (x, y) + c S,t (x, y) I S,t (x, y) +c E,t (x, y) I E,t (x, y) + c W,t (x, y) I W,t (x, y)] (x, y) I N,t 2 (x,y) c N,t (x, y) = e k 2 I N,t = I t (x, y + 1) I t (x, y) I open = (I S) S I top = I I open I open I top S
54 Ψ(x, y) (x, y) ( 0, N 1,..., N 7 ) (x, y) ( 7 i=0 N i) > 2) M(x, y, Ψ) N
55 M(x n, y n, Ψ n ), n = 1,..., N M(x, y, Ψ) L M = {{d 1, ϕ 1, θ 1 }, {d 2, ϕ 2, θ 2 },..., {d N, ϕ N, θ N }, Ψ} d n = (x n x) 2 + (y n y) 2 ϕ n = diff(ψ n, Ψ) θ n = diff( y n y x n x, Ψ) n = 1, 2,..., N d n M(x, y, Ψ) (0 2π) I t M M
56 {δd min, δϕ min, δθ min, δ ψ } {T d, T ϕ, T θ, T ψ } Score = NUM match max{num test, NUM database } NUM match NUM test NUM database
57
58
59
60
61
62
63 (x min, y min, x max, y max ) x min y min x max y max
64 left = x min top = y min width = x max x min + 1 height = y max y min + 1
65 c I 1, I 2,..., I M n m I Γ n m I = x 11 x 12.. x 1m x n1 x n2.. x nm Γ = x 11 x x nm n m d = n m
66 n m K K < (n m) P i = W T Γ i i = 1, 2,.., M W S W J(W ) = tr(s W ) S W = E(P EP )(P EP ) T = E[W T Γ E(W T Γ)][W T Γ E(W T Γ)] T = E[W T (Γ EΓ)][W T (Γ EΓ)] T tr(s W ) = W T [E(Γ EΓ)(Γ EΓ) T ]W C = E(Γ EΓ)(Γ EΓ) T
67 C = 1 M M (Γ i Γ)(Γ i Γ) T i=1 J(W ) = W T CW C (n m) (n m) n m n m W pca W C K W pca = W T CW = W = [w 1, w 2,..., w K ] {w i i = 1, 2,..., K} n m K I i Γ i Γ Γ = 1 M M i=1 Γ i Φ i = Γ i Γ
68 C (n m) (n m) C = 1 M Φ i Φ T i = AA T M i=1 A (n m) M A = [Φ 1 Φ 2...Φ M ] u i C C n m n m A T A M M y i µ i A T A A T Ay i = µ i y i AA T Ay i = µ i Ay i CAy i = µ i Ay i Cu i = µ i u i u i = Ay i AA T A T A A T A y i A T A AA T n m M c M c W (n m) M c
69
70
71 M c
72 W P i M c 1 Φ i P i w i 1 P i = w2 i..., i = 1, 2,..., M. wm c i Γ Φ = Γ Γ P = W T Φ P = w 1 w 2... w M c
73 P i P e r = min i P P i e r
74 reconstruct = W y T i, i = 1, 2,..., M c yi T M c A T A
75
76 X n I n m X Y = IX m Y I X J(X) = tr(s X ) S X S x = E(Y EY )(Y EY ) T = E[IX E(IX)][IX E(IX)] T C = E[(I EI)X][(I EI)X] T tr(s x ) = X T [E(I EI) T (I EI)]X C = E[(I EI) T (I EI)] C = 1 M M (I j I) T (I j I) j=1 n m J(X) = X T CX X 2DP CA C X 1,..., X K J(X) { X 1,..., X K = argmaxj(x) Xi T X j = 0 i j i, j = 1,..., K
77 I = 1 M M i=1 I i C C m m C m m
78 X 1,..., X c+1 C c + 1 c + 1 X m c + 1 X = X 1 X 2 X c+1 I i i = 1,..., M Y n 1 Y i = I X i, i = 1, 2,..., c + 1 B i = [Y i 1, Y i 2,..., Y i c+1], i = 1, 2,..., M n c + 1
79 B 1... B i... Y1 i Y2 i... Y i c+1... B M... Y1 M Y2 M... Y M c+1... Y1 1 Y Y 1 c+1... I Φ = I I Φ B Φ B i = [Y1 i, Y 2 i,..., Y c+1 i ] B Φ = [Y1 Φ, Y 2 Φ,..., Y c+1 Φ ] c+1 d(b i, B Φ ) = Yk i Y k Φ k=1 i = 1, 2,..., M Φ e r = min i d(b i, B Φ ) e r
80 reconstruct = B i X T
81
82 S w S b S w = 1 M M c j (Γ j i Γ j)(γ j i Γ j) T j=1 i=1 S b = 1 M c M j (Γ j Γ)(Γ j Γ) T j=1 Γ j i i j Γ j j M j j Γ j = 1 M j Γ c j Γ S w W W T S b W W T S w W = [w 1 w 2...w k ] w i i = 1, 2,..., k S b S w k {λ i i = 1, 2,..., m} S b w i = λ i S w w i, i = 1, 2,..., m c 1 k c 1 c S w n n M c S w M c c 1 W T opt = W T lda W T pca
83 W pca = W T CW W W lda = W W T W T pcas b W pca W W T W T pcas W W pca W W P CA M c P w 1 w 2 P i =, i = 1, 2,..., M P = P 1 P 2 P M w M c P S w S b Γ Γ = 1 M M i=1 P i j Γ j Γ j = 1 M j M j P i c j P i P Γ j Γ M c M c S b S w M c M c c 1 c 1 W LDA M c c
84 V = W T LDAP V c 1 M
85 V i c 1 1 V i = k i 1 k i 2... k i c 1, i = 1, 2,..., M Γ Φ = Γ Γ V = W T LDA W T pca Φ V = k 1 k 2... k c 1 V i V e r = min i V V i e r
86
87 C r i,j j i i = 1,..., C j = 1,..., N R j j
88 R j = C i=1 r i,j ϵ R j = C r i,j + ϵ j i=1 C i=1 ϵ j = r i,j K j ϵ j K j = 1 r 1,1 = 1 r 2,1 = 2 j = 2 r 1,2 = 3 r 2,2 = 1 R 1 = 1 R 2 = 1 K = 100 R 1 = R 2 = R 1 R j = C i=1 r i,j j = 1 R 1 = 109 j = 2 R 2 = 60 R 1 C i=1 r i,j = 0
89 R 1 = 9 R 2 = 45 R 1 f M V M T M F = 0.5M v + 0.5M T s s I s = [s min, s max ] I d = [s min, s max] s I s I s s = s min + s s min s max s min (s max s min)
90 I f (x, y) = I 1(x, y) + I 2 (x, y) 2 I 1 (x, y) I 2 (x, y) ϕ ω 1 I(x, y) I(x, y) = ω 1 (ϕ(ω(i 1 (x, y)), ω(i 2 (x, y)))) ϕ
91
92 Z (n m) 2 C Z D V V D 2 2 V V m P 2 1 P = V m Vm I f (x, y) = P (1)I 1 (x, y) + P (2)I 2 (x, y)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες
Ανάλυση Πινάκων και Εφαρμογές Σελίδα 1 από 6 Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Έστω A είναι μ ν πίνακας. Τότε 1. ranka= ranka
Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός
Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις
4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
Japanese municipalities, 1970 present
Japanese municipalities, 1970 present 3000 2500 Number of municipalities 2000 1500 1000 500 1980 1990 2000 2010 Year m M q m N m θ m q m c(x m ) c(x m ) X m X m c(n m ) m τ m Y m = i m y i i m T m (q
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών
HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 6 7 Συνάφεια (συνέχεια Συστήματα πολλαπλών εισόδων Μη παραμετρική αναγνώριση γραμμικών συστημάτων Εκτίμηση άσματος Ισχύος Περιοδόγραμμα, Bartlett/Welch, Παραμετρική
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
EukleÐdeiec emfuteôseic: ˆnw frˆgmata
EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
Οδηγίες χρήσης του R, μέρος 2 ο
ΟδηγίεςχρήσηςτουR,μέρος2 ο Ελληνικά Ανπροσπαθήσουμεναγράψουμεελληνικάήναανοίξουμεκάποιοαρχείοδεδομένωνμε ελληνικούςχαρακτήρεςστοr,μπορείαντίγιαελληνικάναδούμελατινικούςχαρακτήρεςμε τόνουςήάλλακαλλικαντζαράκια.τότεδίνουμετηνπαρακάτωεντολήγιαναγυρίσειτοrστα
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.
1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (
AI, A2, A3, A4, A5, A6, A7 AIAI, AIA2, AIA3, AIA4, AIA5, AIA6, AIA7 BI, B2, B3, B4, B5, B6, B7 BIBI, BIB2, BIB3, BIB4, BIB5, BIB6, BIB7
Δίφυλλη θύρα τηλεσκοπικού ανοίγματος Two panel telescopic door AI, A2, A3, A4, A5, A6, A7 Δίφυλλη θύρα τηλεσκοπικού ανοίγματος - A2 Two panel telescopic door - A2 AAI, AA2, AA3, AA4, AA5, AA6, AA7 Δίφυλλη
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)
t ts P ALEPlot t t P rt P ts r P ts t r P ts
t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
Apì ton diakritì kôbo ston q ro tou Gauss
Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Note: Please use the actual date you accessed this material in your citation.
MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)
Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης
Θεωρητική μηχανική ΙΙ
ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της
υφ υ., Β ί,. υ, Βί φ υ α π ί αμ υ Γ α - α ί υ. α. πί. V ( α μ μ μ α, α α π ία μ ί α πα μ υπ ) π αμ α 8 α, α φ μα α υ α ί υ α Βαφ π. α ί α, π ( α ί), φ
Φ Γ Θ ΓΓ Γ ON Β Γ Θ Γ Ω Γ φ α α (..) Θ α ία ί α α ί α (φ μα α Ο αμ υ π φα α ) π υ α α α μ αφ απ υ υ υ υ υ (φ μα υ α α α αμ υ α υ Ο υ φυ υ). Β α ί α ί α υ α ί α α α Θ α ία, α α ία μ μ α ί π GR 16 α GR 17.
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M.
ITU-R M.64- (007-005-003) ITU-R M.64- MHz 5-64 (epfd) (RNSS) ().MHz 5-64 MHz 5-960 (RR) ( () (RNSS) ( /(DME) MHz 5-64 (RNSS) (TACAN) ( ITU-R M.639 MHz 5-64 WRC-000 ( (RNSS) (RNSS) () RNSS WRC-03 ( MHz
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆ Šˆ ˆ ˆ ƒ Š.. ± Î,. ˆ. ³ ƒ ˆ, Œμ ± μí Ê μ ± É μ μ Êα Î ÉμÉ É É μ ÒÌ ±μ² Î É Í ³ Ö- É Ö - μ É Ì μé±²μ Ö μ ³ Ê²Ó Ê ( ² Î Ì μ³ É Î μ É ) ³ Ö ±Ê²μ- μ
1 Το φυσικό πρόβλημα και εξισώσεις
Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves) και εγκάρσια κύματα(s-waves) Χρυσούλα Τσόγκα tsogka@tem.uoc.gr 1 Το φυσικό πρόβλημα
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)
Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
ΣΥΜΠΛΗΡΩΜΑ ΑΡΙΘΜΟΙ. Οι αριθμοί στα παλαιά έγγραφα
ΣΥΜΠΛΗΡΩΜΑ ΑΡΙΘΜΟΙ Οι αριθμοί στα παλαιά έγγραφα Στην σημερινή εποχή διεθνώς χρησιμοποιούνται οι αραβικοί αριθμοί (1,2,3, ). Όμως σε παλαιότερα χρόνια χρησιμοποιούνταν οι ελληνικοί αριθμοί (α, β, γ, ).
η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))
1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται
Με αρχική φάση. 1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται με τον άξονα x Ox προς τη θετική κατεύθυνση του άξονα, εξαναγκάζοντας το υλικό σημείο
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 31 Μαΐου 2019 1 / 10 Ελάχιστα τετράγωνα
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Εφαρμογή της γενικής λύσης
Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.4 1 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx
Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side
hits_top_r Noise distribution (L XOR R) BOTTOM Right Side 6 4 Hits (L AND R) TOP Right Side Hits (L AND R) TOP Left Side hits_top_r Entries 338 Mean.7 RMS 6.948 8 6 4 Hits (L AND R) MIDDLE Right Side Hits
Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side
hits_top_r Noise distribution (L XOR R) TOP Right Side Noise distribution (L XOR R) MIDDLE Right Side Hits (L AND R) TOP Right Side Hits (L AND R) TOP Left Side Hits (L AND R) MIDDLE Right Side Hits (L
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI Org. GREEK COMPUTER SOCIETY MEMBER OF IFIP, IOI Org.
21 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ B ΦΑΣΗΣ (Μαθητές Λυκείου, ΕΠΑΛ, ΕΠΑΣ) ΧΑΛΚΙΔΙΚΟ ΑΛΦΑΒΗΤΟ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές. Αρσένης Γεράσιμος 2 ο ΓΕΛ Μοσχάτου
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side. Hits (L AND R) BOTTOM Right Side Hits (L AND R) BOTTOM Left Sid 45
hits_top_r Hits (L AND R) TOP Right Side Hits (L AND R) TOP Left Side Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side Hits (L AND R) BOTTOM Right Side Hits (L AND R) BOTTOM Left Sid 3
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Γεωγραφικά Πληροφοριακά Συστήματα (GIS)
Γεωγραφικά Πληροφοριακά Συστήματα (GIS) Εισαγωγή Η ανάπτυξη τεχνολογικά προηγμένων συστημάτων για την αποτελεσματικότερη αποθήκευση, ανάλυση και παρουσίαση γεωγραφικών δεδομένων, οδήγησε στη δημιουργία
β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2
1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).
Ιστοσελίδα:
½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel4 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Αποκωδικοποιηση Γραμμικων Κωδικων Μπλοκ Soft-Decision Decoding ψ(t),
Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α
ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.3 39 3.3. Ηλεκτρομαγνητισμός 1. Β = k 21 9 1Π 2 β = 10 " ίιτκ τ^β = 2 10 " τ 3. α) Β = Κ μ 21 B-r, 2 10~ 5 20 10~ 2 α => I = ~ } Α k M -2 2-10 I = 20Α ϊ)β 2 2Ι = Κ ψ- _ 10' 10^40 7 2
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )
Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει
TALAR ROSA -. / ',)45$%"67789
TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2
ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ
ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ Εισαγωγή Η µελέτη και ο σχεδιασµός όλων των διεργασιών των τροφίµων απαιτούν τη γνώση των θερµοφυσικών ιδιοτήτων τους. Τα τρόφιµα είναι γενικά ανοµοιογενή
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΘΕΜΑ Α
ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM
AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum