4. STATIČKI PRORAČUN STUBIŠTA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. STATIČKI PRORAČUN STUBIŠTA"

Transcript

1 JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9

2 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja Slia 4.. Tlocrt i poprečni presje stubišno raa i podesta PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 0

3 JBAG Kraovi stubišta ponašaju se ao uzdužno nosive ploče do su podesti poprečno nosivi. Proračun za taav sustav oji je u nastavu primijenjen nalazi se u njizi Betonse onstrucije riješeni primjeri; Radić i suradnici; Zareb 006. (str. -8.). Stalno opterećenje: Paret na naaznoj površini: Paret vertiale azišta: d d a a 0 08 n P γp = =... 0 N/m b a 0 08 v P γp = = N/m Estrih na naaznoj površini stube: d N/m b 06 Žbua vertiale azišta: d γ = 00 = N/m a 08 Stube: AB ploča 5 cm: Žbua podled: b N/m h =... 4 N/m cos cos0 d = N/m cos cos0 Uupno stalno N/m Korisno opterećenje: Uporabno opterećenje za stubišta N/m Uupno orisno N/m U ornjim izrazima: a širina stube a širina naazne površine n b visina stube b visina vertiale naazne površine v h visina AB ploče d debljine slojeva jedinične težine materijala PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE

4 JBAG 4... Statiči proračun 4... Karateristične vrijednosti momenata savijanja i poprečnih sila b P b P b P= L s =4 b P=6 A L=9 B Slia 4.. Statiča shema opterećenja stubišta i dijaram momenata savijanja Karateristične vrijednosti reacija i poprečnih sila nad ležajem A: R R = V = V = = L L S S L b S L p L b S L p = = 9 N/m = = 5 N/m 9 Položaj masimalno momenta savijanja u polju (mjesto dje je poprečna sila jednaa nuli): Dijaram poprečne sile je horizontalan od oslonca do početa raa (nema opterećenja). Položaj nultoče određuje se od mjesta dje počinje ra (dijaram poprečnih sila ima naib). x V / = 9/79 =7 m s obzirom na to da su stalno i orisno opterećenje na istom mjestu na nosaču položaj je proračunat za stalno opterećenje isti rezultat bi se dobio za orisno i za proračunso opterećenje. Udaljenost masimalno momenta savijanja od ležaja A: x' bp x = 7 58 m PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE

5 JBAG Karateristične vrijednosti momenata savijanja u polju: = R = R x x' x x' = 958- = 94 Nm/m 07 = 558- = 48 Nm/m 4... Proračunse vrijednosti momenta savijanja i poprečne sile Proračunsa poprečna sila nad ležajem A: V 5 V 5 V N/m Proračunsi moment savijanja u polju: Nm/m 4... Dimenzioniranje uzdužne armature aterijal: Beton: C0/5 ( C c / ccube valja/oca) proračunsa čvrstoća betona Čeli: c cc C 0 5 B500B ( y / t 500 / 540 ) 0 0 N/mm N/cm yd proračunsa ranica popuštanja čelia y 500 yd N/mm N/cm S 5 Visina ploče stubišta: h 5cm Zaštitni sloj betona (razred izloženosti XC): c 0 cm Udaljenost do težišta armature: d c / 0 0 / 5cm Statiča visina presjea: d h d 5 5 5cm Glavna armatura: PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE

6 JBAG Bezdimenzijsi moment savijanja: lim 0 96 bd 00 5 Za Rd očitano: c s Potrebna površina armature u polju: A cm /m s re d yd Razdjelna armatura: A A sraz 0 sprov cm /m inimalna armatura za polje: A b d mjerodavno smin cm /m A smin b d 500 ctm cm /m dje je ctm vlačna čvrstoća betona y asimalna armatura za polje: A A smax smax c cm /m A A 0 0 c cm /m A b d smax lim cm /m mjerodavno yd lim varira ovisno o razredu betona Odabrana armatura mora biti veća od potrebne i mora se nalaziti u području između minimalne i masimalne armature: A A s min sprov As max Glavna armatura: ODABRANO: 0/0cm ( A = 9 cm /m) A 9 cm /m sprov sre PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 4

7 JBAG Razdjelna armatura: ODABRANO: 8/5cm ( A = 0 cm /m) A 0 79 cm /m s razprov srazre Napomena: Proračunatom armaturom za polje armira se i područje spoja podesta i raa stubišta. Prema Hrvatsom nacionalnom dodatu za EN 99-- razma lavne armature mora biti manji ili jedna 5h = 55 = 5 cm i manji ili jedna 5 cm (uzima se manja vrijednost) a razma razdjelne armature mora biti manji ili jedna 0h = 05 = 45 cm i manji ili jedna 40 cm (uzima se manja vrijednost) Dimenzioniranje poprečne armature nosivost elementa na poprečne sile bez poprečne armature: / 00 VRdc CRdc l c b d C Rdc 0 8 / d statiča visina u [mm] d 5 A sprov 9 cm ploština vlačne armature u ploči po m' A 9 b d 00 5 s b 000 mm širina ploče u vlačnom području / 00 VRdc CRdc l c b d / V Rdc N 55 5 N minimalna vrijednost za V Rdc je: v min Rd cmin / / / / c v bd N 558 N V min PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 5

8 JBAG provjera: V 768 N VRd c 558 N Nije potrebno proračunati poprečnu armaturu. PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 6

9 5 SVEUČILIŠTE U ZAGREBU JBAG 4.. Podest 4... Analiza opterećenja Slia 4.. Tlocrt i poprečni presje stubišno raa i podesta PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 7

10 JBAG Stalno opterećenje: Paret na naaznoj površini: dpγp = = N/m Estrih: d N/m Žbua: d N/m AB ploča 5 cm: h = N/m Uupno stalno N/m Korisno opterećenje: Uporabno opterećenje za stubišta N/m Uupno orisno N/m 4... Statiči proračun 4... Karateristične vrijednosti momenata savijanja i poprečnih sila Proračunsa duljina ploče podesta: Lp L h cm dje je: L duljina podesta (u smjeru nosivosti) h debljina ploče Karateristične vrijednosti reacija i poprečnih sila nad ležajem: R R = V = V = = Lp Rstub. Lp = + = 57 N/m b L p R b p stub. p L Karateristične vrijednosti momenata savijanja u polju: p = + =4 N/m L Rstub. L p p = = + = 056 Nm/m 8 8 bp 8 8 L Rstub. L p p = = + = 866 Nm/m 8 8b 8 8 p PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 8

11 JBAG dje su: R ; R ; V ;V stub. stub. stub. nad ležajem A b širina podesta p stub. arateristične reacije i poprečne sile raa stubišta 4... Proračunse vrijednosti momenta savijanja i poprečne sile Proračunsa poprečna sila nad ležajem: V 5 V 5 V N/m Proračunsi moment savijanja u polju: Nm/m 4... Dimenzioniranje uzdužne armature aterijal: Beton: C0/5 ( C c / ccube valja/oca) proračunsa čvrstoća betona c cc C N/mm N/cm Čeli: B500B ( y / t 500 / 540 ) yd proračunsa ranica popuštanja čelia y 500 yd N/mm C N/cm Visina ploče stubišta: h 5cm Zaštitni sloj betona (razred izloženosti XC): c 0 cm Udaljenost do težišta armature u polju podesta: d c / 0 / 6 cm Statiča visina presjea polja podesta: d h d cm Udaljenost do težišta armature na ležaju podesta: d c r / / 4 cm Statiča visina presjea na ležaju podesta: d h d cm PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9

12 JBAG Polje Glavna armatura: Bezdimenzijsi moment savijanja: lim 0 96 b d 00 4 Za 0 00 očitano: Rd c s Potrebna površina armature u polju: A cm /m s re d yd inimalna armatura za polje: A 0 00b d cm /m mjerodavno s min ctm As min 0 6b d cm /m 500 y asimalna armatura za polje: A A smax smax c cm /m A A A 0 0 c cm /m cm s max lim b d yd /m mjerodavno Odabrana armatura mora biti veća od potrebne i mora se nalaziti u području između minimalne i As min Asprov As max masimalne armature: Glavna armatura: ODABRANO: cm ( A =9 4 cm /m) A 8 55 cm /m s prov sre Razdjelna armatura: Razdjelna armatura je uzdužna armatura iz raa stubišta cm. PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 40

13 JBAG Ležaj oment savijanja nad ležajem uzima se ao četvrtina momenta savijanja u polju. Bezdimenzijsi moment savijanja: b d lim 096 Za očitano: Rd c s Potrebna površina armature nad ležajem: A s re 09 cm d yd ODABRANO: 8cm ( A = 5 cm /m) A 09 cm /m /m s prov sre Dimenzioniranje poprečne armature nosivost elementa na poprečne sile bez poprečne armature: / 00 VRdc CRdc l c b d C Rdc 0 8 / = 0 d statiča visina u [mm] d 6 A sprov 9 4 cm ploština vlačne armature u ploči po m' As b d b 000 mm širina ploče u vlačnom području / 00 VRdc CRdc l c b d PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 4

14 JBAG V Rd c / N 7050 N minimalna vrijednost za V Rdc je: v min Rd cmin / / / / c v b d N 59 N V min nosivost: V 665 NVRd c 7050N Nije potrebno proračunati poprečnu armaturu. *Napomena: U nastavu je dana sica armiranja stubišta radi uvida u postavljanje proračunate armature. Studenti nisu obavezni crtati armaturu stubišta. PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 4

15 JBAG 4 8/0 cm 8/5 cm 0/0 cm; L=0 cm; om= /0 cm 6 0/0 cm 5 0/0 cm 8 / cm 6 0/0 cm; L= cm; om= Slia 4.4. Sica armiranja stubišta 9 8 / cm 0 0/0 cm 0 0/0 cm; L=08 cm; om= /8 cm; L=0 cm; om= L=6 cm; om= /0 cm; 75 0/0 cm; L=7 cm; om= /0 cm; L=76 cm; om= /0 cm; L= cm; om= /5 cm; L=0 cm; om= / cm; L=0 cm; om=5 0 8/0 cm; L=0 cm; om=5 0 8/0 cm; L=5 cm; om=4 0 8/0 cm 8/8 cm 0/0 cm 0/0 cm 0/0 cm 8/0 cm 8/0 cm PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 4

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

2. PRORAČUN PLOČE KROVIŠTA FERT STROP POZ 501

2. PRORAČUN PLOČE KROVIŠTA FERT STROP POZ 501 JBAG. PRORAČUN PLOČE KROIŠTA FERT STROP POZ 5 PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE JBAG. Proračun ploč rovišta FERT trop POZ 5.. Analiza optrćnja... Stalno optrćnj optrćnja u zadana u prilou

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

2. PRORAČUN PLOČE KROVIŠTA FERT STROP POZ 501

2. PRORAČUN PLOČE KROVIŠTA FERT STROP POZ 501 . PRORAČUN PLOČE KROVIŠTA FERT STROP POZ 50 PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 8 . Proračun ploč rovišta FERT trop POZ 50.. Analiza optrćnja... Stalno optrćnj optrćnja u zadana u prilou

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 5. VJEŽBE DIMENZIONIRANJE - GSN Dominik Skokandić, mag.ing.aedif. GRANIČNO STANJE NOSIVOSTI DIMENZIONIRANJE - GSN 1. Sila prednapinjanja 2. Provjera

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Betonske konstrukcije

Betonske konstrukcije SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA, ARHITEKTURE I GEODEZIJE Betonske konstrukcije Završni rad Antonia Pleština Split, 06 SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA,ARHITEKTURE I GEODEZIJE PROJEKT

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ

GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ 1 FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA... 2 1.1 Beton... 2 1.1.1 Računska čvrstoća betona... 6 1.1.2 Višeosno stanje naprezanja... 6 1.1.3 Razred

Διαβάστε περισσότερα

1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58

1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58 SADRŽAJ: 1 Ulazni parametri programa... 1 1.1. Dimenzioniranje prema HRN EN 1992-1-1... 1 1.1.1. Dimenzioniranje pravokutnog presjeka na čisto savijanje... 1 1.1.2. Dvostruko armirani presjek opterećen

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Austrotherm AMK element ispune za meduspratne konstrukcije

Austrotherm AMK element ispune za meduspratne konstrukcije Austrotherm AMK element ispune za meduspratne konstrukcije standardne dimenzije punioca l/b/h = 50cm/40cm/16cm male težine i lako ugradiv idealan kod nadogradnje objekata To nikoga ne ostavlja hladnim!

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI 1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek 25. rujan 2015. Siniša Ivković SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09 Prof. dr. sc. Vedrana Koulić EHNČK EHNK Predavanja kad. god. 008/09 OPORNOS ERJL Otpornost materijala je grana tehničke mehanike koja proučava probleme čvrstoće, krutosti i stabilnosti pojedinih dijelova

Διαβάστε περισσότερα

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK DIPLOMSKI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK DIPLOMSKI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK DIPLOMSKI RAD Osijek, 06.04.016. Kuti, Ištvan SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK DIPLOMSKI

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

GRANIČNA STANJA UPORABLJIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ

GRANIČNA STANJA UPORABLJIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ GRANČNA STANJA UPORABLJVOST BETONSKH KONSTRUKCJA SADRŽAJ 1 Uvod... Granično tanje naprezanja... Granično tanje rapucavanja... 4 Granično tanje deormiranja... 6 5 Proračun geometrijkih karakteritika pravokutnog

Διαβάστε περισσότερα

PREDGOTOVLJENE BETONSKE KONSTRUKCIJE

PREDGOTOVLJENE BETONSKE KONSTRUKCIJE PREDGOTOVLJENE BETONSKE KONSTRUKCIJE DARKO MEŠTROVIĆ Rijeka, 2017. Sadržaj 1 OPĆENITO 1 1.1 Materijali za proizvodnju predgotovljenih elemenata 1 1.2 Prednosti i mane montažnog načina građenja 2 1.3 Projektiranje

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD Toni Mušura Split, 015. SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE Toni Mušura Statički proračun

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

2ο Mέρος: Αριθμητικά παραδείγματα

2ο Mέρος: Αριθμητικά παραδείγματα 5.5m 0.4m Y T1Y 300/25 X BY1 25/50 BY2 25/50 BY3 25/50 1.2m BX9 25/50 0.4m Τ3Χ 375/25 0.4m BX10 25/50 C7 40/40 C8 40/40 BY4 25/50 Π1Υ 25/270 BY5 25/50 BY6 25/50 BX6 25/50 BX7 25/50 BX8 25/50 BX4 25/50

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

Sl. 3/1. Statički sistemi grednih nosača

Sl. 3/1. Statički sistemi grednih nosača 3. LINIJSKI ELEMENTI 3.1. GREDNI NOSAČI 3.1.1. KARAKTERISTIKE, PRIMENA I SISTEMI Grednim nosačima smatramo one linijske elemente koji su pretežno opterećeni na savijanje silama. Javljaju se sastavnim delom

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

MANUELA KANIŠKI ZAVRŠNI RAD

MANUELA KANIŠKI ZAVRŠNI RAD SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET VARAŽDIN MANUELA KANIŠKI PRORAČUN POPREČNO OPTEREĆENIH PILOTA ZAVRŠNI RAD VARAŽDIN, 2010. 2 SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET VARAŽDIN ZAVRŠNI RAD PRORAČUN

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Vedran Grzelj. Zagreb, 2011.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Vedran Grzelj. Zagreb, 2011. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Vedran Grzelj Zagreb, 011. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentori: Prof. dr. sc. Milan Opalić,

Διαβάστε περισσότερα

UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA. Prof. dr. sc. NEDIM SULJIĆ, dipl.ing.građ. Sadržaj poglavlja: -općenito o nosivim konstrukcijama

UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA. Prof. dr. sc. NEDIM SULJIĆ, dipl.ing.građ. Sadržaj poglavlja: -općenito o nosivim konstrukcijama UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA Sadržaj poglavlja: -općenito o nosivim konstrukcijama -odnos stanja naprezanja u nosivim elementima -linijski nosivi elementi (prosta greda; kontinualna

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

PREDNAPETI BETON. Predavanja. Zagreb, 2007.

PREDNAPETI BETON. Predavanja. Zagreb, 2007. PREDNAPETI BETON Predavanja Zagreb, 2007. SADRŽAJ 1. UVOD...3 2. SVOJSTVA MATERIJALA...7 2.1. Čelik za prednapinjanje...7 2.2. Beton...9 2.3. Mort za injektiranje...10 3. SUSTAVI ZA PREDNAPINJANJE...13

Διαβάστε περισσότερα

Konstrukcija broda 2 20 Konstrukcija statvi broda 1

Konstrukcija broda 2 20 Konstrukcija statvi broda 1 Konstrukcija broda 2 20 Konstrukcija statvi broda 1 KONSTRUKCIJA STATVI BRODA (e:stem and sternframe structures) 1. Opis statvi Pramčana i krmena statva su dijelovi kojima započinje odnosno završava struktura

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Metalne konstrukcije II

Metalne konstrukcije II etalne konstrukcije II Prof. dr. sc. Darko Dujmović Građevinski fakultet Sveučilište u Zagrebu Sveučilište u Zagrebu/Građevinski fakultet/ / 5. TEORIJA PLASTIČNOSTI KOD ČELIČNIH KONSTRUKCIJA Literatura:

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2011./12. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12. Nositelj kolegija: Prof. dr. sc. Božidar Križan - 1 - OSOVINE I VRATILA Funkcija, opterećenja,

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ. ΑΣΚΗΣΗ 1 η και 2 η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού

ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ. ΑΣΚΗΣΗ 1 η και 2 η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ ΑΣΚΗΣΗ 1 η και η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού Στον ξυλότυπο τυπικού ορόφου κτιρίου όπως φαίνεται στο σχήµα,

Διαβάστε περισσότερα