Non-Markovian dynamics of an open quantum system in fermionic environments

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Non-Markovian dynamics of an open quantum system in fermionic environments"

Transcript

1 Non-Marovian dynamics of an open quanum sysem in fermionic environmens J. Q. You Deparmen of Physics, Fudan Universiy, Shanghai, and Beijing Compuaional Science Research Cener, Beijing Mi Chen (PhD suden a Fudan) Suppored by he Naional Naural Science Foundaion of China and he Naional Basic Research Program of China (973 Program) The Worshop on Correlaions and Coherence in Quanum Sysems Evora, Porugal, 8-1 Ocober, 1

2 Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Summary and ouloo

3 Wha is an open quanum sysem? How o describe is dynamics? Sysem plus environmen framewor Open sysem Environmen Closed sysem Considered sysem Noise Non-Marov or Marov Non-Marov is he rule, Marov is he excepion (N. G. van Kampen) Reduced densiy operaor: ρ () = Tr { ρ () } sys env o

4 Non-Marov vs. Marov Non-Marovian dynamics (memory environmen): The ime evoluion of he sysem s sae depends on is hisory. ρ() i = [ Hsys, ρ( )] + κ(, s) ρ( s) ds h Marov approximaion (memoryless environmen): Replace ρ( s) by ρ( ) Lindblad form: ρ i Γ = H + L L + L L h [ sys, ρ] ([, ρ ] [ ρ, ]) The reservoir is assumed o be of a broadband specrum, so as o have a correlaion ime (memory ime) much shorer han he dynamical (evoluion) ime of he considered sysem.

5 Maser equaion under Born-Marov approximaion Born approximaion (nd-order approximaion): Wea ineracion Typical assumpion: ρo () = ρsys () ρenv() ρ() i 1 = [ Hsys, ρ( )] d' [ H in ( ),[ Hin ( '), ρin ( ')]] h h env One can use i o derive a non-marovian maser equaion, bu his mehod is perurbaive (i.e., i applies o a wea sysem-bah coupling). Marov approximaion: ρin ρin Replace ( ') by ( ) ρ() i 1 = [ Hsys, ρ( )] d' [ H in ( ),[ Hin ( '), ρin ( )]] h h env H. Carmichael, An open sysems approach o quanum opics (Springer 1993)

6 Two non-perubaive mehods for non-marovian dynamics Feynman-Vernon influence funcional approach R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 4, 118 (1963) Non-Marovian maser equaion for quanum Brown moion model : B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 843 (199) Non-Marovian maser equaion of a double-quanum-do sysem: M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, (8). Non-marovian quanum rajecories Non-Marovian quanum sae diffusion (NMQSD) L. Diosi, N. Gisin, and W. T. Srunz, Phys. Rev. A 58, 1699 (1998); W. T. Srunz, L. Diosi, and N. Gisin, Phys. Rev. Le. 8, 181 (1999); T. Yu, L. Diosi, N. Gisin, and W. T. Srunz, Phys. Rev. A 6, 91 (1999). Quanum hree-level sysem: J. Jing and T. Yu, Phys. Rev. Le. 15, 443 (1) Exension o he fermionic-bah case: Mi Chen and J.Q. You, arxiv:13.17; Wufu Shi, Xinyu Zhao and Ting Yu, arxiv:13.19.

7 Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Summary and ouloo

8 Some exacly solvable models Toal Hamilonian: H H ( g L = + o sys b g ) Lb + + ω bb Sochasic Schrödinger equaion (Diosi-Gisin-Srunz equaion) ψ + ( z ) = [ ihsys + Lz + L O(, z)] ψ ( z) (, ) = α( ) (,, ) Oz sosz ds ρ ψ ψ Μ{ ( z ) ( z)} iω ( s ) α ( s ) J ( ω ) e d ω == Spin-boson pure dephasing model ω H sys σ z = L = σ z Osz Spin-boson dissipaive model (,, ) = L ω = σ L = σ H sys z Osz (,, ) = (, ) f sσ f (, s) = [ iω+ α( s') f(, s') ds'] f(, s) f(,) = 1

9 Some exacly solvable models Damped harmonic oscillaor model Hsys = ωaa L= a Osz (,, ) = (, ) f sa f (, s) = [ iω+ α( s') f(, s') ds'] f(, s) f(,) = 1 Quanum Brown moion model p 1 H sys m q m = + ω L= q (,, ) (, ) (, ) (,, ') s' ' Osz = f sq+ gs p i jss zds Exac non-marovian maser equaion a () b () ρ ρ ρ ρ ρ ρ i i = i[ Hsys, ] + [ q, ] + [ q,{ p, }] + c()[ q,[ p, ]] d()[ q,[ q, ]] B. L. Hu e. al., Phys. Rev. D 45, 843 (199); W. T. Srunz and T. Yu, Phys. Rev. A 69, 5115 (4).

10 Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Solid-sae quanum circuis (see, e.g., JQY and Nori, Naure 474, (11) ; Xiang, Ashhab, JQY and Nori, arxiv: , o appear in Rev. Mod. Phys.) Fermionic bahs: Elecric leads, bacground charge flucuaions, Summary and ouloo

11 Quanum confined sysem coupled o fermionic reservoirs Quanum do Double quanum do The oal Hamilonian of a quanum confined sysem coupled o wo fermionic reservoirs H = H + H + H o sys in env H g c a g c a H c in = ( L L L + R R R +..) H a a a a env = ( ωl L L + ωr R R) In a quanum sae diffusion approach, environmens are required o be iniially a zero emperaure, so as o convenienly represen he environmenal degrees of freedom wih he coheren sae basis.

12 Bogoliubov ransformaion: Convering a nonzero- o a zero-emperaure problem As for environmens iniially wih a nonzero emperaure, one can map he nonzero-emperaure densiy operaor o a zero-emperaure densiy operaor using a Bogoliubov ransformaion [T. Yu, Phys. Rev. A 69, 617 (4)]. By including he par involving holes in he elecric leads, he oal Hamilonian can be wrien as H = H + ( g c a + H. c.) + ω a a + ω b b o sys Performing Bogoliubov ransformaion for fermionic operaors: a n d n e = 1 b n e n d = 1 + H = H + n g c d + H c + n g c e + H c + ' o sys 1 (..) (..) H H n g c d e n g c e e H c iω iω ' o ( ) = sys + ( ) ω d d + ω e e The fermionic bahs wih nonzero iniial emperaures are mapped o virual fermionic bahs wih zero iniial emperaure.

13 Fermionic coheren saes represenaion Iniial condiion Ψ = ψ = d e d = e = Fermionic coheren sae basis for he environmens z = z = e z d Grassmann variables z, w w e w = w = e zw = z w In he coheren sae represenaion Ψ = ih () Ψ o ψ z w zw Ψ ψ (, ) ( z, w) = i zw Ho( ) Ψ Use he following equaions: d zw = z zw d zw = zw z z () s δ = ds z z z () s δ e zw w zw w () s δ ds w w w () s = δ = (chain rules) e zw = zw w

14 Non-Marovian quanum sae diffusion (QSD) equaion Non-Marovian QSD equaion (sochasic Schrödinger equaion) Noise funcion ψ = ih ψ c z + sys [ ( ) δ cw ()] ψ c α 1( s) ψ ds c α ( s) ψ ds δz() s δw() s iω = iω z () i 1 n g z e w () = i n g w e Saisical properies of noise funcion M{ z ( )} = M{ z ( ) z ( s)} = M{ z ( ) z ( s)} = α ( s) = dω[1 n ( ω)] J ( ω) e ω i ( s) 1 ( ) M{ w( )} = M{ w( ) w( s)} = M{ w ( ) w ( s)} ( s) d n ( ) J ( ) e iω s = α = ω ω ω zz ww M{ L} e { L} d zd w δ zz= z z ww= w w d z = dzdz d w = dw dw The compleeness relaion for coheren saes: zz ww e zw zw d zd w = 1

15 The O-operaor and is equaion of moion Non-Marovian QSD equaion (sochasic Schrödinger equaion) ψ = ih ψ c z + sys [ ( ) δ cw ()] ψ c α 1( s) ψ ds c α ( s) ψ ds δz() s δw() s Lie he Diosi-Gisin-Srunz equaion in he bosonic-bah case, we inroduce he O-operaors: O δ δ z δ ψ (, ) z w = O (, s, z, w ) ψ( z, w ) δ w () s ψ (, ) z w = O1(, s, z, w ) ψ( z, w ) () s Equaion of moion for he O-operaors: δ O z w = c O (,,, ) 1 (,, z, w ) = c = [ ih ( c O + c O ), O ] + Q + ({ c, O } z ( ) + { c, O } w ( )) n + sys ' '1 ' ' n n ' n ' ' n ' ' ' O O O O Q c δ c δ c δ c δ L1 R1 L R n = L + R + L + R δλn δλn δλn δλn Λ = 1 z () s Λ = w () s

16 Non-Marovian maser equaion Sochasic reconsrucion of he reduced densiy operaor: ρ = Tr Ψ Ψ = e ψ ( z, w ) ψ ( z, w) d zd w M{ ψ ( z, w ) ψ ( z, w)} z z w w env Sochasic projecion operaor P z w z w ρ = M { P } ψ(, ) ψ(, ) Non-Marovian maser equaion ρ = ihsys ρ + c Μ PO 1 z w c Μ O1 z w P [ c, Μ{ O (, z, w ) P }] + [ c, Μ{ PO (, z, w)}] [, ] ([, { (,, )}] [, { (,, ) }] Generally, i is complex, bu can have a simple form for a given sysem. Marov limi α ( s) [1 n ] ( s) 1 δ Γ α ( s) n ( s) Γ δ Γ ρ ρ ρ ρ ρ ρ ρ ρ = ih [ sys, ] + [ n( c c cc cc ) + (1 n)( c c cc cc )]

17 Applicaions: (1) Single quanum do Single quanum do H = H + H + H o sys in env H = ( ω a a + ω a a ) env L L L R R R = L L L + R R R + H sys = ωcc L = R = Hin ( g c a g c a H. c.) c c c Srong Coulomb blocade: U Consrain: Only one elecron is allowed in he single quanum do O-operaors 1 = L + R (,,, ) = (, ) + L + R O (, s, z, w ) f (, s) c q (, s, s')[ w ( s') w ( s')] ds' O s z w f s c q (, s, s')[ z ( s') z ( s')] ds'

18 Applicaions: (1) Single quanum do Exac non-marovian maser equaion ih [ sys, ] 1( )[ c, c] ( )[ cc, ] 1( ) ρ = ρ +Γ ρ +Γ ρ Γ [ c, cρ ] Γ( ) [ c, ρc] wih ime-dependen raes: Γ () = [ α ( s) A (, s) α ( s) B (, s)] ds j 1 j j ( s iω ) Aj(, s) + β( s s') A (, ') ' (, ) j s ds = U s s ( s iω ) Bj( s, ) + β( s s') B(, ') ' (, ) j s ds = Vs s ( iω ) h(, s) β( s') h(, s') ds' = s s Final condiion a : s = 1 1 α ( s) = α ( s) + α ( s) j Lj Rj Us (, ) = α ( shs ) (, ') ds' Vs (, ) = α ( shs ) (, ') ds' 1 β ( s s') = α ( s' s) + α ( s s') 1 A (,) = B (,) = h(,) = 1 A(,) = B(,) =

19 Applicaions: (1) Single quanum do Exac non-marovian maser equaion ih [ sys, ] 1( )[ c, c] ( )[ cc, ] 1( ) ρ = ρ +Γ ρ +Γ ρ Γ [ c, cρ ] Γ( ) [ c, ρc]

20 Applicaions: (1) Single quanum do Marov limi: 1 1 Γ1() [1 nl( ω)] Γ L + [1 nr( ω)] Γ 1 1 Γ( ) nl( ω) ΓL nr( ω) Γ R R Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )] Large bias limi: μl ω μr Zero emperaure: > > nl ( ω ) = 1 nr ( ω ) = & ρ = Γ ρ + Γ ρ & ρ =Γ ρ Γ ρ L R L R 11 & ρ = [ iω +Γ +Γ ] ρ 1 L R 1 empy do sae 1 occupied do sae S. A. Gurviz and Ya. S. Prager, Phys. Rev. B 53, 1593 (1996)

21 Applicaions: () Double quanum do Double quanum do (a) U U, V = Consrain: A mos wo elecrons are allowed in he DQD. (b) , V H = ωcc+ ω cc +Ω ( cc+ cc) cl c1 sys O-operaors H a a a a H = H + H + H env = ( ωl L L + ωr R R) o sys in env Consrain: Only one elecron is allowed in he DQD. = cr = c 1 = L + 4 R O (, sz,, w) f (, sc ) f (, sc ) [ f (, ss, ') w( s') f (, ss, ') w( s')] ds' = L + 4 R H g c a g c a H c in = ( L L L + R R R +..) O (, sz,, w) m (, sc ) m (, sc ) [ m (, ss, ') w( s') m (, ss, ') w( s')] ds'

22 Applicaions: () Double quanum do Exac non-marovian maser equaion = [, ] +Γ ( )[, ] +Γ ( )[, ] +Γ ( )[, ] +Γ ( )[, ] i Hsys L1 c1 c1 L c1 c1 L3 c1 c L4 c1 c ρ ρ ρ ρ ρ ρ +Γ ()[ ()[ ()[ R1()[ c, ρc1] + Γ R c, c1 ρ] + Γ R3 c, ρc] + ΓR4 c, c ρ ] () Γ L 1 [ c1, ρc1] ΓL( ) [ c1, c1ρ ] ΓL3( ) [ c1, cρ] Γ L4( ) [ c1, ρc] Γ () R1 [ c, ρc1] ΓR( ) [ c, c1ρ ] ΓR3( ) [ c, cρ] Γ R4( ) [ c, ρc] wih ime-dependen raes A j (, s) B j (, s) Γ () = [ α ( s) A (, s) α ( s) B (, s)] ds j 1 j j saisfy a se of inegro-differenial equaions, wih final condiions A (,) = A (,) = B (,) = B (,) = 1 L1 R3 L R4 A (,) = B (,) = for oher, j j j

23 Applicaions: () Double quanum do Marov limi: 1 1 Γ L1() = [1 nl( ω1)] Γ Γ L L() = n ( 1) L ω Γ 1 1 Γ R3() = [1 nr ( ω)] Γ Γ R R4() = n ( ) R ω Γ L R Γ () =Γ () =Γ () =Γ () = R1 R L3 L4 Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )]

24 Applicaions: () Double quanum do Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )] Large bias limi and zero emperaure condiion μ ω ω μ L > 1, > R 1 nl( ω ) = 1 nr( ω ) = empy do 1, lef (righ)do occupied 3 boh dos occupied Srong Coulomb-blocade regime (a) Srong inerdo Coulomb repulsion & ρ = Γ ρ +Γ ρ L R & ρ ρ ρ ( ρ ρ ) 11 =Γ L +Γ R 33 + iω 1 1 & ρ ( ) ρ ( ρ ρ ) = Γ L +ΓR iω 1 1 & ρ33 =ΓLρ ΓRρ33 Γ +Γ & ρ = i( ω ω ) ρ + iω ( ρ ρ ) ρ S. A. Gurviz and Y. S. Prager, PRB 53,1593 (1996); L R M. W. Y. Tu and W. M. Zhang, PRB 78, (8). (b) Boh srong inra- and inerdo Coulomb repulsions & ρ = Γ ρ +Γ ρ L R & ρ =Γ ρ + iω ( ρ ρ ) 11 L 1 1 & ρ = ΓRρ iω( ρ1 ρ1) Γ & ρ = i( ω ω ) ρ + iω ( ρ ρ ) ρ R T. H. Soof and Y. V. Nazarov, PRB 53,15 (1996)

25 Summary Summary and ouloo Non-Marovian quanum sae diffusion (QSD) approach is exended o deal wih he fermionic environmens. Non-Marovian maser equaion is derived. The approach is applied o single quanum do and double quanum do, each coupled o wo elecric leads. Ouloo Connecion o Feynman-Vernon influence funcional approach? Non-Marovian QSD for a spin environmen? Non-Marovian QSD for he sysem nonlinearly coupled o eiher a bosonic or fermionic bah?

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

D-Wave D-Wave Systems Inc.

D-Wave D-Wave Systems Inc. D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Large deviations of the density and of the current in non equilibrium steady states

Large deviations of the density and of the current in non equilibrium steady states Large deviaions of he densiy and of he curren in non equilibrium seady saes Bernard DERRIDA Universié Pierre e Marie Curie and Ecole Normale Supérieure, Paris June 2012 Lyon COLLABORATORS J.L. Lebowiz,

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

3 Frequency Domain Representation of Continuous Signals and Systems

3 Frequency Domain Representation of Continuous Signals and Systems 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

Analiza reakcji wybranych modeli

Analiza reakcji wybranych modeli Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The canonical 2nd order transfer function is expressed as. (ω n

The canonical 2nd order transfer function is expressed as. (ω n Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions Represenaion of Five Diensional Lie Algebra and Generaing Relaions for he Generalized Hypergeoeric Funcions V.S.BHAGAVAN Deparen of Maheaics FED-I K.L.Universiy Vaddeswara- Gunur Dis. A.P. India. E-ail

Διαβάστε περισσότερα

A Control Method of Errors in Long-Term Integration

A Control Method of Errors in Long-Term Integration 1,a) Hamilon Runge Kua Hamilonian 1/2 Runge Kua (Brouwer s law) Runge Kua Runge Kua Hamilonian 1/2 Brouwer 3 A Conrol Mehod of Errors in Long-Term Inegraion Ozawa Kazufumi 1,a) Absrac: When solving he

Διαβάστε περισσότερα

(b) flat (continuous) fins on an array of tubes

(b) flat (continuous) fins on an array of tubes (a) Individually finned ues () fla (coninuous) fins on an array of ues Eample Fins Fins on Segosaurus 3 Rekangulär fläns, Recangular fin. Z d f 4 Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f )

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα

Rektangulär fläns, Rectangular fin

Rektangulär fläns, Rectangular fin Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f ) (3 3) m αc λ α Z λz α λ Randvillkor, Boundary condiions: : d : λ ( f ) d unn och lång fläns, long and hin fin d d f Rekangulär fläns, recangular fin

Διαβάστε περισσότερα

Pricing Asian option under mixed jump-fraction process

Pricing Asian option under mixed jump-fraction process 3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Les gouttes enrobées

Les gouttes enrobées Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

The third moment for the parabolic Anderson model

The third moment for the parabolic Anderson model The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09 NC Disc hermistors ND 03/06/09 NE 03/06/09 NV 06/09 APPLICAIONS ND or NE: Commerical, Industrial and Automotive Applications AEC-Q200 Qualified NV: Professional Applicationsl Alarm and temperature measurement

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα