ELEMENTS BOOK 10. Incommensurable Magnitudes

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ELEMENTS BOOK 10. Incommensurable Magnitudes"

Transcript

1 ELEMENTS OOK 10 Incommensurable Magnitudes The theory of incommensurable magntidues set out in this book is generally attributed to Theaetetus of Athens. In the footnotes throughout this book, k, k, etc. stand for distinct ratios of positive integers. 281

2 ÎÇÖÓ. Definitions αʹ. Σύμμετρα μεγέθη λέγεται τὰ τῷ αὐτῷ μετρῳ με- 1. Those magnitudes measured by the same measure τρούμενα,ἀσύμμετραδέ,ὧνμηδὲνἐνδέχεταικοινὸνμέτρον are said (to be) commensurable, but (those) of which no γενέσθαι. (magnitude) admits to be a common measure (are said βʹ.εὐθεῖαιδυνάμεισύμμετροίεἰσιν,ὅταντὰἀπ αὐτῶν to be) incommensurable. τετράγωνατῷαὐτῷχωρίῳμετρῆται,ἀσύμμετροιδέ,ὅταν 2. (Two) straight-lines are commensurable in square τοῖς ἀπ αὐτῶν τετραγώνοις μηδὲν ἐνδέχηται χωρίον κοινὸν when the squares on them are measured by the same μέτρον γενέσθαι. area, but (are) incommensurable (in square) when no γʹ. Τούτων ὑποκειμένων δείκνυται, ὅτι τῇ προτεθείσῃ area admits to be a common measure of the squares on εὐθείᾳὑπάρχουσινεὐθεῖαιπλήθειἄπειροισύμμετροίτεκαὶ them. ἀσύμμετροι αἱ μὲν μήκει μόνον, αἱ δὲ καὶ δυνάμει. καλείσθω 3. These things being assumed, it is proved that there οὖν ἡ μὲν προτεθεῖσα εὐθεῖα ῥητή, καὶ αἱ ταύτῃ σύμμετροι exist an infinite multitude of straight-lines commensuεἴτε μήκει καὶ δυνάμει εἴτε δυνάμει μόνον ῥηταί, αἱ δὲ ταύτῃ rable and incommensurable with an assigned straight- ἀσύμμετροιἄλογοικαλείσθωσαν. line those (incommensurable) in length only, and those δʹ.καὶτὸμὲνἀπὸτῆςπροτεθείσηςεὐθείαςτετράγω- also (commensurable or incommensurable) in square. νον ῥητόν, καὶ τὰ τούτῳ σύμμετρα ῥητά, τὰ δὲ τούτῳ Therefore, let the assigned straight-line be called ratio- ἀσύμμετρα ἄλογα καλείσθω, καὶ αἱ δυνάμεναι αὐτὰ ἄλογοι, nal. And (let) the (straight-lines) commensurable with it, εἰμὲντετράγωναεἴη, αὐταὶαἱπλευραί,εἰδὲἕτεράτινα either in length and square, or in square only, (also be εὐθύγραμμα, αἱ ἴσα αὐτοῖς τετράγωνα ἀναγράφουσαι. called) rational. ut let the (straight-lines) incommensurable with it be called irrational. 4. And let the square on the assigned straight-line be called rational. And (let areas) commensurable with it (also be called) rational. ut (let areas) incommensurable with it (be called) irrational, and (let) their squareroots $ (also be called) irrational the sides themselves, if the (areas) are squares, and the (straight-lines) describing squares equal to them, if the (areas) are some other rectilinear (figure). In other words, two magnitudes α and β are commensurable if α : β :: 1 : k, and incommensurable otherwise. Literally, in power. In other words, two straight-lines of length α and β are commensurable in square if α : β :: 1 : k 1/2, and incommensurable in square otherwise. Likewise, the straight-lines are commensurable in length if α : β :: 1 : k, and incommensurable in length otherwise. To be more exact, straight-lines can either be commensurable in square only, incommensurable in length only, or commenusrable/incommensurable in both length and square, with an assigned straight-line. Let the length of the assigned straight-line be unity. Then rational straight-lines have lengths expressible as k or k 1/2, depending on whether the lengths are commensurable in length, or in square only, respectively, with unity. All other straight-lines are irrational. $ The square-root of an area is the length of the side of an equal area square. The area of the square on the assigned straight-line is unity. Rational areas are expressible as k. All other areas are irrational. Thus, squares whose sides are of rational length have rational areas, and vice versa.. Proposition 1 Δύο μεγεθῶν ἀνίσων ἐκκειμένων, ἐὰν ἀπὸ τοῦ μείζονος If, from the greater of two unequal magnitudes ἀφαιρεθῇ μεῖζον ἢ τὸ ἥμισυ καὶ τοῦ καταλειπομένου μεῖζον (which are) laid out, (a part) greater than half is sub- ἢ τὸ ἥμισυ, καὶ τοῦτο ἀεὶ γίγνηται, λειφθήσεταί τι μέγεθος, tracted, and (if from) the remainder (a part) greater than ὃ ἔσται ἔλασσον τοῦ ἐκκειμένου ἐλάσσονος μεγέθους. half (is subtracted), and (if) this happens continually, Εστω δύο μεγέθη ἄνισα τὰ ΑΒ, Γ, ὧν μεῖζον τὸ ΑΒ then some magnitude will (eventually) be left which will 282

3 λέγω, ὅτι, ἐαν ἀπὸ τοῦ ΑΒ ἀφαιρεθῇ μεῖζον ἢ τὸ ἥμισυ be less than the lesser laid out magnitude. καὶτοῦκαταλειπομένουμεῖζονἢτὸἥμισυ,καὶτοῦτοἀεὶ Let A and be two unequal magnitudes, of which γίγνηται, λειφθήσεταί τι μέγεθος, ὃ ἔσται ἔλασσον τοῦ Γ (let) A (be) the greater. I say that if (a part) greater μεγέθους. than half is subtracted from A, and (if a part) greater than half (is subtracted) from the remainder, and (if) this happens continually, then some magnitude will (eventually) be left which will be less than the magnitude. Α Κ Θ Β A K H Γ Ζ Η Ε Τὸ Γ γὰρ πολλαπλασιαζόμενον ἔσται ποτὲ τοῦ ΑΒ For, when multiplied (by some number), will someμεῖζον. πεπολλαπλασιάσθω,καὶἔστωτὸδετοῦμὲνγ times be greater than A [Def. 5.4]. Let it have been πολλαπλάσιον,τοῦδὲαβμεῖζον,καὶδιῃρήσθωτὸδεεἰς (so) multiplied. And let DE be (both) a multiple of, τὰτῷγἴσατὰδζ,ζη,ηε,καὶἀφῃρήσθωἀπὸμὲντοῦ and greater than A. And let DE have been divided into ΑΒμεῖζονἢτὸἥμισυτὸΒΘ,ἀπὸδὲτοῦΑΘμεῖζονἢτὸ the (divisions) DF, FG, GE, equal to. And let H, ἥμισυτὸθκ,καὶτοῦτοἀεὶγιγνέσθω,ἕωςἂναἱἐντῷαβ (which is) greater than half, have been subtracted from διαιρέσεις ἰσοπληθεῖς γένωνται ταῖς ἐν τῷ ΔΕ διαιρέσεσιν. A. And (let) HK, (which is) greater than half, (have Εστωσαν οὖν αἱ ΑΚ, ΚΘ, ΘΒ διαιρέσεις ἰσοπληθεῖς been subtracted) from AH. And let this happen continuοὖσαιταῖςδζ,ζη,ηε καὶἐπεὶμεῖζόνἐστιτὸδετοῦ ally, until the divisions in A become equal in number to ΑΒ, καὶ ἀφῄρηται ἀπὸ μὲν τοῦ ΔΕ ἔλασσον τοῦ ἡμίσεως τὸ the divisions in DE. ΕΗ,ἀπὸδὲτοῦΑΒμεῖζονἢτὸἥμισυτὸΒΘ,λοιπὸνἄρα Therefore, let the divisions (in A) be AK, KH, H, τὸηδλοιποῦτοῦθαμεῖζόνἐστιν.καὶἐπεὶμεῖζόνἐστιτὸ being equal in number to DF, FG, GE. And since DE is ΗΔτοῦΘΑ,καὶἀφῄρηταιτοῦμὲνΗΔἥμισυτὸΗΖ,τοῦ greater than A, and EG, (which is) less than half, has δὲθαμεῖζονἢτὸἥμισυτὸθκ,λοιπὸνἄρατὸδζλοιποῦ been subtracted from DE, and H, (which is) greater τοῦακμεῖζόνἐστιν. ἴσονδὲτὸδζτῷγ καὶτὸγἄρα than half, from A, the remainder GD is thus greater τοῦακμεῖζόνἐστιν.ἔλασσονἄρατὸακτοῦγ. than the remainder HA. And since GD is greater than ΚαταλείπεταιἄραἀπὸτοῦΑΒμεγέθουςτὸΑΚμέγεθος HA, and the half GF has been subtracted from GD, and ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ HK, (which is) greater than half, from HA, the remain- ὅπερ ἔδει δεῖξαι. ὁμοίως δὲ δειχθήσεται, κἂν ἡμίση ᾖ τὰ der DF is thus greater than the remainder AK. And DF ἀφαιρούμενα. (is) equal to. is thus also greater than AK. Thus, AK (is) less than. Thus, the magnitude AK, which is less than the lesser laid out magnitude, is left over from the magnitude A. (Which is) the very thing it was required to show. (The theorem) can similarly be proved even if the (parts) subtracted are halves. This theorem is the basis of the so-called method of exhaustion, and is generally attributed to Eudoxus of nidus. D F G E. Proposition 2 Εὰν δύο μεγεθῶν[ἐκκειμένων] ἀνίσων ἀνθυφαιρουμένου If the remainder of two unequal magnitudes (which ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον are) [laid out] never measures the (magnitude) before it, μηδέποτε καταμετρῇ τὸ πρὸ ἑαυτοῦ, ἀσύμμετρα ἔσται τὰ (when) the lesser (magnitude is) continually subtracted μεγέθη. in turn from the greater, then the (original) magnitudes Δύο γὰρ μεγεθῶν ὄντων ἀνίσων τῶν ΑΒ, ΓΔ καὶ will be incommensurable. ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος For, A and D being two unequal magnitudes, and ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε καταμε- A (being) the lesser, let the remainder never measure 283

4 τρείτω τὸ πρὸ ἑαυτοῦ λέγω, ὅτι ἀσύμμετρά ἐστι τὰ ΑΒ, the (magnitude) before it, (when) the lesser (magnitude ΓΔ μεγέθη. is) continually subtracted in turn from the greater. I say that the magnitudes A and D are incommensurable. Α Η Β A G Ε E Γ Ζ Εἰ γάρ ἐστι σύμμετρα, μετρήσει τι αὐτὰ μέγεθος. με- For if they are commensurable then some magnitude τρείτω, εἰ δυνατόν, καὶ ἔστω τὸ Ε καὶ τὸ μὲν ΑΒ τὸ ΖΔ will measure them (both). If possible, let it (so) measure καταμετροῦνλειπέτωἑαυτοῦἔλασσοντὸγζ,τὸδὲγζτὸ (them), and let it be E. And let A leave F less than ΒΗ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΑΗ, καὶ τοῦτο itself (in) measuring F D, and let F leave AG less than ἀεὶ γινέσθω, ἕως οὗ λειφθῇ τι μέγεθος, ὅ ἐστιν ἔλασσον τοῦ itself (in) measuring G, and let this happen continually, Ε.γεγονέτω,καὶλελείφθωτὸΑΗἔλασσοντοῦΕ.ἐπεὶοὖν until some magnitude which is less than E is left. Let τὸετὸαβμετρεῖ,ἀλλὰτὸαβτὸδζμετρεῖ,καὶτὸεἄρα (this) have occurred, and let AG, (which is) less than τὸζδμετρήσει.μετρεῖδὲκαὶὅλοντὸγδ καὶλοιπὸνἄρα E, have been left. Therefore, since E measures A, but τὸγζμετρήσει. ἀλλὰτὸγζτὸβημετρεῖ καὶτὸεἄρα A measures DF, E will thus also measure FD. And it τὸ ΒΗ μετρεῖ. μετρεῖ δὲ καὶ ὅλον τὸ ΑΒ καὶ λοιπὸν ἄρα τὸ also measures the whole (of) D. Thus, it will also mea- ΑΗ μετρήσει, τὸ μεῖζον τὸ ἔλασσον ὅπερ ἐστὶν ἀδύνατον. sure the remainder F. ut, F measures G. Thus, E οὐκἄρατὰαβ,γδμεγέθημετρήσειτιμέγεθος ἀσύμμετρα also measures G. And it also measures the whole (of) ἄραἐστὶτὰαβ,γδμεγέθη. Εὰν ἄρα δύο μεγεθῶν ἀνίσων, καὶ τὰ ἑξῆς. The fact that this will eventually occur is guaranteed by Prop F A. Thus, it will also measure the remainder AG, the greater (measuring) the lesser. The very thing is impossible. Thus, some magnitude cannot measure (both) the magnitudes A and D. Thus, the magnitudes A and D are incommensurable [Def. 10.1]. Thus, if... of two unequal magnitudes, and so on.... D. Proposition 3 Δύο μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον αὐτῶν To find the greatest common measure of two given κοινὸν μέτρον εὑρεῖν. commensurable magnitudes. Α Ζ Β A F Γ Η Ε ΕστωτὰδοθένταδύομεγέθησύμμετρατὰΑΒ,ΓΔ, Let A and D be the two given magnitudes, of ὧνἔλασσοντὸαβ δεῖδὴτῶναβ,γδτὸμέγιστονκοινὸν which (let) A (be) the lesser. So, it is required to find μέτρονεὑρεῖν. the greatest common measure of A and D. Τὸ ΑΒ γὰρ μέγεθος ἤτοι μετρεῖ τὸ ΓΔ ἢ οὔ. εἰ μὲν For the magnitude A either measures, or (does) not οὖνμετρεῖ,μετρεῖδὲκαὶἑαυτό,τὸαβἄρατῶναβ,γδ (measure), D. Therefore, if it measures (D), and κοινὸν μέτρον ἐστίν καὶ φανερόν, ὅτι καὶ μέγιστον. μεῖζον (since) it also measures itself, A is thus a common meaγὰρτοῦαβμεγέθουςτὸαβοὐμετρήσει. sure of A and D. And (it is) clear that (it is) also (the) Μὴ μετρείτω δὴ τὸ ΑΒ τὸ ΓΔ. καὶ ἀνθυφαιρουμένου greatest. For a (magnitude) greater than magnitude A ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος, τὸ περιλειπόμενον cannot measure A. μετρήσειποτὲτὸπρὸἑαυτοῦδιὰτὸμὴεἶναιἀσύμμετρατὰ So let A not measure D. And continually subtract- ΑΒ,ΓΔ καὶτὸμὲναβτὸεδκαταμετροῦνλειπέτωἑαυτοῦ ing in turn the lesser (magnitude) from the greater, the G E D 284

5 ἔλασσον τὸ ΕΓ, τὸ δὲ ΕΓ τὸ ΖΒ καταμετροῦν λειπέτω remaining (magnitude) will (at) some time measure the ἑαυτοῦἔλασσοντὸαζ,τὸδὲαζτὸγεμετρείτω. (magnitude) before it, on account of A and D not be- ΕπεὶοὖντὸΑΖτὸΓΕμετρεῖ,ἀλλὰτὸΓΕτὸΖΒμετρεῖ, ing incommensurable [Prop. 10.2]. And let A leave E καὶ τὸ ΑΖ ἄρα τὸ ΖΒ μετρήσει. μετρεῖ δὲ καὶ ἑαυτό καὶ less than itself (in) measuring ED, and let E leave AF ὅλονἄρατὸαβμετρήσειτὸαζ.ἀλλὰτὸαβτὸδεμετρεῖ less than itself (in) measuring F, and let AF measure καὶτὸαζἄρατὸεδμετρήσει. μετρεῖδὲκαὶτὸγε καί E. ὅλον ἄρα τὸ ΓΔ μετρεῖ τὸ ΑΖ ἄρα τῶν ΑΒ, ΓΔ κοινὸν Therefore, since AF measures E, but E measures μέτρονἐστίν. λέγωδή,ὅτικαὶμέγιστον. εἰγὰρμή,ἔσται F, AF will thus also measure F. And it also meaτιμέγεθοςμεῖζοντοῦαζ,ὃμετρήσειτὰαβ,γδ.ἔστωτὸ sures itself. Thus, AF will also measure the whole (of) Η.ἐπεὶοὖντὸΗτὸΑΒμετρεῖ,ἀλλὰτὸΑΒτὸΕΔμετρεῖ, A. ut, A measures DE. Thus, AF will also meaκαὶτὸηἄρατὸεδμετρήσει. μετρεῖδὲκαὶὅλοντὸγδ sure ED. And it also measures E. Thus, it also meaκαὶλοιπὸνἄρατὸγεμετρήσειτὸη.ἀλλὰτὸγετὸζβ sures the whole of D. Thus, AF is a common measure μετρεῖ καὶτὸηἄρατὸζβμετρήσει. μετρεῖδὲκαὶὅλον of A and D. So I say that (it is) also (the) greatest τὸαβ,καὶλοιπὸντὸαζμετρήσει,τὸμεῖζοντὸἔλασσον (common measure). For, if not, there will be some mag- ὅπερἐστὶνἀδύνατον. οὐκἄραμεῖζόντιμέγεθοςτοῦαζ nitude, greater than AF, which will measure (both) A τὰαβ,γδμετρήσει τὸαζἄρατῶναβ,γδτὸμέγιστον and D. Let it be G. Therefore, since G measures A, κοινὸνμέτρονἐστίν. but A measures ED, G will thus also measure ED. And ΔύοἄραμεγεθῶνσυμμέτρωνδοθέντωντῶνΑΒ,ΓΔ it also measures the whole of D. Thus, G will also meaτὸ μέγιστον κοινὸν μέτρον ηὕρηται ὅπερ ἔδει δεῖξαι. sure the remainder E. ut E measures F. Thus, G will also measure F. And it also measures the whole (of) A. And (so) it will measure the remainder AF, the greater (measuring) the lesser. The very thing is impossible. Thus, some magnitude greater than AF cannot measure (both) A and D. Thus, AF is the greatest common measure of A and D. Thus, the greatest common measure of two given commensurable magnitudes, A and D, has been found. (Which is) the very thing it was required to show. È Ö Ñ. orollary Εκδὴτούτουφανερόν,ὅτι,ἐὰνμέγεθοςδύομεγέθη So (it is) clear, from this, that if a magnitude measures μετρῇ, καὶ τὸ μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει. two magnitudes then it will also measure their greatest common measure.. Proposition 4 Τριῶν μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον To find the greatest common measure of three given αὐτῶν κοινὸν μέτρον εὑρεῖν. commensurable magnitudes. Α Β Γ Ε Ζ A D E F ΕστωτὰδοθέντατρίαμεγέθησύμμετρατὰΑ,Β,Γ Let A,, be the three given commensurable magδεῖδὴτῶνα,β,γτὸμέγιστονκοινὸνμέτρονεὑρεῖν. nitudes. So it is required to find the greatest common Εἰλήφθω γὰρ δύο τῶν Α, Β τὸ μέγιστον κοινὸν μέτρον, measure of A,,. καὶἔστωτὸδ τὸδὴδτὸγἤτοιμετρεῖἢοὔ[μετρεῖ]. For let the greatest common measure of the two (magμετρείτωπρότερον. ἐπεὶοὖντὸδτὸγμετρεῖ,μετρεῖδὲ nitudes) A and have been taken [Prop. 10.3], and let it 285

6 καὶτὰα,β,τὸδἄρατὰα,β,γμετρεῖ τὸδἄρατῶνα, be D. So D either measures, or [does] not [measure],. Β, Γ κοινὸν μέτρον ἐστίν. καὶ φανερόν, ὅτι καὶ μέγιστον Let it, first of all, measure (). Therefore, since D meaμεῖζον γὰρ τοῦ Δ μεγέθους τὰ Α, Β οὐ μετρεῖ. sures, and it also measures A and, D thus measures Μὴ μετρείτω δὴ τὸ Δ τὸ Γ. λέγω πρῶτον, ὅτι σύμμετρά A,,. Thus, D is a common measure of A,,. And ἐστιτὰγ,δ.ἐπεὶγὰρσύμμετράἐστιτὰα,β,γ,μετρήσει (it is) clear that (it is) also (the) greatest (common meaτιαὐτὰμέγεθος, ὃδηλαδὴκαὶτὰα,βμετρήσει ὥστε sure). For no magnitude larger than D measures (both) καὶτὸτῶνα,βμέγιστονκοινὸνμέτροντὸδμετρήσει. A and. μετρεῖ δὲ καὶ τὸ Γ ὥστε τὸ εἰρημένον μέγεθος μετρήσει τὰ So let D not measure. I say, first, that and D are Γ,Δ σύμμετραἄραἐστὶτὰγ,δ.εἰλήφθωοὖναὐτῶντὸ commensurable. For if A,, are commensurable then μέγιστονκοινὸνμέτρον,καὶἔστωτὸε.ἐπεὶοὖντὸετὸ some magnitude will measure them which will clearly Δμετρεῖ,ἀλλὰτὸΔτὰΑ,Βμετρεῖ,καὶτὸΕἄρατὰΑ,Β also measure A and. Hence, it will also measure D, the μετρήσει. μετρεῖ δὲ καὶ τὸ Γ. τὸ Ε ἄρα τὰ Α, Β, Γ μετρεῖ greatest common measure of A and [Prop corr.]. τὸεἄρατῶνα,β,γκοινόνἐστιμέτρον.λέγωδή,ὅτικαὶ And it also measures. Hence, the aforementioned magμέγιστον. εἰ γὰρ δυνατόν, ἔστω τι τοῦ Ε μεῖζον μέγεθος nitude will measure (both) and D. Thus, and D are τὸζ,καὶμετρείτωτὰα,β,γ.καὶἐπεὶτὸζτὰα,β,γ commensurable [Def. 10.1]. Therefore, let their greatest μετρεῖ,καὶτὰα,βἄραμετρήσεικαὶτὸτῶνα,βμέγιστον common measure have been taken [Prop. 10.3], and let κοινὸν μέτρον μετρήσει. τὸ δὲ τῶν Α, Β μέγιστον κοινὸν it be E. Therefore, since E measures D, but D measures μέτρονἐστὶτὸδ τὸζἄρατὸδμετρεῖ.μετρεῖδὲκαὶτὸ (both) A and, E will thus also measure A and. And Γ τὸζἄρατὰγ,δμετρεῖ καὶτὸτῶνγ,δἄραμέγιστον it also measures. Thus, E measures A,,. Thus, E κοινὸνμέτρονμετρήσειτὸζ.ἔστιδὲτὸε τὸζἄρατὸε is a common measure of A,,. So I say that (it is) also μετρήσει, τὸ μεῖζον τὸ ἔλασσον ὅπερ ἐστὶν ἀδύνατον. οὐκ (the) greatest (common measure). For, if possible, let F ἄραμεῖζόντιτοῦεμεγέθους[μέγεθος]τὰα,β,γμετρεῖ be some magnitude greater than E, and let it measure A, τὸεἄρατῶνα,β,γτὸμέγιστονκοινὸνμέτρονἐστίν,ἐὰν,. And since F measures A,,, it will thus also μὴμετρῇτὸδτὸγ,ἐὰνδὲμετρῇ,αὐτὸτὸδ. measure A and, and will (thus) measure the greatest Τριῶν ἄρα μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον common measure of A and [Prop corr.]. And D κοινὸν μέτρον ηὕρηται[ὅπερ ἔδει δεῖξαι]. is the greatest common measure of A and. Thus, F measures D. And it also measures. Thus, F measures (both) and D. Thus, F will also measure the greatest common measure of and D [Prop corr.]. And it is E. Thus, F will measure E, the greater (measuring) the lesser. The very thing is impossible. Thus, some [magnitude] greater than the magnitude E cannot measure A,,. Thus, if D does not measure then E is the greatest common measure of A,,. And if it does measure () then D itself (is the greatest common measure). Thus, the greatest common measure of three given commensurable magnitudes has been found. [(Which is) the very thing it was required to show.] È Ö Ñ. orollary Εκδὴτούτουφανερόν,ὅτι,ἐὰνμέγεθοςτρίαμεγέθη So (it is) clear, from this, that if a magnitude measures μετρῇ, καὶ τὸ μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει. three magnitudes then it will also measure their greatest Ομοίως δὴ καὶ ἐπὶ πλειόνων τὸ μέγιστον κοινὸν μέτρον common measure. ληφθήσεται, καὶ τὸ πόρισμα προχωρήσει. ὅπερ ἔδει δεῖξαι. So, similarly, the greatest common measure of more (magnitudes) can also be taken, and the (above) corollary will go forward. (Which is) the very thing it was required to show. 286

7 . Proposition 5 Τὰ σύμμετρα μεγέθη πρὸς ἄλληλα λόγον ἔχει, ὃν ommensurable magnitudes have to one another the ἀριθμὸςπρὸςἀριθμόν. ratio which (some) number (has) to (some) number. Α Β Γ A Ε ΕστωσύμμετραμεγέθητὰΑ,Β λέγω,ὅτιτὸαπρὸς Let A and be commensurable magnitudes. I say τὸβλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν. that A has to the ratio which (some) number (has) to Επεὶ γὰρ σύμμετρά ἐστι τὰ Α, Β, μετρήσει τι αὐτὰ (some) number. μέγεθος. μετρείτω, καὶἔστωτὸγ.καὶὁσάκιςτὸγτὸ For if A and are commensurable (magnitudes) then Α μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Δ, ὁσάκις δὲ some magnitude will measure them. Let it (so) measure τὸγτὸβμετρεῖ,τοσαῦταιμονάδεςἔστωσανἐντῷε. (them), and let it be. And as many times as measures ΕπεὶοὖντὸΓτὸΑμετρεῖκατὰτὰςἐντῷΔμονάδας, A, so many units let there be in D. And as many times as μετρεῖδὲκαὶἡμονὰςτὸνδκατὰτὰςἐναὐτῷμονάδας, measures, so many units let there be in E. ἰσάκις ἄρα ἡ μονὰς τὸν Δ μετρεῖ ἀριθμὸν καὶ τὸ Γ μέγεθος Therefore, since measures A according to the units τὸα ἔστινἄραὡςτὸγπρὸςτὸα,οὕτωςἡμονὰςπρὸς in D, and a unit also measures D according to the units τὸνδ ἀνάπαλινἄρα,ὡςτὸαπρὸςτὸγ,οὕτωςὁδπρὸς in it, a unit thus measures the number D as many times τὴνμονάδα. πάλινἐπεὶτὸγτὸβμετρεῖκατὰτὰςἐντῷ as the magnitude (measures) A. Thus, as is to A, Εμονάδας,μετρεῖδὲκαὶἡμονὰςτὸνΕκατὰτὰςἐναὐτῷ so a unit (is) to D [Def. 7.20]. Thus, inversely, as A (is) μονάδας,ἰσάκιςἄραἡμονὰςτὸνεμετρεῖκαὶτὸγτὸβ to, so D (is) to a unit [Prop. 5.7 corr.]. Again, since ἔστινἄραὡςτὸγπρὸςτὸβ,οὕτωςἡμονὰςπρὸςτὸνε. measures according to the units in E, and a unit ἐδείχθηδὲκαὶὡςτὸαπρὸςτὸγ,ὁδπρὸςτὴνμονάδα also measures E according to the units in it, a unit thus δι ἴσουἄραἐστὶνὡςτὸαπρὸςτὸβ,οὕτωςὁδἀριθμὸς measures E the same number of times that (measures) πρὸςτὸνε.. Thus, as is to, so a unit (is) to E [Def. 7.20]. And ΤὰἄρασύμμετραμεγέθητὰΑ,Βπρὸςἄλληλαλόγον it was also shown that as A (is) to, so D (is) to a unit. ἔχει,ὃνἀριθμὸςὁδπρὸςἀριθμὸντὸνε ὅπερἔδειδεῖξαι. Thus, via equality, as A is to, so the number D (is) to the (number) E [Prop. 5.22]. Thus, the commensurable magnitudes A and have to one another the ratio which the number D (has) to the number E. (Which is) the very thing it was required to show. There is a slight logical gap here, since Def applies to four numbers, rather than two number and two magnitudes. D E. Proposition 6 Εὰνδύομεγέθηπρὸςἄλληλαλόγονἔχῃ,ὃνἀριθμὸς If two magnitudes have to one another the ratio which πρὸςἀριθμόν,σύμμετραἔσταιτὰμεγέθη. (some) number (has) to (some) number then the magnitudes will be commensurable. Α Γ Β Ε Ζ ΔύογὰρμεγέθητὰΑ,Βπρὸςἄλληλαλόγονἐχέτω,ὃν For let the two magnitudes A and have to one an- ἀριθμὸς ὁ Δ πρὸς ἀριθμὸν τὸν Ε λέγω, ὅτι σύμμετρά ἐστι other the ratio which the number D (has) to the number τὰα,βμεγέθη. E. I say that the magnitudes A and are commensu- Οσαι γάρ εἰσιν ἐν τῷ Δ μονάδες, εἰς τοσαῦτα ἴσα rable. A D E F 287

8 διῃρήσθωτὸα,καὶἑνὶαὐτῶνἴσονἔστωτὸγ ὅσαιδέ For, as many units as there are in D, let A have been εἰσινἐντῷεμονάδες,ἐκτοσούτωνμεγεθῶνἴσωντῷγ divided into so many equal (divisions). And let be συγκείσθωτὸζ. equal to one of them. And as many units as there are Επεὶοὖν,ὅσαιεἰσὶνἐντῷΔμονάδες,τοσαῦτάεἰσικαὶ in E, let F be the sum of so many magnitudes equal to ἐντῷαμεγέθηἴσατῷγ,ὃἄραμέροςἐστὶνἡμονὰςτοῦ. Δ,τὸαὐτὸμέροςἐστὶκαὶτὸΓτοῦΑ ἔστινἄραὡςτὸγ Therefore, since as many units as there are in D, so πρὸςτὸα,οὕτωςἡμονὰςπρὸςτὸνδ.μετρεῖδὲἡμονὰς many magnitudes equal to are also in A, therefore τὸνδἀριθμόν μετρεῖἄρακαὶτὸγτὸα.καὶἐπείἐστιν whichever part a unit is of D, is also the same part of ὡςτὸγπρὸςτὸα,οὕτωςἡμονὰςπρὸςτὸνδ[ἀριθμόν], A. Thus, as is to A, so a unit (is) to D [Def. 7.20]. And ἀνάπαλινἄραὡςτὸαπρὸςτὸγ,οὕτωςὁδἀριθμὸςπρὸς a unit measures the number D. Thus, also measures τὴνμονάδα.πάλινἐπεί,ὅσαιεἰσὶνἐντῷεμονάδες,τοσαῦτά A. And since as is to A, so a unit (is) to the [number] εἰσικαὶἐντῷζἴσατῷγ,ἔστινἄραὡςτὸγπρὸςτὸζ, D, thus, inversely, as A (is) to, so the number D (is) οὕτωςἡμονὰςπρὸςτὸνε[ἀριθμόν]. ἐδείχθηδὲκαὶὡς to a unit [Prop. 5.7 corr.]. Again, since as many units as τὸαπρὸςτὸγ,οὕτωςὁδπρὸςτὴνμονάδα δι ἴσουἄρα there are in E, so many (magnitudes) equal to are also ἐστὶνὡςτὸαπρὸςτὸζ,οὕτωςὁδπρὸςτὸνε.ἀλλ ὡςὁ in F, thus as is to F, so a unit (is) to the [number] E ΔπρὸςτὸνΕ,οὕτωςἐστὶτὸΑπρὸςτὸΒ καὶὡςἄρατὸα [Def. 7.20]. And it was also shown that as A (is) to, πρὸςτὸβ,οὕτωςκαὶπρὸςτὸζ.τὸαἄραπρὸςἑκάτερον so D (is) to a unit. Thus, via equality, as A is to F, so D τῶνβ,ζτὸναὐτὸνἔχειλόγον ἴσονἄραἐστὶτὸβτῷζ. (is) to E [Prop. 5.22]. ut, as D (is) to E, so A is to. μετρεῖδὲτὸγτὸζ μετρεῖἄρακαὶτὸβ.ἀλλὰμὴνκαὶτὸ And thus as A (is) to, so (it) also is to F [Prop. 5.11]. Α τὸγἄρατὰα,βμετρεῖ.σύμμετρονἄραἐστὶτὸατῷ Thus, A has the same ratio to each of and F. Thus, is Β. equal to F [Prop. 5.9]. And measures F. Thus, it also Εὰν ἄρα δύο μεγέθη πρὸς ἄλληλα, καὶ τὰ ἑξῆς. measures. ut, in fact, (it) also (measures) A. Thus, measures (both) A and. Thus, A is commensurable with [Def. 10.1]. Thus, if two magnitudes... to one another, and so on.... È Ö Ñ. orollary Εκ δὴ τούτου φανερόν, ὅτι, ἐὰν ὦσι δύο ἀριθμοί, ὡς So it is clear, from this, that if there are two numbers, οἱδ,ε,καὶεὐθεῖα,ὡςἡα,δύνατόνἐστιποιῆσαιὡςὁ like D and E, and a straight-line, like A, then it is possible ΔἀριθμὸςπρὸςτὸνΕἀριθμόν,οὕτωςτὴνεὐθεῖανπρὸς to contrive that as the number D (is) to the number E, εὐθεῖαν.ἐὰνδὲκαὶτῶνα,ζμέσηἀνάλογονληφθῇ,ὡςἡ so the straight-line (is) to (another) straight-line (i.e., F ). Β,ἔσταιὡςἡΑπρὸςτὴνΖ,οὕτωςτὸἀπὸτῆςΑπρὸςτὸ And if the mean proportion, (say), is taken of A and ἀπὸτῆςβ,τουτέστινὡςἡπρώτηπρὸςτὴντρίτην,οὕτως F, then as A is to F, so the (square) on A (will be) to the τὸ ἀπὸ τῆς πρώτης πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ (square) on. That is to say, as the first (is) to the third, ὁμοίωςἀναγραφόμενον. ἀλλ ὡςἡαπρὸςτὴνζ,οὕτως so the (figure) on the first (is) to the similar, and similarly ἐστὶν ὁ Δ ἀριθμος πρὸς τὸν Ε ἀριθμόν γέγονεν ἄρα καὶ described, (figure) on the second [Prop corr.]. ut, ὡςὁδἀριθμὸςπρὸςτὸνεἀριθμόν,οὕτωςτὸἀπὸτῆςα as A (is) to F, so the number D is to the number E. Thus, εὐθείαςπρὸςτὸἀπὸτῆςβεὐθείας ὅπερἔδειδεῖξαι. it has also been contrived that as the number D (is) to the number E, so the (figure) on the straight-line A (is) to the (similar figure) on the straight-line. (Which is) the very thing it was required to show. Þ. Proposition 7 Τὰ ἀσύμμετρα μεγέθη πρὸς ἄλληλα λόγον οὐκ ἔχει, ὃν Incommensurable magnitudes do not have to one an- ἀριθμὸς πρὸς ἀριθμόν. other the ratio which (some) number (has) to (some) ΕστωἀσύμμετραμεγέθητὰΑ,Β λέγω,ὅτιτὸαπρὸς number. τὸ Β λόγον οὐκ ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. Let A and be incommensurable magnitudes. I say that A does not have to the ratio which (some) number (has) to (some) number. 288

9 Α Β ΕἰγὰρἔχειτὸΑπρὸςτὸΒλόγον,ὃνἀριθμὸςπρὸς For if A has to the ratio which (some) number (has) ἀριθμόν, σύμμετρον ἔσται τὸ Α τῷ Β. οὐκ ἔστι δέ οὐκ ἄρα to (some) number then A will be commensurable with τὸαπρὸςτὸβλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν. [Prop. 10.6]. ut it is not. Thus, A does not have to Τὰἄραἀσύμμετραμεγέθηπρὸςἄλληλαλόγονοὐκἔχει, the ratio which (some) number (has) to (some) number. καὶ τὰ ἑξῆς. Thus, incommensurable numbers do not have to one another, and so on..... Proposition 8 Εὰν δύο μεγέθη πρὸς ἄλληλα λόγον μὴ ἔχῃ, ὃν ἀριθμὸς If two magnitudes do not have to one another the raπρὸς ἀριθμόν, ἀσύμμετρα ἔσται τὰ μεγέθη. tio which (some) number (has) to (some) number then the magnitudes will be incommensurable. Α Β ΔύογὰρμεγέθητὰΑ,Βπρὸςἄλληλαλόγονμὴἐχέτω, For let the two magnitudes A and not have to one ὃν ἀριθμὸς πρὸς ἀριθμόν λέγω, ὅτι ἀσύμμετρά ἐστι τὰ Α, another the ratio which (some) number (has) to (some) Βμεγέθη. number. I say that the magnitudes A and are incom- Εἰγὰρἔσταισύμμετρα,τὸΑπρὸςτὸΒλόγονἕξει,ὃν mensurable. ἀριθμὸςπρὸςἀριθμόν.οὐκἔχειδέ.ἀσύμμετραἄραἐστὶτὰ For if they are commensurable, A will have to Α, Β μεγέθη. the ratio which (some) number (has) to (some) number Εὰνἄραδύομεγέθηπρὸςἄλληλα,καὶτὰἑξῆς. [Prop. 10.5]. ut it does not have (such a ratio). Thus, the magnitudes A and are incommensurable. Thus, if two magnitudes... to one another, and so on..... Proposition 9 Τὰ ἀπὸ τῶν μήκει συμμέτρων εὐθειῶν τετράγωνα Squares on straight-lines (which are) commensurable πρὸς ἄλληλα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς in length have to one another the ratio which (some) τετράγωνον ἀριθμόν καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα square number (has) to (some) square number. And λόγον ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον squares having to one another the ratio which (some) ἀριθμόν, καὶ τὰς πλευρὰς ἕξει μήκει συμμέτρους. τὰ square number (has) to (some) square number will also δὲ ἀπὸ τῶν μήκει ἀσυμμέτρων εὐθειῶν τετράγωνα πρὸς have sides (which are) commensurable in length. ut ἄλληλα λόγον οὐκ ἔχει, ὅνπερ τετράγωνος ἀριθμὸς πρὸς squares on straight-lines (which are) incommensurable τετράγωνον ἀριθμόν καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα in length do not have to one another the ratio which λόγον μὴ ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον (some) square number (has) to (some) square number. ἀριθμόν, οὐδὲ τὰς πλευρὰς ἕξει μήκει συμμέτρους. And squares not having to one another the ratio which (some) square number (has) to (some) square number will not have sides (which are) commensurable in length either. Α Γ Β ΕστωσανγὰραἱΑ,Βμήκεισύμμετροι λέγω,ὅτιτὸ For let A and be (straight-lines which are) commen- ἀπὸτῆςατετράγωνον πρὸς τὸἀπὸτῆςβτετράγωνον surable in length. I say that the square on A has to the λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον square on the ratio which (some) square number (has) ἀριθμόν. to (some) square number. A A A D 289

10 ΕπεὶγὰρσύμμετρόςἐστινἡΑτῇΒμήκει,ἡΑἄραπρὸς For since A is commensurable in length with, A τὴνβλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν. ἐχέτω,ὃνὁ thus has to the ratio which (some) number (has) to ΓπρὸςτὸνΔ.ἐπεὶοὖνἐστινὡςἡΑπρὸςτὴνΒ,οὕτωςὁ (some) number [Prop. 10.5]. Let it have (that) which ΓπρὸςτὸνΔ,ἀλλὰτοῦμὲντῆςΑπρὸςτὴνΒλόγουδι- (has) to D. Therefore, since as A is to, so (is) πλασίωνἐστὶνὁτοῦἀπὸτῆςατετραγώνουπρὸςτὸἀπὸτῆς to D. ut the (ratio) of the square on A to the square Βτετράγωνον τὰγὰρὅμοιασχήματαἐνδιπλασίονιλόγῳ on is the square of the ratio of A to. For similar ἐστὶ τῶν ὁμολόγων πλευρῶν τοῦ δὲ τοῦ Γ[ἀριθμοῦ] πρὸς figures are in the squared ratio of (their) corresponding τὸνδ[ἀριθμὸν]λόγουδιπλασίωνἐστὶνὁτοῦἀπὸτοῦγ sides [Prop corr.]. And the (ratio) of the square τετραγώνουπρὸςτὸνἀπὸτοῦδτετράγωνον δύογὰρτε- on to the square on D is the square of the ratio of τραγώνων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καί the [number] to the [number] D. For there exits one ὁ τετράγωνος πρὸς τὸν τετράγωνον[ἀριθμὸν] διπλασίονα number in mean proportion to two square numbers, and λόγον ἔχει, ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν ἔστιν ἄρα (one) square (number) has to the (other) square [numκαὶ ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β ber] a squared ratio with respect to (that) the side (of the τετράγωνον, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος[ἀριθμὸς] πρὸς former has) to the side (of the latter) [Prop. 8.11]. And, τὸνἀπὸτοῦδ[ἀριθμοῦ]τετράγωνον[ἀριθμόν]. thus, as the square on A is to the square on, so the ἈλλὰδὴἔστωὡςτὸἀπὸτῆςΑτετράγωνονπρὸςτὸ square [number] on the (number) (is) to the square ἀπὸτῆςβ,οὕτωςὁἀπὸτοῦγτετράγωνοςπρὸςτὸνἀπὸ [number] on the [number] D. τοῦ Δ[τετράγωνον] λέγω, ὅτι σύμμετρός ἐστιν ἡ Α τῇ Β And so let the square on A be to the (square) on as μήκει. the square (number) on (is) to the [square] (number) Επεὶ γάρ ἐστιν ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ on D. I say that A is commensurable in length with. ἀπὸτῆςβ[τετράγωνον],οὕτωςὁἀπὸτοῦγτετράγωνος For since as the square on A is to the [square] on, so πρὸςτὸνἀπὸτοῦδ[τετράγωνον],ἀλλ ὁμὲντοῦἀπὸτῆς the square (number) on (is) to the [square] (number) ΑτετραγώνουπρὸςτὸἀπὸτῆςΒ[τετράγωνον]λόγοςδι- on D. ut, the ratio of the square on A to the (square) πλασίωνἐστὶτοῦτῆςαπρὸςτὴνβλόγου,ὁδὲτοῦἀπὸ on is the square of the (ratio) of A to [Prop τοῦ Γ[ἀριθμοῦ] τετραγώνου[ἀριθμοῦ] πρὸς τὸν ἀπὸ τοῦ Δ corr.]. And the (ratio) of the square [number] on the [ἀριθμοῦ] τετράγωνον[ἀριθμὸν] λόγος διπλασίων ἐστὶ τοῦ [number] to the square [number] on the [number] D is τοῦγ[ἀριθμοῦ]πρὸςτὸνδ[ἀριθμὸν]λόγου,ἔστινἄρα the square of the ratio of the [number] to the [number] καὶὡςἡαπρὸςτὴνβ,οὕτωςὁγ[ἀριθμὸς]πρὸςτὸνδ D [Prop. 8.11]. Thus, as A is to, so the [number] [ἀριθμόν].ἡαἄραπρὸςτὴνβλόγονἔχει,ὃνἀριθμὸςὁγ also (is) to the [number] D. A, thus, has to the ratio πρὸςἀριθμὸντὸνδ σύμμετροςἄραἐστὶνἡατῇβμήκει. which the number has to the number D. Thus, A is ἈλλὰδὴἀσύμμετροςἔστωἡΑτῇΒμήκει λέγω,ὅτι commensurable in length with [Prop. 10.6]. τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β[τετράγωνον] And so let A be incommensurable in length with. I λόγονοὐκἔχει,ὃντετράγωνοςἀριθμὸςπρὸςτετράγωνον say that the square on A does not have to the [square] on ἀριθμόν. the ratio which (some) square number (has) to (some) Εἰ γὰρἔχειτὸ ἀπὸτῆςατετράγωνον πρὸς τὸἀπὸ square number. τῆςβ[τετράγωνον]λόγον,ὃντετράγωνοςἀριθμὸςπρὸς For if the square on A has to the [square] on the raτετράγωνον ἀριθμόν, σύμμετρος ἔσται ἡ Α τῇ Β. οὐκ ἔστι tio which (some) square number (has) to (some) square δέ οὐκἄρατὸἀπὸτῆςατετράγωνονπρὸςτὸἀπὸτῆς number then A will be commensurable (in length) with Β[τετράγωνον] λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς. ut it is not. Thus, the square on A does not have τετράγωνον ἀριθμόν. to the [square] on the the ratio which (some) square Πάλιν δὴ τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς number (has) to (some) square number. Β[τετράγωνον]λόγονμὴἐχέτω,ὃντετράγωνοςἀριθμὸς So, again, let the square on A not have to the [square] πρὸς τετράγωνον ἀριθμόν λέγω, ὅτι ἀσύμμετρός ἐστιν ἡ Α on the ratio which (some) square number (has) to τῇ Β μήκει. (some) square number. I say that A is incommensurable ΕἰγάρἐστισύμμετροςἡΑτῇΒ,ἕξειτὸἀπὸτῆςΑ in length with. πρὸςτὸἀπὸτῆςβλόγον,ὃντετράγωνοςἀριθμὸςπρὸς For if A is commensurable (in length) with then τετράγωνονἀριθμόν.οὐκἔχειδέ οὐκἄρασύμμετρόςἐστιν the (square) on A will have to the (square) on the ra- ἡατῇβμήκει. Τὰἄραἀπὸτῶνμήκεισυμμέτρων,καὶτὰἑξῆς. tio which (some) square number (has) to (some) square number. ut it does not have (such a ratio). Thus, A is not commensurable in length with. Thus, (squares) on (straight-lines which are) com- 290

11 È Ö Ñ. mensurable in length, and so on.... orollary Καὶφανερὸνἐκτῶν δεδειγμένωνἔσται, ὅτιαἱμήκει And it will be clear, from (what) has been demonσύμμετροι πάντως καὶ δυνάμει, αἱ δὲ δυνάμει οὐ πάντως καὶ strated, that (straight-lines) commensurable in length μήκει. (are) always also (commensurable) in square, but (straightlines commensurable) in square (are) not always also (commensurable) in length. There is an unstated assumption here that if α : β :: γ : δ then α 2 : β 2 :: γ 2 : δ 2. There is an unstated assumption here that if α 2 : β 2 :: γ 2 : δ 2 then α : β :: γ : δ.. Proposition 10 Τῇ προτεθείσῃ εὐθείᾳ προσευρεῖν δύο εὐθείας ἀσυμμέτ- To find two straight-lines incommensurable with a ρους, τὴν μὲν μήκει μόνον, τὴν δὲ καὶ δυνάμει. given straight-line, the one (incommensurable) in length only, the other also (incommensurable) in square. Α Ε Β Γ ΕστωἡπροτεθεῖσαεὐθεῖαἡΑ δεῖδὴτῇαπροσευρεῖν Let A be the given straight-line. So it is required to δύο εὐθείας ἀσυμμέτρους, τὴν μὲν μήκει μόνον, τὴν δὲ καὶ find two straight-lines incommensurable with A, the one δυνάμει. (incommensurable) in length only, the other also (incom- Εκκείσθωσαν γὰρ δύο αριθμοὶ οἱ Β, Γ πρὸς ἀλλήλους mensurable) in square. λόγονμὴἔχοντες,ὃντετράγωνοςἀριθμὸςπρὸςτετράγωνον For let two numbers, and, not having to one ἀριθμόν, τουτέστι μὴ ὅμοιοι ἐπίπεδοι, καὶ γεγονέτω ὡς ὁ another the ratio which (some) square number (has) to ΒπρὸςτὸνΓ,οὕτωςτὸἀπὸτῆςΑτετράγωνονπρὸςτὸ (some) square number that is to say, not (being) simi- ἀπὸ τῆς Δ τετράγωνον ἐμάθομεν γάρ σύμμετρον ἄρα lar plane (numbers) have been taken. And let it be conτὸἀπὸτῆςατῷἀπὸτῆςδ.καὶἐπεὶὁβπρὸςτὸνγ trived that as (is) to, so the square on A (is) to the λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον square on D. For we learned (how to do this) [Prop ἀριθμόν,οὐδ ἄρατὸἀπὸτῆςαπρὸςτὸἀπὸτῆςδλόγον corr.]. Thus, the (square) on A (is) commensurable with ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν the (square) on D [Prop. 10.6]. And since does not ἀσύμμετροςἄραἐστὶνἡατῇδμήκει.εἰλήφθωτῶνα,δ have to the ratio which (some) square number (has) to μέσηἀνάλογονἡε ἔστινἄραὡςἡαπρὸςτὴνδ,οὕτως (some) square number, the (square) on A thus does not τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Ε. ἀσύμμετρος have to the (square) on D the ratio which (some) square δέἐστινἡατῇδμήκει ἀσύμμετρονἄραἐστὶκαὶτὸἀπὸ number (has) to (some) square number either. Thus, A τῆς Α τετράγωνον τῷ ἀπὸ τῆς Ε τετραγώνῳ ἀσύμμετρος is incommensurable in length with D [Prop. 10.9]. Let ἄραἐστὶνἡατῇεδυνάμει. the (straight-line) E (which is) in mean proportion to A Τῂ ἄρα προτεθείσῃ εὐθείᾳ τῇ Α προσεύρηνται δύο and D have been taken [Prop. 6.13]. Thus, as A is to D, εὐθεῖαιἀσύμμετροιαἱδ,ε,μήκειμὲνμόνονἡδ,δυνάμει so the square on A (is) to the (square) on E [Def. 5.9]. δὲκαὶμήκειδηλαδὴἡε[ὅπερἔδειδεῖξαι]. And A is incommensurable in length with D. Thus, the square on A is also incommensurble with the square on E [Prop ]. Thus, A is incommensurable in square with E. A E D 291

12 This whole proposition is regarded by Heiberg as an interpolation into the original text. Thus, two straight-lines, D and E, (which are) incommensurable with the given straight-line A, have been found, the one, D, (incommensurable) in length only, the other, E, (incommensurable) in square, and, clearly, also in length. [(Which is) the very thing it was required to show.]. Proposition 11 Εὰν τέσσαρα μεγέθη ἀνάλογον ᾖ, τὸ δὲ πρῶτον τῷ If four magnitudes are proportional, and the first is δευτέρῳ σύμμετρον ᾖ, καὶ τὸ τρίτον τῷ τετάρτῳ σύμμετρον commensurable with the second, then the third will also ἔσται κἂντὸπρῶτοντῷδευτέρῳἀσύμμετρονᾖ,καὶτὸ be commensurable with the fourth. And if the first is inτρίτον τῷ τετάρτῳ ἀσύμμετρον ἔσται. commensurable with the second, then the third will also be incommensurable with the fourth. Α Γ Β Εστωσαν τέσσαρα μεγέθη ἀνάλογον τὰ Α, Β, Γ, Δ, Let A,,, D be four proportional magnitudes, ὡςτὸαπρὸςτὸβ,οὕτωςτὸγπρὸςτὸδ,τὸαδὲτῷ (such that) as A (is) to, so (is) to D. And let A Βσύμμετρονἔστω λέγω,ὅτικαὶτὸγτῷδσύμμετρον be commensurable with. I say that will also be com- ἔσται. mensurable with D. ΕπεὶγὰρσύμμετρόνἐστιτὸΑτῷΒ,τὸΑἄραπρὸςτὸ For since A is commensurable with, A thus has to Βλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν.καίἐστινὡςτὸΑ the ratio which (some) number (has) to (some) number πρὸςτὸβ,οὕτωςτὸγπρὸςτὸδ καὶτὸγἄραπρὸςτὸδ [Prop. 10.5]. And as A is to, so (is) to D. Thus, λόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν σύμμετρονἄραἐστὶ also has to D the ratio which (some) number (has) τὸγτῷδ. to (some) number. Thus, is commensurable with D ἈλλὰδὴτὸΑτῷΒἀσύμμετρονἔστω λέγω,ὅτικαὶτὸ [Prop. 10.6]. ΓτῷΔἀσύμμετρονἔσται.ἐπεὶγὰρἀσύμμετρόνἐστιτὸΑ And so let A be incommensurable with. I say that τῷβ,τὸαἄραπρὸςτὸβλόγονοὐκἔχει,ὃνἀριθμὸςπρὸς will also be incommensurable with D. For since A ἀριθμόν.καίἐστινὡςτὸαπρὸςτὸβ,οὕτωςτὸγπρὸςτὸ is incommensurable with, A thus does not have to Δ οὐδὲτὸγἄραπρὸςτὸδλόγονἔχει,ὃνἀριθμὸςπρὸς the ratio which (some) number (has) to (some) number ἀριθμόν ἀσύμμετρονἄραἐστὶτὸγτῷδ. Εὰνἄρατέσσαραμεγέθη,καὶτὰἑξῆς. A [Prop. 10.7]. And as A is to, so (is) to D. Thus, does not have to D the ratio which (some) number (has) to (some) number either. Thus, is incommensurable with D [Prop. 10.8]. Thus, if four magnitudes, and so on..... Proposition 12 Τὰ τῷ αὐτῷ μεγέθει σύμμετρα καὶ ἀλλήλοις ἐστὶ (Magnitudes) commensurable with the same magniσύμμετρα. tude are also commensurable with one another. ΕκάτερονγὰρτῶνΑ,ΒτῷΓἔστωσύμμετρον.λέγω, For let A and each be commensurable with. I say ὅτι καὶ τὸ Α τῷ Β ἐστι σύμμετρον. that A is also commensurable with. ΕπεὶγὰρσύμμετρόνἐστιτὸΑτῷΓ,τὸΑἄραπρὸς For since A is commensurable with, A thus has τὸγλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν.ἐχέτω,ὃνὁδ to the ratio which (some) number (has) to (some) πρὸςτὸνε.πάλιν,ἐπεὶσύμμετρόνἐστιτὸγτῷβ,τὸγἄρα number [Prop. 10.5]. Let it have (the ratio) which D πρὸςτὸβλόγονἔχει,ὃνἀριθμὸςπρὸςἀριθμόν.ἐχέτω,ὃν (has) to E. Again, since is commensurable with, ὁζπρὸςτὸνη.καὶλόγωνδοθέντωνὁποσωνοῦντοῦτε, thus has to the ratio which (some) number (has) ὃνἔχειὁδπρὸςτὸνε,καὶὁζπρὸςτὸνηεἰλήφθωσαν to (some) number [Prop. 10.5]. Let it have (the ratio) ἀριθμοὶἑξῆςἐντοῖςδοθεῖσιλόγοιςοἱθ,κ,λ ὥστεεἶναι which F (has) to G. And for any multitude whatsoever D 292

13 ὡςμὲντὸνδπρὸςτὸνε,οὕτωςτὸνθπρὸςτὸνκ,ὡςδὲ of given ratios (namely,) those which D has to E, and τὸνζπρὸςτὸνη,οὕτωςτὸνκπρὸςτὸνλ. F to G let the numbers H, K, L (which are) continuously (proportional) in the(se) given ratios have been taken [Prop. 8.4]. Hence, as D is to E, so H (is) to K, and as F (is) to G, so K (is) to L. Α Γ Β A Θ D H Ε Ζ Η Κ Λ E F G K L ΕπεὶοὖνἐστινὡςτὸΑπρὸςτὸΓ,οὕτωςὁΔπρὸς Therefore, since as A is to, so D (is) to E, but as τὸνε,ἀλλ ὡςὁδπρὸςτὸνε,οὕτωςὁθπρὸςτὸνκ, D (is) to E, so H (is) to K, thus also as A is to, so H ἔστινἄρακαὶὡςτὸαπρὸςτὸγ,οὕτωςὁθπρὸςτὸνκ. (is) to K [Prop. 5.11]. Again, since as is to, so F πάλιν,ἐπείἐστινὡςτὸγπρὸςτὸβ,οὕτωςὁζπρὸςτὸν (is) to G, but as F (is) to G, [so] K (is) to L, thus also Η,ἀλλ ὡςὁζπρὸςτὸνη,[οὕτως]ὁκπρὸςτὸνλ,καὶ as (is) to, so K (is) to L [Prop. 5.11]. And also as A ὡςἄρατὸγπρὸςτὸβ,οὕτωςὁκπρὸςτὸνλ.ἔστιδὲκαὶ is to, so H (is) to K. Thus, via equality, as A is to, ὡςτὸαπρὸςτὸγ,οὕτωςὁθπρὸςτὸνκ δι ἴσουἄρα so H (is) to L [Prop. 5.22]. Thus, A has to the ratio ἐστὶνὡςτὸαπρὸςτὸβ,οὕτωςὁθπρὸςτὸνλ.τὸαἄρα which the number H (has) to the number L. Thus, A is πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς ὁ Θ πρὸς ἀριθμὸν τὸν Λ commensurable with [Prop. 10.6]. σύμμετρον ἄρα ἐστὶ τὸ Α τῷ Β. Thus, (magnitudes) commensurable with the same Τὰ ἄρα τῷ αὐτῷ μεγέθει σύμμετρα καὶ ἀλλήλοις ἐστὶ magnitude are also commensurable with one another. σύμμετρα ὅπερἔδειδεῖξαι. (Which is) the very thing it was required to show.. Proposition 13 Εὰν ᾖ δύο μεγέθη σύμμετρα, τὸ δὲ ἕτερον αὐτῶν If two magnitudes are commensurable, and one of μεγέθει τινὶ ἀσύμμετρον ᾖ, καὶ τὸ λοιπὸν τῷ αὐτῷ ἀσύμμετρ- them is incommensurable with some magnitude, then ον ἔσται. the remaining (magnitude) will also be incommensurable with it. Α Γ Β Εστω δύο μεγέθη σύμμετρα τὰ Α, Β, τὸ δὲ ἕτερον Let A and be two commensurable magnitudes, and αὐτῶν τὸ Α ἄλλῳ τινὶ τῷ Γ ἀσύμμετρον ἔστω λέγω, ὅτι let one of them, A, be incommensurable with some other καὶ τὸ λοιπὸν τὸ Β τῷ Γ ἀσύμμετρόν ἐστιν. (magnitude),. I say that the remaining (magnitude), Εἰ γάρ ἐστι σύμμετρον τὸ Β τῷ Γ, ἀλλὰ καὶ τὸ Α τῷ, is also incommensurable with. Β σύμμετρόν ἐστιν, καὶ τὸ Α ἄρα τῷ Γ σύμμετρόν ἐστιν. For if is commensurable with, but A is also com- ἀλλὰ καὶ ἀσύμμετρον ὅπερ ἀδύνατον. οὐκ ἄρα σύμμετρόν mensurable with, A is thus also commensurable with ἐστι τὸ Β τῷ Γ ἀσύμμετρον ἄρα. [Prop ]. ut, (it is) also incommensurable (with Εὰνἄραᾖδύομεγέθησύμμετρα,καὶτὰἑξῆς. ). The very thing (is) impossible. Thus, is not commensurable with. Thus, (it is) incommensurable. Thus, if two magnitudes are commensurable, and so on.... Ä ÑÑ. A Lemma Δύο δοθεισῶν εὐθειῶν ἀνίσων εὑρεῖν, τίνι μεῖζον For two given unequal straight-lines, to find by (the δύναται ἡ μείζων τῆς ἐλάσσονος. square on) which (straight-line) the square on the greater 293

14 Γ (straight-line is) larger than (the square on) the lesser. D Α Β ΕστωσαναἱδοθεῖσαιδύοἄνισοιεὐθεῖαιαἱΑΒ,Γ,ὧν Let A and be the two given unequal straight-lines, μείζωνἔστωἡαβ δεῖδὴεὑρεῖν,τίνιμεῖζονδύναταιἡαβ and let A be the greater of them. So it is required to τῆς Γ. find by (the square on) which (straight-line) the square Γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΔΒ, καὶ εἰς αὐτὸ on A (is) greater than (the square on). ἐνηρμόσθω τῇ Γ ἴση ἡ ΑΔ, καὶ ἐπεζεύχθω ἡ ΔΒ. φανερὸν Let the semi-circle AD have been described on A. δή, ὅτι ὀρθή ἐστιν ἡ ὑπὸ ΑΔΒ γωνία, καὶ ὅτι ἡ ΑΒ τῆς And let AD, equal to, have been inserted into it ΑΔ,τουτέστιτῆςΓ,μεῖζονδύναταιτῇΔΒ. [Prop. 4.1]. And let D have been joined. So (it is) clear Ομοίως δὲ καὶ δύο δοθεισῶν εὐθειῶν ἡ δυναμένη αὐτὰς that the angle AD is a right-angle [Prop. 3.31], and εὑρίσκεται οὕτως. that the square on A (is) greater than (the square on) ΕστωσαναἱδοθεῖσαιδύοεὐθεῖαιαἱΑΔ,ΔΒ,καὶδέον AD that is to say, (the square on) by (the square ἔστω εὑρεῖν τὴν δυναμένην αὐτάς. κείσθωσαν γάρ, ὥστε on) D [Prop. 1.47]. ὀρθὴν γωνίαν περιέχειν τὴν ὑπὸ ΑΔ, ΔΒ, καὶ ἐπεζεύχθω And, similarly, the square-root of (the sum of the ἡ ΑΒ φανερὸν πάλιν, ὅτι ἡ τὰς ΑΔ, ΔΒ δυναμένη ἐστὶν ἡ squares on) two given straight-lines is also found likeso. ΑΒ ὅπερ ἔδει δεῖξαι. Let AD and D be the two given straight-lines. And let it be necessary to find the square-root of (the sum of the squares on) them. For let them have been laid down such as to encompass a right-angle (namely), that (angle encompassed) by AD and D. And let A have been joined. (It is) again clear that A is the square-root of (the sum of the squares on) AD and D [Prop. 1.47]. (Which is) the very thing it was required to show. That is, if α and β are the lengths of two given straight-lines, with α being greater than β, to find a straight-line of length γ such that α 2 = β 2 + γ 2. Similarly, we can also find γ such that γ 2 = α 2 + β 2.. Proposition 14 Εὰν τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, δύνηται δὲ ἡ If four straight-lines are proportional, and the square πρώτη τῆς δευτέρας μεῖζον τῷ ἀπὸ συμμέτρου ἑαυτῇ on the first is greater than (the square on) the sec- [μήκει], καὶ ἡ τρίτη τῆς τετάρτης μεῖζον δυνήσεται τῷ ἀπὸ ond by the (square) on (some straight-line) commenσυμμέτρου ἑαυτῇ[μήκει]. καὶ ἐὰν ἡ πρώτη τῆς δευτέρας surable [in length] with the first, then the square on μεῖζον δύνηταιτῷ ἀπὸ ἀσυμμέτρουἑαυτῇ[μήκει], καὶἡ the third will also be greater than (the square on) the τρίτη τῆς τετάρτης μεῖζον δυνήσεται τῷ ἀπὸ ἀσυμμέτρου fourth by the (square) on (some straight-line) commen- ἑαυτῇ[μήκει]. surable [in length] with the third. And if the square on ΕστωσαντέσσαρεςεὐθεῖαιἀνάλογοναἱΑ,Β,Γ,Δ, the first is greater than (the square on) the second by ὡςἡαπρὸςτὴνβ,οὕτωςἡγπρὸςτὴνδ,καὶἡαμὲν the (square) on (some straight-line) incommensurable τῆςβμεῖζονδυνάσθωτῷἀπὸτῆςε,ἡδὲγτῆςδμεῖζον [in length] with the first, then the square on the third δυνάσθωτῷἀπὸτῆςζ λέγω,ὅτι,εἴτεσύμμετρόςἐστιν will also be greater than (the square on) the fourth by ἡ Α τῇ Ε, σύμμετρός ἐστι καὶ ἡ Γ τῇ Ζ, εἴτε ἀσύμμετρός the (square) on (some straight-line) incommensurable ἐστιν ἡ Α τῇ Ε, ἀσύμμετρός ἐστι καὶ ὁ Γ τῇ Ζ. [in length] with the third. Let A,,, D be four proportional straight-lines, (such that) as A (is) to, so (is) to D. And let the square on A be greater than (the square on) by the A 294

15 (square) on E, and let the square on be greater than (the square on) D by the (square) on F. I say that A is either commensurable (in length) with E, and is also commensurable with F, or A is incommensurable (in length) with E, and is also incommensurable with F. Α Β Ε Γ Ζ A E ΕπεὶγάρἐστινὡςἡΑπρὸςτὴνΒ,οὕτωςἡΓπρὸςτὴν For since as A is to, so (is) to D, thus as the Δ,ἔστινἄρακαὶὡςτὸἀπὸτῆςΑπρὸςτὸἀπὸτῆςΒ,οὕτως (square) on A is to the (square) on, so the (square) on τὸἀπὸτῆςγπρὸςτὸἀπὸτῆςδ.ἀλλὰτῷμὲνἀπὸτῆςα (is) to the (square) on D [Prop. 6.22]. ut the (sum ἴσαἐστὶτὰἀπὸτῶνε,β,τῷδὲἀπὸτῆςγἴσαἐστὶτὰἀπὸ of the squares) on E and is equal to the (square) on τῶνδ,ζ.ἔστινἄραὡςτὰἀπὸτῶνε,βπρὸςτὸἀπὸτῆς A, and the (sum of the squares) on D and F is equal Β,οὕτωςτὰἀπὸτῶνΔ,ΖπρὸςτὸἀπὸτῆςΔ διελόντιἄρα to the (square) on. Thus, as the (sum of the squares) ἐστὶνὡςτὸἀπὸτῆςεπρὸςτὸἀπὸτῆςβ,οὕτωςτὸἀπὸ on E and is to the (square) on, so the (sum of the τῆςζπρὸςτὸἀπὸτῆςδ ἔστινἄρακαὶὡςἡεπρὸςτὴν squares) on D and F (is) to the (square) on D. Thus, Β,οὕτωςἡΖπρὸςτὴνΔ ἀνάπαλινἄραἐστὶνὡςἡβπρὸς via separation, as the (square) on E is to the (square) τὴνε,οὕτωςἡδπρὸςτὴνζ.ἔστιδὲκαὶὡςἡαπρὸςτὴν on, so the (square) on F (is) to the (square) on D Β,οὕτωςἡΓπρὸςτὴνΔ δι ἴσουἄραἐστὶνὡςἡαπρὸς [Prop. 5.17]. Thus, also, as E is to, so F (is) to D τὴνε,οὕτωςἡγπρὸςτὴνζ.εἴτεοὖνσύμμετρόςἐστινἡα [Prop. 6.22]. Thus, inversely, as is to E, so D (is) τῇε,συμμετρόςἐστικαὶἡγτῇζ,εἴτεἀσύμμετρόςἐστιν to F [Prop. 5.7 corr.]. ut, as A is to, so also (is) ἡατῇε,ἀσύμμετρόςἐστικαὶἡγτῇζ. Εὰν ἄρα, καὶ τὰ ἑξῆς. to D. Thus, via equality, as A is to E, so (is) to F [Prop. 5.22]. Therefore, A is either commensurable (in length) with E, and is also commensurable with F, or A is incommensurable (in length) with E, and is also incommensurable with F [Prop ]. Thus, if, and so on..... Proposition 15 Εὰν δύο μεγέθη σύμμετρα συντεθῇ, καὶ τὸ ὅλον If two commensurable magnitudes are added together ἑκατέρῳ αὐτῶν σύμμετρον ἔσται κἂν τὸ ὅλον ἑνὶ αὐτῶν then the whole will also be commensurable with each of σύμμετρον ᾖ, καὶ τὰ ἐξ ἀρχῆς μεγέθη σύμμετρα ἔσται. them. And if the whole is commensurable with one of Συγκείσθω γὰρ δύο μεγέθη σύμμετρα τὰ ΑΒ, ΒΓ λέγω, them then the original magnitudes will also be commen- ὅτι καὶ ὅλον τὸ ΑΓ ἑκατέρῳ τῶν ΑΒ, ΒΓ ἐστι σύμμετρον. surable (with one another). For let the two commensurable magnitudes A and be laid down together. I say that the whole A is also commensurable with each of A and. D F 295

16 Α Β Γ A ΕπεὶγὰρσύμμετράἐστιτὰΑΒ,ΒΓ,μετρήσειτιαὐτὰ For since A and are commensurable, some magμέγεθος. μετρείτω,καὶἔστωτὸδ.ἐπεὶοὖντὸδτὰαβ, nitude will measure them. Let it (so) measure (them), ΒΓμετρεῖ,καὶὅλοντὸΑΓμετρήσει.μετρεῖδὲκαὶτὰΑΒ, and let it be D. Therefore, since D measures (both) A ΒΓ.τὸΔἄρατὰΑΒ,ΒΓ,ΑΓμετρεῖ σύμμετρονἄραἐστὶ and, it will also measure the whole A. And it also τὸαγἑκατέρῳτῶναβ,βγ. measures A and. Thus, D measures A,, and ἈλλὰδὴτὸΑΓἔστωσύμμετροντῷΑΒ λέγωδή,ὅτι A. Thus, A is commensurable with each of A and καὶ τὰ ΑΒ, ΒΓ σύμμετρά ἐστιν. [Def. 10.1]. Επεὶ γὰρ σύμμετρά ἐστι τὰ ΑΓ, ΑΒ, μετρήσει τι αὐτὰ And so let A be commensurable with A. I say that μέγεθος. μετρείτω, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΓΑ, A and are also commensurable. ΑΒμετρεῖ,καὶλοιπὸνἄρατὸΒΓμετρήσει. μετρεῖδὲκαὶ For since A and A are commensurable, some magτὸαβ τὸδἄρατὰαβ,βγμετρήσει σύμμετραἄραἐστὶ nitude will measure them. Let it (so) measure (them), τὰαβ,βγ. and let it be D. Therefore, since D measures (both) A Εὰνἄραδύομεγέθη,καὶτὰἑξῆς. and A, it will thus also measure the remainder. And it also measures A. Thus, D will measure (both) A and. Thus, A and are commensurable [Def. 10.1]. Thus, if two magnitudes, and so on..... Proposition 16 Εὰν δύο μεγέθη ἀσύμμετρα συντεθῇ, καὶ τὸ ὅλον If two incommensurable magnitudes are added to- ἑκατέρῳ αὐτῶν ἀσύμμετρον ἔσται κἂν τὸ ὅλον ἑνὶ αὐτῶν gether then the whole will also be incommensurable with ἀσύμμετρον ᾖ, καὶ τὰ ἐξ ἀρχῆς μεγέθη ἀσύμμετρα ἔσται. each of them. And if the whole is incommensurable with one of them then the original magnitudes will also be incommensurable (with one another). Α Β Γ D D A Συγκείσθω γὰρ δύο μεγέθη ἀσύμμετρα τὰ ΑΒ, ΒΓ For let the two incommensurable magnitudes A and λέγω,ὅτικαὶὅλοντὸαγἑκατέρῳτῶναβ,βγἀσύμμετρόν be laid down together. I say that that the whole A ἐστιν. is also incommensurable with each of A and. Εἰ γὰρ μή ἐστιν ἀσύμμετρα τὰ ΓΑ, ΑΒ, μετρήσει τι For if A and A are not incommensurable then [αὐτὰ] μέγεθος. μετρείτω, εἰ δυνατόν, καὶ ἔστω τὸ Δ. ἐπεὶ some magnitude will measure [them]. If possible, let it οὖντὸδτὰγα,αβμετρεῖ,καὶλοιπὸνἄρατὸβγμετρήσει. (so) measure (them), and let it be D. Therefore, since μετρεῖδὲκαὶτὸαβ τὸδἄρατὰαβ,βγμετρεῖ.σύμμετρα D measures (both) A and A, it will thus also mea- ἄρα ἐστὶ τὰ ΑΒ, ΒΓ ὑπέκειντο δὲ καὶ ἀσύμμετρα ὅπερ sure the remainder. And it also measures A. Thus, ἐστὶνἀδύνατον. οὐκἄρατὰγα,αβμετρήσειτιμέγεθος D measures (both) A and. Thus, A and are ἀσύμμετρα ἄρα ἐστὶ τὰ ΓΑ, ΑΒ. ὁμοίως δὴ δείξομεν, ὅτι καὶ commensurable [Def. 10.1]. ut they were also assumed τὰ ΑΓ, ΓΒ ἀσύμμετρά ἐστιν. τὸ ΑΓ ἄρα ἑκατέρῳ τῶν ΑΒ, (to be) incommensurable. The very thing is impossible. ΒΓ ἀσύμμετρόν ἐστιν. Thus, some magnitude cannot measure (both) A and Ἀλλὰδὴτὸ ΑΓἑνὶτῶν ΑΒ, ΒΓἀσύμμετρονἔστω. A. Thus, A and A are incommensurable [Def. 10.1]. ἔστω δὴ πρότερον τῷ ΑΒ λέγω, ὅτι καὶ τὰ ΑΒ, ΒΓ So, similarly, we can show that A and are also ἀσύμμετρά ἐστιν. εἰ γὰρ ἔσται σύμμετρα, μετρήσει τι αὐτὰ incommensurable. Thus, A is incommensurable with μέγεθος. μετρείτω, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΑΒ, each of A and. ΒΓμετρεῖ,καὶὅλονἄρατὸΑΓμετρήσει.μετρεῖδὲκαὶτὸ And so let A be incommensurable with one of A ΑΒ τὸδἄρατὰγα,αβμετρεῖ. σύμμετραἄραἐστὶτὰ and. So let it, first of all, be incommensurable with 296

ELEMENTS BOOK 7. Elementary Number Theory. The propositions contained in Books 7 9 are generally attributed to the school of Pythagoras.

ELEMENTS BOOK 7. Elementary Number Theory. The propositions contained in Books 7 9 are generally attributed to the school of Pythagoras. LMNTS OOK 7 lementary Number Theory The propositions contained in ooks 7 9 are generally attributed to the school of Pythagoras. 193 ÎÇÖÓ. efinitions αʹ.μονάςἐστιν,καθ ἣνἕκαστοντῶνὄντωνἓνλέγεται. 1. unit

Διαβάστε περισσότερα

ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles

ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles LMNTS OOK 3 undamentals of Plane eometry Involving ircles 69 ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων

Διαβάστε περισσότερα

Definitions. . Proposition 1

Definitions. . Proposition 1 ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων ἴσαι εἰσίν. equal, or whose (distances) from the centers (to

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9

EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 The Greek text of J.L. Heiberg (1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Uol. II, Libros V-IX continens, Lipsiae, in

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ELEMENTS BOOK 13. The Platonic Solids

ELEMENTS BOOK 13. The Platonic Solids LMNTS BOOK 13 The Platonic Solids The five regular solids the cube, tetrahedron (i.e., pyramid), octahedron, icosahedron, and dodecahedron were problably discovered by the school of Pythagoras. They are

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ELEMENTS BOOK 11. Elementary Stereometry

ELEMENTS BOOK 11. Elementary Stereometry LMNTS OOK 11 lementary Stereometry 423 ËÌÇÁÉÁÏÆ º LMNTS OOK 11 ÎÇÖÓ. efinitions αʹ.στερεόνἐστιτὸμῆκοςκαὶπλάτοςκαὶβάθοςἔχον. 1. solid is a (figure) having length and breadth and βʹ. Στερεοῦ δὲ πέρας ἐπιφάνεια.

Διαβάστε περισσότερα

ELEMENTS BOOK 2. Fundamentals of Geometric Algebra

ELEMENTS BOOK 2. Fundamentals of Geometric Algebra ELEMENTS BOOK 2 Fundamentals of Geometric Algebra 49 ÎÇÖÓ. Definitions αʹ. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι 1. Any rectangular parallelogram is said to be conλέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles

ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles LMNTS OOK 4 onstruction of Rectilinear igures In and round ircles 109 ÎÇÖÓ. efinitions αʹ. Σχῆμα εὐθύγραμμον εἰς σχῆμα εὐθύγραμμον ἐγγράφ- 1. rectilinear figure is said to be inscribed in εσθαι λέγεται,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα