VIJČANI SPOJEVI. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "VIJČANI SPOJEVI. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07."

Transcript

1 VIJČANI SPOJEVI Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07. Nositelji kolegija: Prof. dr. sc. Božidar Križan Doc. dr. sc. Saša Zelenika - 1 -

2 VIJČANI SPOJEVI NAVOJ Navojna linija (zavojna linija, zavojnica) nastaje namatanjem hipotenuze pravokutnog trokuta na cilindar. γ γ h 1 - navojna linija, 2 - odmotana navojna linija, tj. hipotenuza pravokutnog trokuta, h - uspon Kut uspona navoja: tan γ = h d π 2 Kad bi po navojnoj liniji oko cilindra namatali žice trokutastog, pravokutnog ili drugih presjeka, dobili bi navoje trokutastog, pravokutnog ili drugih profila zuba: Vijak ima vanjski navoj, izrađen na vanjskoj površini cilindra. Matica ima unutarnji navoj izrađen u cilindričnom provrtu. Unutarnji navoj može biti izrađen i u provrtu u nekom strojnom dijelu. Matica koja se na vijku okrene za 360, napravit će u aksijalnom smjeru put koji je jednak usponu h

3 Najčešće vrste navoja: g) a) Metrički navoj; najčešći standardni navoj b) Fini metrički navoj; ima manju dubinu navoja i korak od normalnog metričkog navoja c) Whitworth-ov cijevni navoj; tradicionalni cijevni navoj porijekolom iz Velike Britanije d) Trapezni navoj; za vretena, ima manje trenje od metričkog navoja e) Pilasti navoj; za vretena, ima manje trenje od trapeznog, ali podnosi opterećenja samo u jednom smjeru f) Obli navoj; za spojnice željezničkih vagona, neosjetljiv na oštećenje i prljavštinu g) Obli elektro-navoj (Edisonov navoj); za grla žarulja i električne osigurače Navoji mogu biti: - desnovojni koji su standardni - lijevovojni za posebne namjene: ventili plinskih boca, natezači čelične užadi Desnovojni navoj Lijevovojni navoj - 3 -

4 Oznake: γ h a) Vijak i matica: - d = vanjski nazivni promjer vijka - d 2 = srednji promjer navoja (bokova) - d 3 = promjer korijena navoja vijka (promjer jezgre); za metričke navoje je d 3 = d 1,22687 P - P = korak navoja (udaljenost između dva susjedna zupca) - β = kut nagiba boka zuba (kut profila) - D 1 = unutarnji promjer navoja matice - m = visina matice - h = uspon navoja - γ = kut uspona b) Profil metričkog ISO navoja: - H 1 = nosiva dubina navoja - h 3 = dubina navoja - R = polumjer zaobljenja u korijenu navoja - 4 -

5 c) Prema kvaliteti izrade, tj. hrapavosti i točnosti izmjera i oblika, vijci i matice se dijele u sljedeće klase (DIN 267): - F - fina - A - srednja - za opću upotrebu - B - srednje gruba - C - gruba Navoj može imati jedan ili više početaka pa se govori o jednovojnom ili viševojnom navoju. Viševojni navoji imaju veći uspon h. h=p h=2p P h=3p P Jednovojni navoj Dvovojni navoj Trovojni navoj Označavanje navoja na crtežima: a) Metrički navoj, npr. M 12; broj označava vanjski promjer d = 12 mm. b) Fini metrički navoj ima manju dubinu navoja i korak od normalnog metričkog navoja, npr. M 3 x 0,35; d = 3 mm, P = 0,35 mm. c) Whitworth-ov cijevni navoj: - vanjski navoj, npr. G 3/4; prema DIN ISO 228; unutarnji promjer cijevi je 3/4 ". - vanjski navoj, npr. R 3/4 za spojeve gdje je unutarnji navoj cilindričan, a vanjski koničan 1:16; prema DIN 2999 i DIN 3858; unutarnji promjer cijevi je 3/4 ". - unutarnji cijevni navoj se označava G p 3/4, odnosno R p 3/4. d) Trapezni navoj: - npr. Tr 36 x 6; d = 36 mm, P = 6 mm. - npr. Tr 52 x 24 P8; d = 52 mm, h = 24 mm, P = 8 mm (trovojni navoj) - 5 -

6 VRSTE VIJČANIH SPOJEVA Vijčani spojevi su najčešće korištena vrsta rastavljivih spojeva. Glavni elementi vijčanog spoja su: 1. Vijak na kojem je izrađen vanjski navoj 2. Matica ili cilindrični provrt u strojnom dijelu u kojima je izrađen unutarnji navoj 3. Podložna pločica ili osigurač - po potrebi. Vijak s maticom (pričvrsni vijak) Vijak u provrtu s unutarnjim navojem (pričvrsni vijak) Postoje vijci koji pomoću svrdla na vrhu sami u metalu buše rupu i urezuju navoj: Neke vrste vijaka za metal, ciglu i beton same u provrtu urezuju unutarnji navoj. Vrste vijčanih spojeva s obzirom na namjenu: 1. Pričvrsni vijčani spojevi: - za međusobno spajanje dijelova (gornja slika) - za napinjanje čelične užadi: okretanjem dvostruke matice se uške međusobno približavaju, odnosno udaljavaju Desni navoj Dvostruka matica Lijevi navoj - 6 -

7 2. Pokretni vijčani spojevi ili "vijčani pogoni": rotacijsko gibanje vijka (vretena) se pretvara u uzdužno pomicanje matice ili vijka (vretena) pri čemu je ponekad bitno proizvesti veliku aksijalnu silu. Primjeri: - vretena na prešama: proizvodi se velika aksijalna sila - vretena na tokarskim i drugim obradnim strojevima - vretena u ventilima - 7 -

8 3. Vijčani spojevi za podešavanje: - za podešavanje ventila motora, sigurnosnih ventila i sl. Vijak za podešavanje - kao noge služe za niveliranje kućanskih aparata (npr. hladnjaka), strojeva, kioska i sl. 4. Brtveni vijci: služe kao čepovi, npr. na karteru automobilskog motora. Čep - 8 -

9 5. Mjerni vijci: kod mjernih uređaja, npr. mikrometarske mjerke, okretanjem vijka u fiksnoj matici pomiče se mjerni tanjurić Mjerni tanjurić na vrhu vijka VIJCI k Najčešće vrste pričvrsnih vijaka: a) Vijak sa šestostranom glavom; b) Vijak za točno nalijeganje (kalibrirani vijak); c) Vijak s cilindričnom glavom; d) Vijak s cilindričnom glavom s unutarnjim šesterokutom (za imbus-ključ); e) Vijak s upuštenom glavom; f) Vijak s upuštenom lećastom glavom; g) Vijak s nareckanom glavom za ručno pritezanje; h) Vijak sa samorežućim navojem; i) Vijak za lim (sličnog koničnog oblika su vijci za drvo); k) Vijak s uškom; l) Vijak s prstenastom glavom; m) Svorni vijak; n) Zatik s navojem; o) Čep s navojem - 9 -

10 - Vijci pod a), b) i o) se pritežu ključevima za šesterokutne glave i matice; - Vijci pod c), e), f), g), h), i) i n) se pritežu izvijačem s plosnatim vrhom; - Vijak pod d) se priteže inbus-ključem; - Vijci pod k) i l) se pritežu podesnim alatom; - Vijak pod g) i svorni vijak pod m) se uvrću ručno. Prostor potreban za pritezanje i otpuštanje vijka ovisi o vrsti vijka, odnosno potrebnoj vrsti ključa. Najmanje je mjesta potrebno za inbus-vijke pa se oni mogu smjestiti neposredno jedan uz drugi. Osim plosnatog izvijača se koriste i drugi oblici. Torx-sistem je dobar jer se sila na maticu ili glavu vijka ne prenosi po nekoliko linija nego po nekoliko površina. Razne vrste izvijača Torx-izvijač - dodir na površini Šesterostrani alat - linijski dodir

11 Najčešći materijal za izradu vijaka je čelik visoke istezljivosti kod kojega nema opasnosti od krhkog loma. U elektrotehnici se zbog dobre vodljivosti koristi mjed. Koriste se i laki metali, a u zadnje vrijeme i polimeri (umjetne plastične mase). Čelični vijci se dijele u razrede čvrstoće: Razred čvrstoće vijka R m (N/mm 2 ) R e (N/mm 2 ) R p0,2 (N/mm 2 ) A 5 (%) Odgovarajući materijal Č0370 Č0370 Č0545 Č1330 Č1430 Č1730 Č4130 Č4732 Č5431 Pripadajući razred čvrstoće matice A 5 = relativno izduženje (dilatacija) ε pri lomu (za probnu epruvetu s l 0 =5 d 0 ). Navedene čvrstoće vrijede za temperature do 350 C. Iznad toga treba koristiti specijalne materijale. Oznaka razreda čvrstoće znači: Npr. 6.8: - prvi broj x 100 = 6 x 100 = 600 N/mm 2 = R m - prvi broj x drugi broj x 10 = 6 x 8 x 10 = 480 N/mm 2 = R e Vijci razreda čvrstoće 6.8 i čvršći moraju oznaku razreda čvrstoće imati vidljivo otisnutu na glavi vijka. Duljina navojnog dijela vijka odabire se po konkretnoj potrebi. Ako se vijak uvrće u podlogu, duljina navojnog dijela vijka mora biti veća od dubine uvrtanja l u, osim kod svornih vijaka gdje je jednaka

12 Najmanja dubina uvrtanja l u (mm) 1) Materijal podloge Razred čvrstoće vijka R m 400 N/mm 2 0,8 d 1,2 d - - Čelik 400 R m 600 N/mm 2 0,8 d 1,2 d 1,2 d R m 800 N/mm 2 0,8 d 1,2 d 1,2 d 1,2 d R m >800 N/mm 2 0,8 d 1,2 d 1,0 d 1,0 d Sivi lijev 1,3 d 1,5 d 1,5 d - Cu-slitine 1,3 d 1,3 d - - Čisti aluminij 1,6 d 2,2 d - - Lake Nekaljene Al-slitine 1,2 d 1,6 d - - kovine 2) Kaljene Al-slitine 0,8 d 1,2 d 1,6 d - Bijela kovina, umjetne plastične mase 2,5 d ) Za fine navoje dubina uvrtanja treba biti za 25 % veća. 2) Za dinamička opterećenja treba dubinu uvrtanja povećati za oko 20 %. Os vijka treba biti na primjerenoj udaljenosti R od ruba: Materijal podloge Čelik Sivi lijev, Cu-slitine Lake kovine Bijela kovina, umjetne plastične mase R min 0,75 d 0,8 d 1,0 d 1,25 d Dubina rupe s navojem treba za oko tri koraka (3 P) biti veća od dubine uvrtanja l u, kako se ne bi dogodilo da vijak dođe do kraja navoja prije nego što su dijelovi koje treba spojiti dobro pritegnuti

13 MATICE Najčešće vrste matica: a) Šesterostrana matica; b) Šesterostrana zatvorena matica; c) Četverostrana matica; d) Matica s čeonim urezom; e) Matica s rupama po obodu; f) Nareckana matica; g) Krilasta matica (za ručno pritezanje); h) Krunasta matica Čelične matice se dijele u razrede čvrstoće: Razred čvrstoće R m (N/mm 2 ) Oznaka razreda čvrstoće znači: Npr. 6: - broj x 100 = 6 x 100 = 600 N/mm 2 = R m Matice većih čvrstoća moraju na sebi imati otisnutu oznaku razreda čvrstoće

14 PODLOŽNE PLOČICE Podložne pločice (podloške) su najčešće okruglog oblika, s rupom kroz koju prolazi vijak. Ne osiguravaju vijak od odvrtanja i koriste se u sljedećim slučajevima: - kad je površina podloge na koju dolaze matica ili glava vijka loše obrađena, tj. kad je neravna, - kad je rupa za vijak u podlozi znatno veća od promjera vijka, - kad se spoj često rastavlja, kako se ne bi oštetila podloga, - kad je podloga mekana, kako bi se povećala površina na koju se ostvaruje pritisak - kad je podloga kosa, što je slučaj kod spajanja U ili I-profila Obična podložna pločica Podložna pločica za profilirane nosače OSIGURANJE VIJČANOG SPOJA OD ODVRTANJA Osiguranje vijčanog spoja od odvrtanja kod statičkih opterećenja nije potrebno, ali se primjenjuje kod dinamičkih opterećenja. Naime, nakon pritezanja vijka dolazi do djelomičnog slijeganja hrapavosti dodirnih površina, može doći do puzanja materijala vijka, a može doći i do lokalnih plastičnih deformacija. Sve to, potpomognuto promjenama opterećenja i eventualnim vibracijama, može rezultirati otpuštanjem vijčanog spoja. U pravilu su dobro proračunati, oblikovani i pritegnuti vijčani spojevi već osigurani protiv neželjenog odvrtanja. To prije svega vrijedi za visokoopterećene spojeve s elastičnim vijcima razreda čvrstoće 8.8 i više, uz male hrapavosti dodirnih površina

15 a) Osiguranje oblikom Osiguranje oblikom se postiže: - rascjepkom s običnom ili krunastom maticom; rascjepka prolazi kroz poprečni provrt u vijku i - sigurnosnim limom s izdancima; jedan izdanak se priljubi uz maticu, a drugi savije oko ruba. a) Osiguranje od odvrtanja pomoću rascjepke; b) Osiguranje od odvrtanja pomoću sigurnosnog lima b) Osiguranje silom Umetanjem posebnih opružnih elemenata se osigurava aksijalna sila prednapona i pri djelovanju najveće radne sile, makar je došlo do slijeganja hrapavosti ili plastičnih deformacija. Ovi elementi su u obliku rasječenih, zakrivljenih ili tanjurastih prstena (pločica), a izrađeni su od opružnog čelika. Nazivaju se i "elastične podloške". Razne zupčaste i lepezaste prstenaste pločice se svojim zupcima utiskuju u podlogu, povećavaju trenje i tako sprečavaju odvrtanje. Ovakvo osiguranje nije primjenjivo na tvrdim kaljenim površinama. Veće trenje i sprečavanje odvrtanja matice se postiže i sigurnosnom limenom maticom od opružnog čelika koja s unutarnje strane ima više jezičaca koji se zabijaju u navoj. Česta je upotreba dvije matice - kontramatice manje visine koja se priteže na podlogu i normalne matice koja se priteže na kontramaticu ( u praksi

16 se često matice montiraju obratno - slika). Matice mogu biti i jednake. Vanjska matica sprečava otpuštanje unutarnje, a na površini njihovog dodira se javlja i dodatno trenje. Za jednokratnu upotrebu se koriste matice s uloškom od umjetne plastične mase u koji vijak urezuje navoj. a) Rasječeni elastični prsteni; b) Zakrivljeni elastični prsteni; c) Tanjurasta elastična pločica; d) i e) Zupčaste pločice; f) i g) Lepezaste pločice; h) Sigurnosna limena matica; i) Sigurnosna matica s poliamidnim uloškom za jednokratnu upotrebu Tanjuraste i zupčaste elastične pločice se mogu integrirati s glavom vijka, odnosno maticom. a) b) Integrirana izvedba osigurača: a) Osiguranje tanjurastom elastičnom pločicom kod vijka; b) Osiguranje ozubljenjem kod vijka i matice Matica s protumaticom c) Osiguranje materijalom Vrši se lijepljenjem navoja umjetnim smolama. Često se koristi ljepilo "Loctite" kojim se mogu postići vodonepropusni spojevi, npr. kod spajanja cijevi. Moguće je i zavarivanje glave vijka ili matice za podlogu za što postoje i posebni vijci i matice

17 Efikasnost osiguranja od ovrtanja je prikazana u dijagramu ovisnosti pada sile prednapona F V o broju promjena opterećenja N. F V Broj promjena opterećenja N A - Loctite, B - tanjurasta elastična pločica integrirana s glavom vijka, C - zupčasta pločica integrirana s glavom vijka, D - matica s poliamidnim uloškom, E - vijak sa zupčastom pločicom, F - vijak s lepezastom pločicom, G - neosigurani vijčani spoj. Linija za rasječene elastične prstene se nalazi između linija F i G. SILE I MOMENTI U VIJČANOM SPOJU Radi pojednostavljenja se razmatra navoj pravokutnog profila, a matica se svodi na jedan element na promjeru d 2. Na element djeluju neke elementarne sile, ali će se radi jednostavnosti odmah računati s ukupnim silama. Prilikom pritezanja matice se taj element uklinjuje između podloge i navoja vijka

18 Promatrani element (odnosno matica) može se dalje okretati samo ako se vijak produlji i podloga sabije (skrati). To će se pri daljnjem pritezanju i dogoditi, što znači da će vijak biti opterećen aksijalnom vlačnom silom F, a podloga istom silom tlačno. Za guranje elementa tj. matice uz kosinu pod kutem uspona γ, potrebna je tangencijalna (obodna) sila F t. Na mjestu dodira elementa matice i navoja vijka djeluju normalna sila F N i sila trenja F tr, a s podloge se još prenosi i sila F. Kad se vijčani spoj priteže, može se zamisliti da se matica "penje" po navoju. Tangencijalna sila F = F tan( γ + ρ' ) t Sila trenja F tr = F N µ ' G = F N tan ρ' µ G ' = korigirani faktor trenja na navoju čija veličina ovisi o materijalu vijka i ' matice, površinskoj obradi i podmazanosti. Okvirno je µ G = 0,09...0,20. Najčešće ' je µ G 0,12. ρ' = kut trenja Da bi se proizvela sila F t, odnosno aksijalna sila u vijku F, treba djelovati momentom pritezanja na navoju d2 d M 2 G = Ft = F tan( γ + ρ' )

19 Kad se vijčani spoj otpušta, matica se "spušta" po navoju i tu se razlikuju dva slučaja: - Ako je kut trenja manji od kuta uspona, tj. ρ' < γ, element matice pri spuštanju treba pridržavati silom F t da bi bio u ravnoteži: F t = F tan( γ ρ' ) Kad sila F t ne bi djelovala, matica bi se sama "spustila" (otpustila) i u tom slučaju vijčani spoj ne bi bio samokočan. Ovakvi vijci moraju imati veliki kut uspona γ, a to se može postići samo viševojnim navojima. - Ako je kut trenja veći od kuta uspona, tj. ρ' > γ, onda (γ ρ') odnosno tan (γ ρ') postaju negativni. Slijedi da je tangencijalna (obodna) sila F t negativna, odnosno ona će imati suprotni smjer djelovanja. Dakle, da bi se matica spuštala, treba ju dodatno gurati silom F t i u tom slučaju je vijčani spoj samokočan. Za metričke navoje s γ 2,5 je samokočnost osigurana ako je µ ' 0,04, a to je praktički uvijek

20 Budući da se bokovi zuba navoja, osim kod pravokutnog profila, nalaze pod određenim kutem β, stvarna normalna sila F N ' bit će nešto veća, a time će veća biti i sila trenja. ' FN F N = β cos 2 U praksi se računa tako da se normalna sila smatra istom, a u istom omjeru se povećava stvarni faktor trenja µ G, čime se množenjem sile i faktora trenja dobiva ista sila trenja. Korigirani računski faktor trenja je jednak ' µ G µ G = β cos 2 ' Za metrički navoj s β = 60 je µ G = 1,155 µ G = tan ρ'. ' Za trapezni navoj s β = 30 je µ G = 1,035 µ G, pa je trenje manje nego na metričkom navoju. Prilikom pritezanja vijčanog spoja, matica treba svladati uspon navoja na vijku za što se troši oko 27 % momenta M G, te trenje na navoju za što se troši oko 73 % momenta M G. Prilikom pritezanja, matica klizi po podlozi gdje se također javlja trenje. Dodir se ostvaruje po prstenastoj površini između promjera rupe za vijak d h i vanjskog promjera oslonca glave vijka ili matice d w. d w 0,9 s za šesterostrane vijke i matice (s = otvor ključa) d w = promjer glave inbus-vijka

21 Srednji polumjer na kojemu se ostvaruje trenje iznosi (d h + d w )/4. Sila trenja na podlozi: F tr K = F µ K µ K = faktor trenja na podlozi. Raspon vrijednosti je sličan kao i na navoju. Moment za svladavanje trenja na podlozi M K = F µ K d h + d 4 w Prilikom pritezanja vijčanog spoja treba svladati moment na navoju i moment na podlozi M A = M G + M K Moment pritezanja vijčanog spoja kod koga će se u vijku javiti sila F je dakle M A d + = 2 dh d F tan( γ + ρ' ) + µ K 2 4 w NAČINI PRITEZANJA VIJČANOG SPOJA Sila u vijku mora prilikom pritezanja biti u dopuštenim granicama da ne bi došlo do plastičnih deformacija ili pucanja vijka. a) Ručno pritezanje ključem Dužina ključa L je prilagođena veličini vijka i prosječnoj ručnoj sili, kako moment pritezanja M A ne bi bio prevelik i doveo do oštećenja vijka. Ova se metoda primjenjuje za vijke korištene za sporedne svrhe

22 Ručna sila N L 21 d b) Pritezanje pneumatskim ili električnim alatom Moment pritezanja se može grubo podesiti. Služi za serijsko pritezanje vijaka. c) Pritezanje momentnim ključem Preciznije od prethodnih načina je pritezanje momentnim ključem. Kod momentog ključa se jedan njegov dio deformira sukladno veličini momenta pritezanja M A, dok na drugi neopterećeni dio moment ne djeluje i on se ne deformira. Kod jedne vrste momentog ključa je deformabilni dio torzijska opruga u obliku šipke na kojoj je i kazaljka. Pri pritezanju se šipka uvija i kazaljka rotira. Kazaljka pokazuje moment pritezanja na skali koja je vezana za drugi neopterećeni dio u obliku cijevi

23 Kod jedne druge vrste momentnog ključa se prethodno na skali postavi željeni moment pritezanja. Kad se taj moment postigne, dolazi do međusobnog pomaka nekih dijelova momentnog ključa i čuje se zvučni signal. d) Hidrauličko pritezanje Kod veoma velikih vijaka je pritezanje ključem neprikladno ili nemoguće jer je moment pritezanja prevelik, a točnost postizanja aksijalne sile F u vijku bi bila mala. Takav je slučaj kod vijaka za pričvršćenje poklopaca cilindra velikih motora ili kod preša. Kako sili F u vijku odgovara određeno izduženje vijka f S, hidrauličkim uređajem se vijak izduži za f S, matica se rukom ili podesnim alatom malo pritegne i hidraulički uređaj ukloni. Vijak ostaje izdužen za iznos f S i opterećen silom F. Za razliku od prethodnih načina pritezanja, vijak nije opterećen torzijski. 1 - dovod ulja pod tlakom, 2 - klip, 3 - tlačni cilindar, 4 - natezna matica spojena s vijkom koju potiskuje klip

24 SLUČAJEVI OPTEREĆENJA VIJČANOG SPOJA Definicije: Sila prednapona F V je statička vlačna sila koja se u vijku javlja nakon pritezanja vijčanog spoja. Nakon pritezanja je i podloga opterećena tlačnom silom iste veličine F V. Radna sila F A je vlačna sila koja djeluje na vijak nakon pritezanja, a može biti statička ili dinamička. 1. Vijčani spoj bez prednapona F V = 0 Vijak, tj navoj na završetku kuke je spojen s maticom. Spoj nije pritegnut, a težina kuke se zanemaruje. 1 - teretna kuka s navojem, 2 - matica, 3 - osigurač protiv odvrtanja matice, 4 - aksijalni kuglični ležaj Teret F A (statička radna sila) izaziva u vijku vlačno naprezanje σ V F = A A S σ dop

25 Površina presjeka preko koje se prenosi sila je A S d2 + d = π 4 = 2 ds π 4 Re σdop = ν odnosno R σdop = ν p0,2 Faktor sigurnosti ν = 1,25...1,5, maksimalno do 6, npr. kod dizala. 2. Vijčani spoj s prednaponom (prednapregnuti vijčani spoj) Prilikom pritezanja vijčanog spoja u vijku se javlja aksijalna sila prednapona F V koja direktno zavisi od momenta pritezanja M A = M G + M K : F V = d 2 2 tan M ( γ + ρ' ) A + µ K d h + d 4 w a) F V > 0; F A = 0 Ako dodatne aksijalne radne sile F A nema ili je zanemariva, vijčani spoj će biti statički opterećen: - vlačno naprezanje F σ v = A V S

26 - torzijsko naprezanje τ t = M W G p = F V d2 tan( γ + ρ' ) 2 3 ds π 16 d S d = 2 + d 2 3 Ekvivalentno naprezanje 2 v 2 t σe = σ + 3 τ σ dop Re σdop = ν odnosno R σdop = ν p0,2 Faktor sigurnosti ν = 1,25...1,5..., ovisno o primjeni, opasnosti i sl. Za ovakve vijke se najčešće koristi ručno pritezanje ključem gdje sama duljina ključa onemogućava prevelika naprezanja. Na ključ se ne smiju stavljati nastavci, npr. cijevi, jer je onda moment pritezanja prevelik. b) F V > 0; F A > 0 FV > 0, FA = 0 Dodatna radna sila F A djeluje na vijak pritegnut silom prednapona F V. Radna sila može biti statička ili dinamička. p a) Vijci poklopca posude pod tlakom; b) Vijci koji nose viseći ležaj

27 Ovako opterećeni vijci imaju statički dio naprezanja usljed sile prednapona te dodatni statički ili dinamički dio naprezanja uslijed radne sile. Radna sila dodatno izdužuje već izduženi vijak i smanjuje silu u podlozi (spojenim dijelovima) pa se i podloga izdužuje. Slučaj opterećenja prednapregnutog vijčanog spoja s dinamičkom radnom silom F A je najznačajniji i najteži i bit će obrađen detaljno. PODATLJIVOST I KRUTOST VIJKA I PODLOGE Gradivo je detaljno izloženo na predavanjima. Slika V1: Elastični vijci Slika V2: Primjer za proračun koeficijenta podatljivosti vijka

28 Slika V3: Primjer za proračun koeficijenta podatljivosti podloge DEFORMACIJSKI DIJAGRAM VIJČANOG SPOJA Gradivo je detaljno izloženo na predavanjima. Slika V4: Deformacije vijka i podloge F A p a) b) c)

29 UTJECAJ HVATIŠTA RADNE SILE Gradivo je detaljno izloženo na predavanjima. Slika V5: Faktor rasterećenja podloge n n 0,25 n 0,5 n 0,

30 DEFORMACIJSKI DIJAGRAM ZA RAZNE SLUČAJEVE OPTEREĆENJA Radi jednostavnosti, bit će prikazan samo donji dio dijagrama. a) Statičko opterećenje silom prednapona F V. Radna sila F A = 0. Sile u vijku i podlozi su jednake. b) Statičko opterećenje silom prednapona F V i statičkom radnom silom F A. Sile u vijku i podlozi su različite i nepromjenljive. Primjer: vijčani spoj na prirubnici posude pod konstantnim tlakom. c) Nakon pritezanja silom F V, vijčani spoj je opterećen dinamički radnom silom koja varira između nule i vrijednosti F A. Sila u vijku će varirati između F V i F S, a u podlozi između F V i F K. Dinamička sila u vijku iznosi ±F SA /2. Primjer: vijčani spoj na poklopcu cilindra klipnog kompresora

31 d) Nakon pritezanja silom F V, vijčani spoj je opterećen dinamički radnom silom koja varira između F A ' i F A ''. Sila u vijku će varirati između F S ' i F S '', a u podlozi između F K ' i F K ''. Dinamička sila u vijku iznosi ±(F S '' F S ')/2. PREDNOST KORIŠTENJA ELASTIČNIH VIJAKA U dinamički opterećenim konstrukcijama bezuvjetno treba težiti što nižoj vrijednosti dinamičke sile ±F SA /2 ili ±(F S '' F S ')/2, kako bi što teže došlo do zamora materijala i zamornog loma. Dinamička će sila biti to manja što je veća podatljivost vijka. Podatljiviji se vijak može dobiti: - stanjenjem struka na promjer d T = ((0,7...)0,85...0,95) d 3 ("elastični vijak"): - bušenjem rupe uzduž vijka: - povećanjem duljine vijka, što znači da se moraju koristiti dodatne čahure:

32 Na gornjim izvedbama je postignut i mali faktor rasterećenja podloge n što također rezultira podatljivijim vijkom. Vijak sa stanjenim strukom može se opteretiti manjom silom prednapona, ali će se još znatnije smanjiti dinamička komponenta pa time i opasnost od zamornog loma. Podatljivi vijak Sila Obični vijak d T = 0,9 d 3 d T = 0,7 d 3 F V 100 % 80 % 50 % F SA 100 % 60 % 38 % Iz usporedbe deformacijskih dijagrama za "kruti" i "elastični" vijak za jednake sile F V i F A može se dobro uočiti smanjenje dinamičke sile F SA. "Kruti" vijak "Elastični" podatljivi vijak

33 NAPREZANJA U VIJKU Gradivo je detaljno izloženo na predavanjima. Slika V6: Smithov dijagram σ R m R e (R p0,2 ) R d0 +R d-1 R a R dg κ =0 R dd κ= 1 R a σ m R d-1 Slika V7: Opterećenje navoja matica Normalna tlačna matica Matica s rasteretnim utorom Vlačna matica

34 POPREČNO OPTEREĆENI VIJČANI SPOJEVI Ako sila djeluje okomito na os vijka, vijčani spoj je poprečno opterećen. Takvi su slučajevi kod sklopova gdje se prenosi okretni moment, npr. kod vijaka kojima se spajaju polovice krutih kolutnih spojki ili kod spojeva glavina s vijencem pužnog kola. Načini prenošenja poprečne sile F Q su sljedeći: a) Izvedba pomoću dosjednog (kalibriranog) vijka je dobra za promjenjive sile. Dosjed je H7/k6, izrada je skupa. Vijak je u poprečnom presjeku opterećen posmično (tangencijalno) i kod preopterećenja je moguća njegova trajna deformacija. b) Običan vijak prolazi kroz uzdužno razrezanu elastičnu čahuru izrađenu od čelika za opruge. Provrt ne zahtijeva toleranciju (obično bušenje). Posmično je opterećena čahura koja zbog svoje elastičnosti može ublažiti udare. c) Poprečnu silu preuzima čahura s dosjedom u provrtu koja je posmično opterećena

35 Posmično naprezanje za navedene slučajeve je τ s = F Q A τ sdop A = površina poprečnog presjeka vijka ili čahure opterećena smicanjem Dopušteno posmično naprezanje: τ s dop 0,6 R e za statičko opterećenje τ s dop 0,5 R e za ishodišno dinamičko opterećenje τ s dop 0,4 R e za izmjenično dinamičko opterećenje Površinski pritisak između vijka ili čahure i površine provrta je p = F Q d s p dop Dopušteni površinski pritisak: p dop 1,2 R e za statičko opterećenje i žilavi materijal p dop 0,9 R e za dinamičko opterećenje i žilavi materijal p dop 0,75 R m za statičko opterećenje i krhki materijal p dop 0,6 R m za dinamičko opterećenje i krhki materijal d) Vijak je pritegnut takvom silom prednapona F V koja na naliježnoj površini proizvodi silu trenja F T = F V µ 0 koja je veća od poprečne sile F Q. Proračun će biti prikazan za slučaj da se sila trenja postiže pomoću dva vijka i da se trenje javlja na dvije površine:

36 Svaki vijčani spoj proizvodi silu na podlozi F K. Ukupna sila trenja mora za faktor sigurnosti ν biti veća od poprečne sile: F K µ 0 i z = ν F Q Materijal Faktor trenja mirovanja µ 0 Glatke neodmašćene površine 0,1...0,15 Čelik/čelik - suho 0,15...0,2 Čelik/sivi lijev, čelik/bronca - suho 0,18...0,25 Sivi lijev/ sivi lijev, sivi lijev/ bronca - suho 0,22...0,26 Konstrukcije od Č Č0561 u visokogradnji i mostogradnji 0,5 i = broj površina na kojima se ostvaruje trenje (na slici i=2) z = broj vijaka ( na slici z=2) ν = 1,2...1,3 za opće strojarstvo i visokogradnju, ν = 1,6 za mostogradnju i dizalice Sila na podlozi F K = ν F µ 0 Q i z Budući da nema radne sile, sila u podlozi je jednaka minimalnoj sili prednapona F V min pa će biti F M min = F K + F Z Naprezanje u vijku treba kontrolirati na najveću montažnu silu prednapona F M max = α A F M min

37 POKRETNI VIJČANI SPOJEVI (VIJČANI POGONI) Služe za pretvorbu rotacijskog gibanja vijka u uzdužno gibanje matice ili vijka pa se nazivaju i vijčanim pogonima. Vijak se naziva vreteno i može biti velike duljine. Pokretni vijčani spojevi, tj. vretena, primjenjuju se kod obradnih strojeva, ventila, zasuna, klavirskih stolica itd. Vretena na tokarskim i drugim obradnim strojevima Vretena u ventilima

38 Kod preša se okretni moment pretvara u veliku aksijalnu silu. Za brzo uzdužno gibanje se koriste višenavojna vretena. Kao navoji se najčešće koriste trapezni jer imaju manje trenje od metričkih. Ako je opterećenje samo u jednom smjeru, mogu se koristiti i pilasti navoji gdje je nagib na opterećenoj strani navoja samo 3 pa je trenje još manje: µ ' G µ G = µ cos3 G Za torzijski moment na vretenu T će aksijalna sila biti F = d 2 T tan( γ + 2 ρ ') Ona će izazvati pritisak na navojima vretena i matice. Zbog stalnog klizanja navoja matice po navoju vretena, dodirni pritisak na navojima ne smije biti velik, kako ne bi došlo do habanja. Srednji dodirni pritisak mora biti manji od dopuštenog: F p = pdop π 2 2 ( d D1 ) z 0,75 4 Samo oko 75% navoja u matici nosi opterećenje Broj navoja u matici Površina jednog navoja (na 360 o ); D 1 = unutarnji promjer matice

39 Materijal vretena/matice Trajni pogon Čelik/čelik 8 Čelik/sivi lijev 5 Čelik/bronca 10 Kaljeni čelik/bronca 15 Čelik/plastika p dop (N/mm 2 ) Povremeni (sprekidani) pogon Rijetki pogon s malim brzinama i dobrim podmazivanjem +50% +100% Visina matice m = z P Usvajanje dimenzija vretena: a) Kod vlačno opterećenih vretena i kratkih tlačno opterećenih vretena kod kojih ne postoji opasnost od izvijanja potrebna se površina presjeka računa prema dopuštenom normalnom naprezanju. A 3 = 2 3 d π F 4 σ dop Za statička opterećenja: σ dop = R e /1,5 Za dinamička opterećenja: σ dop = R d /2 b) Kod tlačno opterećenih dugačkih vretena (kao na primjeru vretena za prešu) postoji opasnost od izvijanja. Promjer vretena se računa po formuli d 3 1, 2 2 k 4 F ν l d 3 (mm), F (N), l k (mm), E (N/mm 2 ) E Faktor sigurnosti ν Računska duljina izvijanja l k 0,7 l l = tlačno opterećena duljina vretena U novije se vrijeme kod alatnih strojeva radi veće točnosti koriste kuglična navojna vretena i matice, gdje je trenje klizanja zamijenjeno manjim trenjem kotrljanja. Kuglice se kotrljaju unutar navoja koji je u obliku polukružnog utora. Kod pomicanja matice uzduž vretena, kuglice recirkuliraju unutar nje

40 - 40 -

41 - 41 -

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. SPOJEVI S GLAVINOM Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - SPOJEVI S GLAVINOM

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni i preddiplomski studij BRODOGRADNJE za školsku godinu

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija,

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija, 1. Osnove čvrstoće 1.1. Pojam i vrste opterećenja Nauka o čvrstoći proučava utjecaj vanjskih sila i momenata na ponašanje čvrstih (realnih) tijela. Djelovanje vanjskih sila i momenata na tijelo naziva

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2011./12. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12. Nositelj kolegija: Prof. dr. sc. Božidar Križan - 1 - OSOVINE I VRATILA Funkcija, opterećenja,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

OPRUGE. Podjela prema upotrebi: Podjela prema vrsti naprezanja (najčešći tipovi):

OPRUGE. Podjela prema upotrebi: Podjela prema vrsti naprezanja (najčešći tipovi): OPUGE Opruge su konstrukcijski elementi koji svrsishodnim oblikovanjem i upotrebom visokoelastičnih materijala mogu mehanički rad elastičnom deformacijom pretvoriti u potencijalnu energiju i obratno, potencijalnu

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

OSNOVE KONSTRUIRANJA (2+1)

OSNOVE KONSTRUIRANJA (2+1) TEHNIČKI FAKULTET Sveučilišni preddiplomski studij elektrotehnike OSNOVE KONSTRUIRANJA (2+1) Akademska godina 2009./10. Slikovni materijal uz predavanja NAPREZANJA U KONSTRUKCIJSKIM ELEMENTIMA AKSIJALNO

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA OSNOVE NAUKE O ČVRSTOĆI Nauka o čvrstoći proučava ravnotežu između vanjskih i unutarnjih sila i deformacije čvrstih tijela uzrokovanih vanjskim silama. Na

Διαβάστε περισσότερα

MAŠINSKI ELEMENTI - NASTAVNE PREZENTACIJE - MAŠINSKI SPOJEVI

MAŠINSKI ELEMENTI - NASTAVNE PREZENTACIJE - MAŠINSKI SPOJEVI - NASTAVNE PREZENTACIJE - Fizičko hemijsko spajanje (zavarivanje, lemljenje, lijepljenje); Trenje (presovani spojevi, stezni spojevi); Oblik (ožljebljeni spojevi, klin bez nagiba, zglobne veze..); Kombinovano

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Marko Džoić. Zagreb, 2012.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Marko Džoić. Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Marko Džoić Zagreb, 01. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Doc. dr. sc. Dragan Žeželj Student:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2006./07. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07. Nositelji kolegija: Prof. dr. sc. Božidar Križan Doc. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

BUŠENJE I Fo F r o m r ul u e l

BUŠENJE I Fo F r o m r ul u e l BUŠENJE I Formule Površina prstenastog presjeka NIZ BUŠAĆIH ALATKI A = π (D 2 4 d 2 ) A površina prstenastog presjeka (m 2 ) D vanjski promjer prstenastog presjeka (m) d unutarnji promjer prstenastog presjeka

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak.

Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak. * Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak. JM Gere, BJ Goodno, Mechanics of Materials,, Cengage g Learning, Seventh Edition, 2009. *RC Hibbeler, Mechanics of Materials,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

Regulatori za redukciju tlaka (PN 25) AVD - za vodu AVDS - za paru

Regulatori za redukciju tlaka (PN 25) AVD - za vodu AVDS - za paru Tehnički podaci Regulatori za redukciju tlaka (PN 25) AVD - za vodu - za paru Opis Osnovni podaci za AVD: DN -50 k VS 0,4-25 m 3 /h PN 25 Raspon podešenja: 1-5 bar / 3-12 bar Temperatura: - cirkulacijska

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni studij BRODOGRADNJE za šk. god. 2006/2007. Split, 2006.

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE

FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE Katedra za elemente strojeva REDUKTOR Uputstvo za proračun Split, travanj 005. Ovaj predložak za konstrukcijske vježbe se sastoji od dijelova uputstava

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

H07V-u Instalacijski vodič 450/750 V

H07V-u Instalacijski vodič 450/750 V H07V-u Instalacijski vodič 450/750 V Vodič: Cu klase Izolacija: PVC H07V-U HD. S, IEC 7-5, VDE 08- P JUS N.C.00 450/750 V 500 V Minimalna temperatura polaganja +5 C Radna temperatura -40 C +70 C Maksimalna

Διαβάστε περισσότερα