ΠΑΝΕΠΙΣΗΜΙΟ ΜΑΚΕΔΟΝΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΜΗΜΑ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕΥΝΗΣΗ ΝΟΗΜΟΤΝΗ
|
|
- Ξανθίππη Σαμαράς
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΘΕΜ 1 ο (.5 κνλάδεο) ΠΝΕΠΙΣΗΜΙΟ ΜΚΕΔΟΝΙ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΜΗΜ ΕΦΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕΥΝΗΣΗ ΝΟΗΜΟΤΝΗ Σελικέρ εξετάσειρ Παπασκεςή 1 Ιοςνίος :30-14:30 Έζησ 3 θύβνη πάλσ ζε έλα ηξαπέδη, κε νλόκαηα, θαη, από ηνλ γλσζηό θόζκν ησλ θύβσλ (πξνβιήκαηα ζρεδηαζκνύ). α) Σρεδηάζηε έλαλ κε θαηεπζπλόκελν γξάθν G=(V,E), ηνπ νπνίνπ θάζε θνξπθή v V αληηζηνηρεί ζε κηα δηάηαμε ησλ θύβσλ πάλσ ζην ηξαπέδη. ύν θόκβνη v 1 θαη v ηνπ γξάθνπ ζπλδένληαη κε αθκή εάλ είλαη δπλαηή ε κεηάβαζε από ηελ θαηάζηαζε ηνπ ελόο θόκβνπ ζηελ θαηάζηαζε ηνπ άιινπ θόκβνπ κε κία κεηαθίλεζε ελόο κόλν θύβνπ (έλαο θύβνο κπνξεί λα κεηαθηλεζεί κόλν εθόζνλ είλαη ειεύζεξε ε πάλσ έδξα ηνπ). ηα παξάδεηγκα, νη παξαθάησ δύν θόκβνη ζπλδένληαη κεηαμύ ηνπο. (1) β) ξείηε κηα δηαδξνκή πνπ ζπλδέεη ηνπο δύν παξαθάησ θόκβνπο (όρη απαξαηηήησο ηε ζπληνκόηεξε), εθαξκόδνληαο ηνλ αιγόξηζκν αλαδήηεζεο πξώηα ζε βάζνο. (0.75) Ζ πξνηεξαηόηεηα κε ηελ νπνία ζα επηζθέπηεηαη ηηο γεηηνληθέο θνξπθέο ν αιγόξηζκόο λα είλαη ε εμήο: Πξνηεξαηόηεηα έρεη ε κεηαθηλήζε ηνπ θύβνπ, κεηά ηνπ θαη κεηά ηνπ. ηα ηνλ ίδην κεηαθηλνύκελν θύβν, πξνηεξαηόηεηα έρεη ε κεηαθίλεζή ηνπ πξνο ην ηξαπέδη (εθόζνλ δελ είλαη ήδε εθεί) θαη ζηε ζπλέρεηα ε κεηαθίλεζε ηνπ πάλσ ζε άιινπο θύβνπο κε αιθαβεηηθή πξνηεξαηόηεηα. γ) ηα ην ίδην πξόβιεκα, βξείηε ηε δηαδξνκή πνπ επηζηξέθεη ν αιγόξηζκνο αλαδήηεζεο πξώηα ζε πιάηνο, ρξεζηκνπνηώληαο ηελ ίδηα πξνηεξαηόηεηα επίζθεςεο θόκβσλ. (0.75) Σεκείσζε: Καη ζηηο δύν πεξηπηώζεηο ζεσξνύκε όηη ν αιγόξηζκνο αλαδήηεζεο πξαγκαηνπνηεί έιεγρν επαλάιεςεο θαηαζηάζεσλ. πάντηση: α)
2 A B β) Σην παξαπάλσ ζρήκα, ν θόκβνο-αξρή θαίλεηαη κε θίηξηλν ρξώκα θαη ν θόκβνο-ηέινο κε πξάζηλν. Ζ δηαδξνκή πνπ ζα βξεη ν αιγόξηζκνο depth-first search θαίλεηαη κε ηε ζπλερή γξακκή. Ζ δηαδξνκή πνπ ζα βξεη ν αιγόξηζκνο breadth-first search θαίλεηαη κε ηε δηάζηηθηε γξακκή. Όπσο γλσξίδνπκε θαη από ηελ Δ8, ν breadth-first search βξίζθεη βέιηηζηεο δηαδξνκέο. ΘΕΜ ο (.5 κνλάδεο) Έλα καγηθό ηεηξάγσλν είλαη έλα ηεηξάγσλν 3x3, θάζε θειί ηνπ νπνίνπ πεξηιακβάλεη έλαλ δηαθνξεηηθό αξηζκό από ην 1 έσο ην 9, έηζη ώζηε ην άζξνηζκα ησλ αξηζκώλ ζε θάζε γξακκή, ζηήιε θαη δηαγώλην λα ηζνύηαη κε 15. α) Μνληεινπνηήζηε ην πξόβιεκα θαηαζθεπήο καγηθώλ ηεηξαγώλσλ σο πξόβιεκα ηθαλνπνίεζεο πεξηνξηζκώλ. (1.5) β) Δπηιύζηε ην πξόβιεκα ρξεζηκνπνηώληαο έιεγρν ζπλέπεηαο θαη αλαδήηεζε. (1.5) πάντηση: α) Οξίδνπκε 9 αθέξαηεο κεηαβιεηέο, έζησ,,,, Δ, Ε, Ζ, Θ θαη Η ηα νλόκαηά ηνπο, κε πεδία ην ζύλνιν {1,, 3, 4, 5, 6, 7, 8, 9}. Κάζε κεηαβιεηή αληηζηνηρεί ζε έλα θειί ηνπ καγηθνύ ηεηξαγώλνπ, σο εμήο: Οη πεξηνξηζκνί είλαη νη εμήο: Δ Ε Ζ Θ Η all_different(,,,, Δ, Ε, Ζ, Θ, Η) ++=15 +Δ+Ε=15 Ζ+Θ+Η=15 ++Ζ=15 +Δ+Θ=15
3 +Ε+Η=15 +Δ+Η=15 Ζ+Δ+=15 β) ελ κπνξνύκε λα πξνρσξήζνπκε εμαξρήο ζε δηαγξαθέο ηηκώλ από ηα πεδία ησλ κεηαβιεηώλ, νπόηε πξνρσξάκε ζε αλάζεζε. Έζησ ε κεηαβιεηή Δ πνπ εκπιέθεηαη ζηνπο πεξηζζόηεξνπο πεξηνξηζκνύο, θαη έζησ Δ=5 (θάζε ηηκή πνπ αλαζέηνπκε ζε κεηαβιεηή αθαηξείηαη από ηα πεδία όισλ ησλ ππνινίπσλ). λαγθαδόκαζηε λα πξνρσξήζνπκε θαη ζε δεύηεξε αλάζεζε, έζησ =1, νπόηε πξνθύπηεη όηη Ε= Ζ Θ Η Έζησ =8, νπόηε Η=, Ζ=6, Θ= θαη ζπλερίδνληαο =3 θαη = Ζ ηειεπηαία αλάζεζε πιεξεί όινπο ηνπο πεξηνξηζκνύο, νπόηε είλαη θαη ιύζε ηνπ πξνβιήκαηνο. ΘΕΜ 3 ο (.5 κνλάδεο) Έζησ ην παξαθάησ δέλδξν παηρληδηνύ δύν αηόκσλ, όπνπ πξώηνο παίδεη ν παίθηεο. α) ξείηε ηελ θίλεζε πνπ ζα επηιέμεη ν παίθηεο, εθαξκόδνληαο ηνλ αιγόξηζκν minimax. (1.5) β) Φξεζηκνπνηώληαο ηελ ηερληθή θιαδέκαηνο άιθα-βήηα κε εμέηαζε ησλ θόκβσλ από αξηζηεξά πξνο ηα δεμηά, βξείηε πνηνη θόκβνη δελ ζα ρξεηαζηεί λα εμεηαζζνύλ θαζόινπ. (1.5) C D E F G H I J K L M N O P Q R Υπόδεημε: Ζ ηερληθή θιαδέκαηνο άιθα-βήηα δίλεη πξνηεξαηόηεηα ζην αλέβαζκα ησλ ηηκώλ πξνο ηε ξίδα: Κάζε θνξά πνπ όια ηα παηδηά ελόο θόκβνπ έρνπλ πάξεη ηηκέο, ππνινγίδεηαη θαη ε ηηκή ηνπ γνλέα. ηα παξάδεηγκα, εθόζνλ ηα θύιια εμεηάδνληαη από αξηζηεξά πξνο ηα δεμηά, ε ηηκή ηνπ θόκβνπ πξέπεη λα βξεζεί πξηλ από ηελ ηηκή ηνπ θόκβνπ R. πηή ε ζεηξά δίλεη ηε δπλαηόηεηα θιαδέκαηνο όρη κόλν ζην ηειεπηαίν, αιιά θαη ζην πξνηειεπηαίν επίπεδν ηνπ ζπγθεθξηκέλνπ δέλδξνπ παηρληδηνύ. S T U V W X Y
4 πάντηση: α) Σην παξαθάησ ζρήκα θαίλνληαη νη βαζκνί όισλ ησλ θόκβσλ θαη κε έληνλε γξακκή ε θίλεζε πνπ επηιέγεη ν παίθηεο MAX γηα πξώηε ηνπ θίλεζε. 6 C 6 D MAX E 0 F 6 G 0 H I 4 J 6 K L M N O P Q β) Σην παξαθάησ ζρήκα κε γθξη ρξώκα θαίλνληαη νη θόκβνη πνπ, κε ηελ ηερληθή θιαδέκαηνο άιθα-βήηα, δελ ζα ρξεηαδόηαλ λα εμεηάζεη ν παίθηεο MAX. Τν θιάδεκα απηώλ ησλ θόκβσλ νδεγεί θαη ζε αιιαγή ησλ ηηκώλ θάπνησλ ελδηάκεζσλ θόκβσλ, σζηόζν ν βαζκόο ηεο ξίδαο θαη άξα ε ηειηθή επηινγή ηνπ παίθηε δελ αιιάδεη. R S T U V W X Y 6 C 4 D MAX E 1 F 6 G 0 H I 4 J K L M N O P Q R S T U V W X Y ΘΕΜ 4 ο (.5 κνλάδεο) Έζησ ηα παξαθάησ θαηεγνξήκαηα: κέραιος(x): Ο x είλαη αθέξαηνο αξηζκόο Σύνολο(s): Τν s είλαη ζύλνιν αθεξαίσλ αξηζκώλ. νήκει(x,s): Ο αθέξαηνο x αλήθεη ζην ζύλνιν s. Φξεζηκνπνηώληαο ηα παξαπάλσ βαζηθά θαηεγνξήκαηα, γξάςηε ινγηθέο ζρέζεηο πνπ λα νξίδνπλ ηα εμήο λέα θαηεγνξήκαηα: Υποσύνολο(s1,s): Τν ζύλνιν s1 είλαη ππνζύλνιν ηνπ ζπλόινπ s. Ίσα(s1,s): Τα ζύλνια s1 θαη s είλαη ίζα κεηαμύ ηνπο, δειαδή πεξηέρνπλ αθξηβώο ηα ίδηα ζηνηρεία.
5 Κενό(s): Τν ζύλνιν s είλαη θελό, δειαδή δελ πεξηέρεη θαλέλα ζηνηρείν. Ένωση(s1,s,s): Τν ζύλνιν s απνηειείηαη από ηελ έλσζε ησλ ζηνηρείσλ ησλ ζπλόισλ s1 θαη s. Διαυορά(s1,s,s): Τν ζύλνιν s απνηειείηαη από ηε δηαθνξά ησλ ζηνηρείσλ ησλ ζπλόισλ s1 θαη s, δειαδή ην ζύλνιν απνηειείηαη από ηα ζηνηρεία πνπ αλήθνπλ ζην s1 αιιά δελ αλήθνπλ ζην s, θαη κόλν απηά. πάντηση: Υποσύνολο(s1,s) ( x, νήκει(x,s1) νήκει(x,s) ) Ίσα(s1,s) Υποσύνολο(s1,s) Υποσύνολο(s,s1) Κενό(s) x νήκει(x,s) Ένωση(s1,s,s) ( x, νήκει(x,s1) νήκει(x,s) νήκει(x,s) ) Διαυορά(s1,s,s) ( x, νήκει(x,s1) νήκει(x,s) νήκει(x,s) ) ΘΕΜ 5 ο (.5 κνλάδεο) Τν παηρλίδη Sokoban παίδεηαη σο εμήο: Σε έλα πιέγκα ζέζεσλ πεξηνξηζκέλσλ δηαζηάζεσλ, όπσο απηό ηεο παξαθάησ εηθόλαο, ππάξρνπλ εκπόδηα, θηβώηηα θαη έλα ξνκπόη. Σηόρνο ηνπ ξνκπόη είλαη λα κεηαθηλήζεη ηα θηβώηηα ζε πξνθαζνξηζκέλεο ζέζεηο. Τν ξνκπόη κπνξεί θαη κεηαθηλείηαη πξνο ηηο ηέζζεξηο θαηεπζύλζεηο, έλα ηεηξάγσλν ηε θνξά. ηα λα κεηαθηλήζεη έλα θηβώηην θαηά κία ζέζε, ζα πξέπεη ην ξνκπόη λα βξίζθεηαη ζε ζέζε γεηηνληθή πξνο ην θηβώηην θαη λα επηρεηξήζεη λα θηλεζεί πξνο ην θηβώηην. Σε απηή ηελ πεξίπησζε, εθόζνλ ε ζέζε κεηά ην θηβώηην πξνο ηελ θαηεύζπλζε θίλεζεο ηνπ ξνκπόη, είλαη θελή, ην ξνκπόη θαηαιακβάλεη ηελ πξνεγνύκελε ζέζε ηνπ θηβσηίνπ θαη ην θηβώηην ηελ ακέζσο επόκελε. Δάλ ε ζέζε κεηά ην θηβώηην πξνο ηελ θαηεύζπλζε θίλεζεο ηνπ ξνκπόη δελ ήηαλ θελή, ε κεηαθίλεζε (ηόζν ηνπ θηβσηίνπ όζν θαη ηνπ ξνκπόη) δελ πξαγκαηνπνηείηαη. Κιβώτια Σελικές θέσεις Ρομπότ Τν παηρλίδη Sokoban κπνξεί λα ζεσξεζεί σο έλα πξόβιεκα ζρεδηαζκνύ. Σηελ άζθεζε απηή ζαο δεηείηαη λα πεξηγξάςεηε ηηο ελέξγεηεο ηνπ πξνβιήκαηνο, ρξεζηκνπνηώληαο ηα παξαθάησ θαηεγνξήκαηα: Θέση(x): Τν x είλαη κηα ζέζε ηνπ πξνβιήκαηνο. Τελική(x): Τν x είλαη κηα ζέζε ηνπ πξνβιήκαηνο. Ελεύθερη(x): Τν x είλαη κηα ειεύζεξε ζέζε, δειαδή δελ έρεη νύηε θηβώηην νύηε ξνκπόη. Κατειλημμένη(x): Τν x είλαη κηα θαηεηιεκκέλε ζέζε, δειαδή πεξηέρεη είηε έλα θηβώηην είηε έλα ξνκπόη. Κιβώτιο(x): Τν x είλαη έλα θηβώηην. Ρομπότ(x): Τν x είλαη έλα ξνκπόη. ΚιβωτίοΣε(x,y): Τν θηβώηην x βξίζθεηαη ζηε ζέζε y. ΡομπότΣε(x,y): Τν ξνκπόη x βξίζθεηαη ζηε ζέζε y. Κατεύθσνση(x): Τν x είλαη κηα θαηεύζπλζε (επάλσ, θάησ, αξηζηεξά ή δεμηά).
6 ειτονικό(x,y,z): Τν y είλαη γεηηνληθό ηνπ x πξνο ηελ θαηεύζπλζε z. Δηδηθόηεξα, ζην πξόβιεκα ππάξρνπλ δύν ελέξγεηεο: Ζ κεηαθίλεζε ηνπ ξνκπόη ρσξίο ηαπηόρξνλε ώζεζε θάπνηνπ θηβσηίνπ θαη ε κεηαθίλεζε ηνπ ξνκπόη κε ηαπηόρξνλε ώζεζε θάπνηνπ θηβσηίνπ. ηα θάζε κία από απηέο ηηο δύν ελέξγεηεο δεηείηαη λα θαηαγξαθνύλ νη πξνϋπνζέζεηο θαη ηα απνηειέζκαηά (επηδξάζεηο) ηνπο. πάντηση: Δλέξγεηα: Μετακίνηση(r, x, y, dir): Πξνϋπνζέζεηο: Ρομπότ(r), Θέση(x), Θέση(y), Κατεύθσνση(dir), ειτονικό(x,y,dir), ΡομπότΣε(r,x), Ελεύθερη(y) Δπηδξάζεηο: ΡομπότΣε(r,x), ΡομπότΣε(r,y), Ελεύθερη(x), Ελεύθερη(y), Κατειλημμένη(x), Κατειλημμένη(y) Δλέξγεηα: Ώθηση(r, x, y, z, p, dir): Πξνϋπνζέζεηο: Ρομπότ(r), Θέση(x), Θέση(y), Θέζε(z), Κατεύθσνση(dir), Κιβώτιο(p), ειτονικό(x,y,dir), ειτονικό(y,z,dir), ΡομπότΣε(r,x), ΚιβώτιοΣε(p,y), Ελεύθερη(z) Δπηδξάζεηο: ΡομπότΣε(r,x), ΡομπότΣε(r,y), ΚιβώτιοΣε(p,y), ΚιβώτιοΣε(p,z), Ελεύθερη(x), Ελεύθερη(z), Κατειλημμένη(x), Κατειλημμένη(z) ΠΝΣΗΣΕ 4 ΠΟ Σ ΠΡΠΝΩ 5 ΘΕΜΣ (Δλδεηθηηθέο ιύζεηο ζα αλαξηεζνύλ κεηά ηελ εμέηαζε ζην site ηνπ καζήκαηνο)
ΠΑΝΕΠΙΣΗΜΙΟ ΜΑΚΕΔΟΝΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΜΗΜΑ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕΥΝΗΣΗ ΝΟΗΜΟΤΝΗ
ΘΕΜ 1 ο (2.5 κνλάδεο) ΠΝΕΠΙΣΗΜΙΟ ΜΚΕΔΟΝΙ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΜΗΜ ΕΦΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕΥΝΗΣΗ ΝΟΗΜΟΤΝΗ Σελικέρ εξετάσειρ Σετάπτη 21 Ιανοςαπίος 2009 13:00-16:00 Έζησ ν θόζκνο ηεο ειεθηξηθήο
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
Άσκηση 1 - Μοπυοποίηση Κειμένου
Άσκηση 1 - Μοπυοποίηση Κειμένου Σηηο παξαθάησ γξακκέο εθαξκόζηε ηε κνξθνπνίεζε πνπ πεξηγξάθνπλ Γξακκή κε έληνλε γξαθή Γξακκή κε πιάγηα γξαθή Γξακκή κε ππνγξακκηζκέλε γξαθή Γξακκή κε Arial Font κεγέζνπο
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
Κβαντικοί Υπολογισμοί. Πέκπηε Γηάιεμε
Κβαντικοί Υπολογισμοί Πέκπηε Γηάιεμε Kπθισκαηηθό Mνληέιν Έλαο θιαζηθόο ππνινγηζηήο απνηειείηαη από αγσγνύο θαη ινγηθέο πύιεο πνπ απνηεινύλ ηνπο επεμεξγαζηέο. Σηνπο θβαληηθνύο ε πιεξνθνξία βξίζθεηαη κέζα
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.
ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:
Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ
Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!
Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ
Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:
Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις
ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ
Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
Γηζδηάζηαηνη Πίλαθεο
Γηζδηάζηαηνη Πίλαθεο Άζθεζε 1. Να αλαπηύμεηε αιγόξηζκν ν νπνίνο κε δεδνκέλα ηα ζηνηρεία δπν δηζδηάζηαησλ πηλάθσλ αξηζκώλ ηδίσλ δηαζηάζεσλ ζα εμεηάδεη αλ νη πίλαθεο είλαη ίζνη, ελώ ζηελ πεξίπησζε πνπ δελ
ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ
ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ Κιηληθή ηαμηλόκεζε ηνπ βαζκνύ ηεξεδνληθήο βιάβεο ηωλ νπώλ θαη ζρηζκώλ καζεηηθώλ επηθαλεηώλ θαηά ICDAS 1 νο Βαζκόο
Δπαστηπιότητα 1 - ανάπτςξη, μεταγλώττιση, αποσυαλμάτωση και. εκτέλεση ππογπάμματορ
1 Δπαστηπιότητα 1 - ανάπτςξη, μεταγλώττιση, αποσυαλμάτωση και εκτέλεση ππογπάμματορ Κάζε πξσί ν Karel μππλάεη ζην θξεβάηη ηνπ όηαλ έλα ξνκπόη-εθεκεξηδνπώιεο ηνπ πεηάεη ηελ εθεκεξίδα, πνπ αλαπαξηζηάλεηαη
Διάρηζηα Δπηθαιύπηνληα Γέλδξα
Διάρηζηα Δπηθαιύπηνληα Γέλδξα Οξηζκόο Δύξεζε Δπηθαιύπηνληνο Γέλδξνπ κε Διάρηζην Βάξνο, δειαδή ειάρηζην άζξνηζκα βαξώλ αθκώλ Αιγόξηζκνη Prim, Kruskal, Baruvka Βαζίδνληαη ζηελ ηερληθή ηεο Απιεζηίαο Η νξζόηεηα
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ 1) Υξηζηνπγελληάηηθα ειαηάθηα θάξηα ή θαδξάθη θάξηα ή θαδξάθη Τιηθά πνπ ζα ρξεηαζηνύκε: Υαξηί θάλζνλ καύξν γηα ην θόλην, πξάζηλν γηα ηα ειαηάθηα, θόθθηλν γηα ηα αζηεξάθηα Απιό
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα
wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε
Πως να δημιουργήσετε ένα Cross-Over καλώδιο
Πως να δημιουργήσετε ένα Cross-Over καλώδιο Τν crossover καλώδιο ρξεζηκνπνηείηαη γηα λα ζπλδεζνύλ δπν ππνινγηζηέο κεηαμύ ηνπο θαη αλ θηηάμνπλ έλα κηθξό ηνπηθό δίθηπν(lan). Έλα LAN κπνξεί λα είλαη ηόζν
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ..
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α.1 Α.4 λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό ηεο πξόηαζεο θαη, δίπια, ην γξάκκα πνπ αληηζηνηρεί ζηε θξάζε ε νπνία ηε ζπκπιεξώλεη
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10
Α, υμναςίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιοσ 0. Πνηνο από ηνπο πην θάησ αξηζκνύο είλαη ν κεγαιύηεξνο; (Α) 0 0 () 00 () ( 0) ( 0) () 0 0 () ( 0) ( 0). Σην πην θάησ ζρήκα νη επζείεο ε θαη ε είλαη
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ
ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
Οργάνωση και Δομή Παρουσιάσεων
Οργάνωση και Δομή Παρουσιάσεων Οη παξνπζηάζεηο κε βνήζεηα ηνπ ππνινγηζηή γίλνληαη κε πξνγξάκκαηα παξνπζηάζεσλ, όπσο ην OpenOffice.org Impress [1] θαη ην Microsoft Office PowerPoint [2]. Απηά ηα πξνγξάκκαηα
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
ΣΔΙ ΙΟΝΙΩΝ ΝΗΩΝ ΣΜΗΜΑ: ΣΔΧΝΟΛΟΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΣΗΛΔΠΙΚΟΙΝΩΝΙΩΝ ΧΔΙΜΔΡΙΝΟ ΔΞΑΜΗΝΟ Ρέππα Μαξγαξίηα
ΣΔΙ ΙΟΝΙΩΝ ΝΗΩΝ ΣΜΗΜΑ: ΣΔΧΝΟΛΟΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΣΗΛΔΠΙΚΟΙΝΩΝΙΩΝ ΧΔΙΜΔΡΙΝΟ ΔΞΑΜΗΝΟ 2011-12 Ρέππα Μαξγαξίηα Πξνρσξεκέλεο εληνιέο δηαρείξηζεο Αξρείσλθαηαιόγσλ Εντολή sort Με ηελ εληνιή απηή κπνξνύκε λα
ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2
ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ
1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.
ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε To πξόβιεκα ηεο Αλαδήηεζεο Γνζέληνο δεδνκέλσλ, ι.ρ. ζε Πίλαθα (P) Χάρλσ λα βξσ θάπνην ζπγθεθξηκέλν ζηνηρείν (key) Αλ ν πίλαθαο δελ είλαη ηαμηλνκεκέλνο Γξακκηθή
Image J Plugin particle tracker για παρακολούθηση της κίνησης σωματιδίων
Image J Plugin particle tracker για παρακολούθηση της κίνησης σωματιδίων (https://weeman.inf.ethz.ch/particletracker/) Τν Plugin particle tracker κπνξεί λα αληρλεύζεη απηόκαηα ηα ζσκαηίδηα πνπ θηλνύληαη,
Πνηα λνκίδεηο όηη ζα είλαη ε ζπλνιηθή αληίζηαζε κηαο ζπλδεζκνινγίαο δύν αληηζηαηώλ ζπλδεδεκέλεο ζε ζεηξά; Γηαηί;...
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Ιζοδύναμη ανηίζηαζη ζύνδεζηρ ανηιζηαηών Η δηδαζθαιία ηεο ηζνδύλακεο αληίζηαζεο γηα ζύλδεζε αληηζηαηώλ ζε ζεηξά θαη παξάιιεια ππάξρεη ζην Αλαιπηηθό Πξόγξακκα Σπνπδώλ ζηα καζήκαηα Φπζηθήο
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
Έκδοζη /10/2014. Νέα λειηοσργικόηηηα - Βεληιώζεις
Έκδοζη 2.89.31 08/10/2014 Η έκδοζη 2.89.31, περιλαμβάνει : Βεληιώζεις Καηάζηαζη Υπερφριών (Ε8) Αναγγελία πρόζληυης (Ε3) 08/10/2014 1 Βεληιώζεις Καηάζηαζη Υπερφριών (Ε8) Επεηδή ζηελ ειεθηξνληθή ππνβνιή
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ
Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ Πνιιαπιάζηα ελόο θπζηθνύ αξηζκνύ α είλαη νη αξηζκνί πνπ πξνθύπηνπλ από ηνλ πνιιαπιαζηαζκό ηνπ α κε όινπο ηνπο θπζηθνύο αξηζκνύο.
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ. Ειζαγωγή ζηη Φωηογραθία. Χριζηάκης Σαζεΐδης EFIAP
ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ Ειζαγωγή ζηη Φωηογραθία Χριζηάκης Σαζεΐδης EFIAP 1 ΜΑΘΗΜΑ 6 ο Προγράμμαηα θωηογραθικών μηχανών Επιλογέας προγραμμάηων Μαο δίλεη ηε δπλαηόηεηα λα ειέγμνπκε ην άλνηγκα δηαθξάγκαηνο θαη
ΠΛΗ36. Άσκηση 1. Άσκηση 2. Οη δηεπζύλζεηο ησλ 4 σλ ππνδηθηύσλ είλαη νη αθόινπζεο. Υπνδίθηπν Α: 10.101.1.64/27 Υπνδίθηπν Β: 10.101.1.
Άσκηση 1 ΠΛΗ36 1. Η κόλε πεξίπησζε λα έρνπκε ζύγθξνπζε κεηαμύ παθέησλ ησλ δύν θόκβσλ είλαη λα ζηείιεη ν δεύηεξνο πξηλ πξνιάβεη λα πιεξνθνξεζεί γηα ηελ θαηάιεςε ηνπ δηάπινπ από ηνλ άιιν. Από ηε ζηηγκή πνπ
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
Αντισταθμιστική ανάλυση
Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε
Τπολογιςτικέσ Εφαρμογέσ ςτην τατιςτική Επεξεργαςία Δεδομένων. Παραδείγματα Επίλυςησ παλαιοτέρων Θεμάτων
Τπολογιςτικέσ Εφαρμογέσ ςτην τατιςτική Επεξεργαςία Δεδομένων τα πλαίςια του μαθήματοσ ΠΙΘΑΝΟΣΗΣΕ, ΣΑΣΙΣΙΚΗ & ΣΟΙΦΕΙΑ ΑΡΙΘΜΗΣΙΚΗ ΑΝΑΛΤΗ Δ. Υαςουλιώτησ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ, 0-06 Παραδείγματα Επίλυςησ παλαιοτέρων
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη
ηδάζθσλ: εµήηξεο Εετλαιηπνύξ
ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ