0.8 Επικαµπύλια ολοκληρώµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "0.8 Επικαµπύλια ολοκληρώµατα"

Transcript

1 0.8 Επικαµπύλια ολοκληρώµατα. Έστω η καµπύλη = ( r = r( t) = ( t, t,ln t), t > 0). Να ευρεθεί το µήκος της µεταξύ των σηµείων A = (,, 0) και B = (4,4,ln ). Έχουµε r () t = (,, t ) ( t > 0). Άρα το µήκος της καµπύλης µεταξύ των t σηµείων A= r () και B = r () είναι l( ) = r ( t) dt = 4t dt = ( t+ ) dt = 3+ ln t t π. Έστω το σύρµα = r = r() t = ( συνt, ηµ t), t 0, µε θερµοκρασία f ( xy, ) = x y στο σηµείο ( xy, ). Να ευρεθεί η µέση θερµοκρασία του σύρµατος. Ανάλογα µε το παρ..4 σελ Να ευρεθεί η µάζα m= f( x, y, z) ds του σύρµατος (σχήµατος έλικας) 5π = r = r() t = ( συνt, ηµ t,3), t t 0, 5π συν ηµ 0 3 συν... 0 m= t t + tdt = 4. Να υπολογιστεί το I = Fdr, όπου µε πυκνότητα f ( xyz,, ) = xy. i. F( x, y) = ( x, xy) και είναι a) Το ευθύγραµµο τµήµα µε αρχή το (0,0) και πέρας το (,). b) Το τµήµα της παραβολής y = x µε αρχή το (0,0) και πέρας το (,). ii. F( x, y, z) = ( x, y, x+ z ) όπου το ευθύγραµµο τµήµα µε αρχή το (,,) και πέρας (,3,5). iii. F(, xyz,) = ( yz, y, xy) όπου = ( rt ( ) = ( συνt, ηµ tt, ), t [0, π ]) Ανάλογα µε τα παραδείγµατα.8,.9 σελ

2 5. ια το διανυσµατικό πεδίο f (δυναµικό) ώστε f = F. F x y y xy (, ) = ( + 5, 8) να ευρεθεί συνάρτηση Η συνάρτηση f είναι f ( xy, ) xy 5x 8y c = + + (γιατί;) y y y 6. ια το διανυσµατικό πεδίο F( x, y) = ( e ηµ x, e συν x+ e ) να ευρεθεί συνάρτηση f (δυναµικό) ώστε f = F και να υπολογιστεί το ολοκλήρωµα Fdr, όπου είναι η καµπύλη 3 y = συν x από το x = 0 στο x = π. 7. ια το διανυσµατικό πεδίο F( x, y, z) = ( xye z, x e z, x ye z + z ) να ευρεθεί συνάρτηση f (δυναµικό) ώστε f = F και να υπολογιστεί το ολοκλήρωµα F dr, όπου είναι τυχαία C καµπύλη µε αρχή το A = (0,0,0) και πέρας το B = (,,). 8. ια το διανυσµατικό πεδίο F( x, y, z) = ( z + xyσυν ( x + z), ηµ ( x + z), xz+ yσυν ( x + z)) να ευρεθεί συνάρτηση f (δυναµικό) ώστε f = F και να υπολογιστεί το ολοκλήρωµα F dr, όπου είναι τυχαία C καµπύλη µε αρχή το A = (,,) και πέρας το B = (,, 3). 9. Υπολογίστε το ολοκλήρωµα π π (,,) ( ) ( ) (0,0,0) I = y + yzσυν xydx+ xy+ xzσυν xydy+ ηµ xydz (πρώτα να εξετάσετε αν έχει έννοια το ολοκλήρωµα). Λύσεις 5-9 α τρόπος: Ανάλογα µε τα παραδείγµατα.30,.3,.33 σελ και χρησιµοποιώντας το θεώρηµα.7 σελ β τρόπος: Χρησιµοποιείστε το Θεώρ. 4.9 σελ. 708, Πόρισµα 4.0 σελ 709 και Θεώρ..5 σελ Επαληθεύσατε το τύπο του Green για i. F( x, y) = ( x y, x + y ) G = ( x, y): x + y 3 3 ii. F( x, y) = ( x y, x + y ) και G = [, ] [, 3] Ανάλογα µε το παρ. 4.5 σελ και { }

3 . Υπολογίστε (µε τη βοήθεια του τύπου του Green) τα ολοκληρώµατα ( xy x ) dx+ x ydy, ydx+ xdy όπου G το τρίγωνο µε κορυφές τα G G σηµεία (0,0), (,0) και (,).. Υπολογίστε το ολοκλήρωµα (5 xy y ) dx ( xy x ) dy όπου η περίµετρος του τετραγώνου µε κορυφές τα σηµεία (0,0), (, 0), (,) και (0,). 3. Ένα κινητό ξεκινά από το σηµείο (,0), κινείται κατά µήκος του άξονα των x και φθάνει στο (,0) και µετά κατά µήκος του ηµικυκλίου y = 4 x επιστρέφει στο αρχικό σηµείο. Να υπολογιστεί το έργο W = Fdr, αν η δύναµη είναι F x y x x xy 3 (, ) = (, + 3 ) και η διαδροµή που ακολούθησε. Λύσεις -3 Ανάλογα µε το Παρ. 4.6 σελ Πόσο διαφέρουν τα ολοκληρώµατα F x y = x+ y x y (, ) (( ), ( ) ) (0,0), (,) και το τµήµα της Ι = F dr, Ι = F dr όπου, είναι το ευθύγραµµο τµήµα µε άκρα τα y = x µεταξύ x = 0, x =. (,) (0,0)

4 Από τον τύπο του Green έχουµε x I I = F dr F dr = ( 4 x) dydx= 0. Άρα Η διαφορά είναι x 3 I I = Έστω G = {( x, y) : x + y }. Πού είναι το λάθος στον υπολογισµό; y x x y π = dx + dy = dxdy = x + y x + y x x + y y x + y G G = 0dxdy = 0 G Ελέγξτε προσεκτικά αν ισχύουν οι υποθέσεις του θεωρήµατος Green (Θεώρ. 4.3 σελ 74) 6. i. Έστω F = ( P, Q): \{( x } 0, y0) αστρόβιλο C διανυσµατικό πεδίο και τυχαία απλή κλειστή C καµπύλη που δεν διέρχεται από το σηµείο ( x0, y 0). Αποδείξτε ότι a) F dr = 0, αν το ( x0, y0) δεν βρίσκεται στο εσωτερικό της. b) F dr = c ( c σταθερά), εάν το ( x0, y 0) βρίσκεται στο εσωτερικό της. ii. Υπολογίστε το ολοκλήρωµα y x dx + dy όπου η x + y x + y έλλειψη µε εξίσωση ( x x0) ( y y0) + = α β µε x0 y0 +, ( αβ, > 0). α β i.a) του Green έχω Το εσωτερικό της, έστω G έχει σαν σύνορο την. Άρα από τον τύπο Q P Fdr = dxdy = 0 x y G ( x, y ) 0 0

5 i.b) Έστω, απλές κλειστές εσωτερικό τους. C καµπύλες που περιέχουν το 0 0 ( x, y ) στο ( x, y ) 0 0 Τότε από τον τύπο του Green έχουµε Άρα F dr + F dr = F dr = F dr το οποίο σηµαίνει πως το ολοκλήρωµα F dr δεν εξαρτάται από την καµπύλη. ii. Χρησιµοποιείστε το i.b) και το παρ. 4.0 σελ f f f 7. Υπολογίστε την Λαπλασιανή f = + + x y z i. ii. 3 xy f ( xyz,, ) = xyz+ ze x f ( xyz,, ) = eηµ y+ xy z για και εξετάστε αν οι συναρτήσεις είναι αρµονικές. 8. Υπολογίστε την απόκλιση divf και τον στροβιλισµό curlf του z z διανυσµατικού πεδίου F( x, y, z) = ( xy, e x, x ye + z ). 3 3 = συντηρητικό διανυσµατικό πεδίο 9. Έστω F ( P, Q, R): V ( ) Αποδείξτε ότι το F είναι αστρόβιλο. Ισχύει το αντίστροφο; Θεώρηµα 4.7 σελ. 706 Παράδειγµα 4.9 σελ. 70 C.

6 0. Έστω Αποδείξτε ότι G απλό σύνολο Green και f, g: g + = + C συναρτήσεις. g. f gdxdy f g dxdy f dx f dy G G + y x ( G) g Εφαρµόζουµε τον τύπο του Green για F( x, y) = f, f y g. x

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι

Διαβάστε περισσότερα

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1 76 Παραδείγµατα και εφαρµογές )Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα C ) καµπύλη Αποδείξτε ότι το εµβαδόν Α ( D) του D δίνεται από τους τύπους Α D = d = d Απόδειξη (Ι)

Διαβάστε περισσότερα

k = j + x 3 j + i + + f 2

k = j + x 3 j + i + + f 2 1 ΑΝΑΛΥΣΗ ΙΙ Διανυσματική Ανάλυση Κλίση-Απόκλιση-Στροβιλισμός Εστω f : D R 3 R μία βαθμωτή συνάρτηση και f : D R 3 R 3 μία διανυσματική συνάρτηση. Εισάγουμε τον διαφορικό τελεστή : = x 1 i + x 2 j + x

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 4 Ασκήσεις Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 3 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού

Διαβάστε περισσότερα

Λύσεις στο επαναληπτικό διαγώνισμα 3

Λύσεις στο επαναληπτικό διαγώνισμα 3 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1. ΕΙΣΑΓΩΓΗ Γράφημα μιας πραγματικής συνάρτησης : ή ( )/ σύνολο: f Οι θέσεις του κινητού σημείου G ( x, y)/ y f( x), xa. f A y f x A είναι το M x, y, ώστε

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαμε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαμε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Όπως είδαμε στο Κεφάλαιο κάθε συνεχής απεικόνιση i r :, : r t f t,, f t, f :, καλείται καμπύλη του χώρου r = r τότε η καμπύλη σε παραμετρική μορφή Αν καλείται κλειστή

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 14

Λογισμός 4 Ενότητα 14 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Το θεώρημα του Green. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος /4/05 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Αν z z 0 δείξτε ότι: z z ( z ) Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z z z 0 () z

Διαβάστε περισσότερα

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA Kefˆlaio 9 EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA Σημειώσεις Γ. Γεωργίου, ΜΑΣ 1. 9.1 EpikampÔlia oloklhr mata Ορισμός Εστω f : R R βαθμωτό πεδίο συνεχές στη 1 καμπύλη σ : [a, b] R. ολοκλήρωμα α είδους

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαµε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαµε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Όπως είδαµε στο Κεφάλαιο κάθε συνεχής απεικόνιση r [ ] r ( ) ( i [ ] ) :, : t = f t,, f t, f:, καλείται καµπύλη του χώρου σε παραµετρική µορφή Αν r =r τότε η καµπύλη

Διαβάστε περισσότερα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς

Διαβάστε περισσότερα

0.4 ιαφόριση συναρτήσεων

0.4 ιαφόριση συναρτήσεων 0.4 ιαφόριση συναρτήσεων Ορισµός Έστω f : A R R µια πραγµατική συνάρτηση δύο µεταβλητών µε A ανοικτό και ( α, β ) A. Τότε οι µερικές παράγωγοι της συνάρτησης f ως προς τις µεταβλητές και στο σηµείο ( α,

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 18

Λογισμός 4 Ενότητα 18 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Το Θεώρημα του Stokes. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς

Διαβάστε περισσότερα

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( )

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( ) 4 Μιαδική Ολοκλήρωση Το Θεώρηµα Cauchy και εφαρµοές Καµπύλες στο Μιαδικό επίπεδο Oρισµός 4 Αν, :[, ] xy a είναι συνεχείς πραµατικές συναρτήσεις τότε κάθε απεικόνιση :[ a, ] : t = x t + iy t, καλείται (προσανατολισµένη)

Διαβάστε περισσότερα

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων.

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων. ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων Ορισµός 6 Εστω, > είναι δυο φυσικοί αριθµοί Κάθε συνάρτηση F : Ε Α καλείται διανυσµατική

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 7. Επικαµπύλια ολοκληρώµατα-συντηρητικά πεδία- Θεώρηµα Green στο επίπεδο. Όπως είδαµε στο Κεφάλαιο 0 κάθε συνεχής απεικόνιση

KΕΦΑΛΑΙΟ 7. Επικαµπύλια ολοκληρώµατα-συντηρητικά πεδία- Θεώρηµα Green στο επίπεδο. Όπως είδαµε στο Κεφάλαιο 0 κάθε συνεχής απεικόνιση KΕΦΑΛΑΙΟ 7 Επικαµπύλια ολοκληρώµατα-συντηρητικά πεδία- Θεώρηµα Gree στο επίπεδο Ανασκόπηση καµπύλων Όπως είδαµε στο Κεφάλαιο κάθε συνεχής απεικόνιση [ ] r ( ) ( i [ ] ) :, : t = f t,, f t, f:, καλείται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ 1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ Προσανατολισμένο Ευθύγραμμο Τμήμα (π.ε.τ.) είναι το ευθύγραμμο τμήμα PQ στο οποίο ορίζουμε το άκρο Ρ αυτού να είναι η αρχή του π.ε.τ. και το άκρο Q αυτού να είναι το

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ)

Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) ΘΕΜΑ ο Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) Α. Να αποδείξετε ότι αν μία συνάρτηση είναι παραγωγίσιμη σ ένα σημείο 0,τότε είναι και συνεχής στο σημείο αυτό Β. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

Ασκήσεις Διανυσματικής Ανάλυσης

Ασκήσεις Διανυσματικής Ανάλυσης Ασκήσεις Διανυσματικής Ανάλυσης ) Το ύψος h σε χιλιόμετρα ενός βουνού δίνεται από την σχέση h 4 == 4. α) Ένας πεζοπόρος βρίσκεται στο σημείο (,,) και κινείται προς την διεύθυνση της μεγίστης κατάβασης.

Διαβάστε περισσότερα

2x 2 y. f(y) = f(x, y) = (xy, x + y)

2x 2 y. f(y) = f(x, y) = (xy, x + y) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 6. Ορισμός επικαμπύλιου ολοκληρώματος 36 KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα επικαμπύλια ολοκληρώματα αποτελούν επέκταση της έννοιας του απλού ολο κληρώματος στην περίπτωση κατά την

Διαβάστε περισσότερα

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

< F ( σ(h(t))), σ (h(t)) > h (t)dt. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και

Διαβάστε περισσότερα

Εργασία 1 ΑΝ ΙΙΙ 07_08

Εργασία 1 ΑΝ ΙΙΙ 07_08 Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px

Διαβάστε περισσότερα

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο -7 Ασκήσεις Αποδείξτε την ανισότητα Cuch-Schwr Για R Δείξτε ότι η ισότητα ισχύει αν και μόνο αν τα διανύσματα και είναι συγγραμμικά Αποδείξτε την τριγωνική ανισότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: z r(cosϑ + isi ϑ) Τότε z r (cos ϑ + isi ϑ ) Ν-οστή ρίζα µιγαδικού / ϑ + π ϑ+ π z r cos + isi όπου 0,,,, Συνθήκες

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

Κεφάλαιο 7 Επικαμπύλια και Επιφανειακά Ολοκληρώματα

Κεφάλαιο 7 Επικαμπύλια και Επιφανειακά Ολοκληρώματα Επικαμπύλια Ολοκληρώματα Κεφάλαιο 7 Επικαμπύλια και Επιφανειακά Ολοκληρώματα 7. Επικαμπύλια Ολοκληρώματα και εφαρμογές. 7.. Επικαμπύλιο Ολοκλήρωμα. Έστω ότι η βαθμωτή συνάρτηση f(,y,z) είναι ορισμένη πάνω

Διαβάστε περισσότερα

6. Κεφάλαιο Διανύσματα, Διανυσματικές εξισώσεις, Διανυσματικά Πεδία.

6. Κεφάλαιο Διανύσματα, Διανυσματικές εξισώσεις, Διανυσματικά Πεδία. 6. Κεφάλαιο Διανύσματα, Διανυσματικές εξισώσεις, Διανυσματικά Πεδία. 6.1 Διανύσματα στον χώρο. 6.1.1 Ορισμοί Οι μαθηματικές ποσότητες μπορεί να είναι βαθμωτές, όταν είναι αριθμοί οι οποίοι ανήκουν σε ένα

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 211 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων} Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 13

Λογισμός 4 Ενότητα 13 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το επικαμπύλιο ολοκλήρωμα. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

Μαθηµατικός Λογισµός ΙΙ

Μαθηµατικός Λογισµός ΙΙ Μαθηµατικός Λογισµός ΙΙ ΤΕΙ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ 2 Κ Ε Φ Α Λ Α Ι Ο 1 Ορια και Συνέχεια 1.1 Ορια Παράδειγµα 1.1. Να υπολογίσετε το x+y lim (x,y) (0,0) x y. Απάντηση: Παρατηρούµε ότι η συνάρτηση

Διαβάστε περισσότερα

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα.

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα. 1.1. 1.1.1. Η µετατόπιση είναι διάνυσµα. Ένα σώµα κινείται σε οριζόντιο επίπεδο ξεκινώντας από το σηµείο Α του σχήµατος. Μετά από λίγο φτάνει στο σηµείο Β. y 4 (m) B Γ 1 Α x 0,0 1 5 x(m) y i) Σχεδιάστε

Διαβάστε περισσότερα

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα:

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: ΕΡΓΟ -ΕΝΕΡΓΕΙΑ Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: d F d s Παρατηρήσεις Το έργο εκφράζει την ποσότητα της ενέργειας που παράγεται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος 3/4/6 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Έστω το ολοκλήρωμα: I da {(, ) :, } 3 ( + 3 ) Να εκφράσετε το ολοκλήρωμα σε νέες συντεταγμένες, οι οποίες ορίζονται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη e d g h g h Εκφωνήσεις 65, 6 Δίνονται η συνάρτηση και η σχέση g, 8 α) Να βρεθούν οι τιμές του πραγματικού αριθμού λ ώστε η συνάρτηση να έχει πεδίο

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης. * Να συµπληρώσετε τον πίνακα ΙΙ, έτσι ώστε σε κάθε γραφική παράσταση συνάρτησης f της στήλης Α του πίνακα Ι να αντιστοιχεί η γραφική παράσταση της παράγουσάς της από τη στήλη Β.

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 010-011 4 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΚΕΦ1 1 Δίνεται

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις. Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. R = x,y,z : a x b, a y b, a z b.

ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. R = x,y,z : a x b, a y b, a z b. ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 5.. Ορισμοί-Ιδιότητες Έστω f : R είναι φραγμένη συνάρτηση πάνω σε κλειστό ορθογώνιο παραλληλεπίπεδο Εστω x, y, z R = x,y,z : a x b, a y b, a z b. είναι μια διαμέριση του

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Το θεώρηµα µέσης τιµής του διαφορικού λογισµού για κάθε α, β R και τη συνάρτηση f () = e εξασφαλίζει την ύπαρξη ενός αριθµού κ R, ώστε να ισχύει Α. e α-β = e κ (α - β) Β.

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Η καµπύλη y = /x µε x >, περιστρέφεται γύρω από τον άξονα Ox και δηµιουργεί ένα στερεό µε επιφάνεια S και όγκο V. είξτε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα