ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ"

Transcript

1 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση προβλήµατος : Είναι η διαδικασία που ακολουθούµε έτσι ώστε να επιτύχουµε το στόχο. 3. Επίλυση προβλήµατος µε την βοήθεια εξίσωσης Προσδιορίζουµε το άγνωστο στοιχείο του προβλήµατος και το εκφράζουµε µε τη βοήθεια ενός γράµµατος, συνήθως µε το Εκφράζουµε, µε την βοήθεια του, στοιχεία του προβλήµατος ηµιουργούµε µία εξίσωση που περιγράφει το πρόβληµα Λύνουµε την εξίσωση και ελέγχουµε την ορθότητα της λύσης 4. Παρατήρηση :Υπάρχουν προβλήµατα που δεν λύνονται µε εξισώσεις, όπως επίσης υπάρχουν προβλήµατα που είναι άλυτα. ΑΣΚΗΣΕΙΣ 1. α) Να εκφράσετε, µε τη βοήθεια µιας µεταβλητής, το ότι ο αριθµός α είναι άρτιος. β) Να βρείτε τρεις διαδοχικούς άρτιους αριθµούς µε άθροισµα 16 α) Για να είναι ο α άρτιος θα πρέπει να διαιρείται µε το, δηλαδή να είναι της µορφής α = ν όπου ν φυσικός αριθµός β) Αν ν είναι ο ποιό µικρός από τους ζητούµενους άρτιος αριθµός, τότε οι δύο διαδοχικοί του είναι οι ν + και ν + 4. Τότε µε βάση το πρόβληµα ισχύει ν + ν + + ν + 4 = 16 άρα 6ν + 6 = 106 6ν = ν = 10 ν = 10:6 = 35 Εποµένως οι ζητούµενοι άρτιοι είναι οι ν = 35 = 70, ν + = 7, ν + 4 = 74

2 . α) Έχουµε πέντε διαδοχικούς φυσικούς αριθµούς. Αν ο µεσαίος είναι ο, να εκφράσετε τους υπόλοιπους µε την βοήθεια του και να τους διατάξετε από τον µικρότερο προς τον µεγαλύτερο β) Αν το άθροισµα πέντε διαδοχικών φυσικών είναι 515 να βρείτε τους φυσικούς αριθµούς. α) Οι δύο µικρότεροι του αριθµοί είναι οι και 1 και οι δύο µεγαλύτεροι οι + 1 και +. ιάταξη από τον µικρότερο προς τον µεγαλύτερο : < 1 < < + 1 < + β) Από την υπόθεση του προβλήµατος είναι = = 515 = 515 : 5 = 103 Οπότε οι ζητούµενοι αριθµοί είναι οι 101, 10, 103, 104, Αγοράσαµε ένα τραπέζι και τέσσερεις καρέκλες και πληρώσαµε 840. Αν το τραπέζι κόστιζε όσο τρεις καρέκλες, να βρείτε πόσο θα πληρώναµε αν αγοράζαµε πέντε καρέκλες µονάχα. Αν είναι η αξία της µιας καρέκλας τότε το τραπέζι αξίζει 3 και οι 4 καρέκλες αξίζουν 4. Με βάση το πρόβληµα ισχύει = 840 άρα 7 = 840 οπότε = 840 : 7= 10 Εποµένως η αξία της µιας καρέκλας είναι 10. Αν αγοράζαµε 5 καρέκλες µόνο θα πληρώναµε 5 10 = Μοιράστηκαν 6100 σε τρία άτοµα Α, Β και Γ. Το άτοµο Α πήρε 4500 περισσότερα από το Β και το Γ πήρε 100 λιγότερα από το Β. Να βρείτε πόσα χρήµατα πήρε το κάθε άτοµο. Αν το Β άτοµο πήρε, τότε το Α πήρε και το Γ πήρε 100. Συνολικό ποσό που µοιράστηκε = = = = 3700 = 3700 : 3 = 7900 Οπότε το Β άτοµο πήρε 7900, το Α πήρε = 1400 και το Γ πήρε = 5800

3 3 5. Ένα ορθογώνιο έχει εµβαδόν 5 8 cm και µία πλευρά του είναι 7 cm. Να βρείτε την 4 περίµετρο του ορθογωνίου. Αν είναι η άγνωστη διάσταση του ορθογωνίου, τότε εµβαδόν του ορθογωνίου = 7 5 = 4 8 Η περίµετρος Π του ορθογωνίου είναι Π = = 6 7 = = = = άρα = 5 8 : 7 4 = = 6 7 cm = = cm 6. Η Μαρία αγόρασε 15 τετράδια και 4 στυλό. Το κάθε στυλό κόστιζε 0,50 λιγότερο από το κάθε τετράδιο. Να βρείτε την αξία του κάθε τετραδίου και του κάθε στυλό αν τα χρήµατα που ξόδεψε είναι 36. Έστω η αξία του κάθε τετραδίου τότε 0,50 είναι η αξία του κάθε στυλό. Τα 15 τετράδια αξίζουν 15 και τα 4 στυλό αξίζουν 4 ( 0,50 ) = 4 Σύµφωνα µε το πρόβληµα είναι = 36 άρα 19 = = = 38 άρα = 38 : 19 = Άρα το κάθε τετράδιο άξιζε και το κάθε στυλό 1,5.

4 4 7. Ο όγκος του νερού όταν αυτό γίνεται πάγος αυξάνεται κατά τα 3 αυτού. Να βρείτε 46 από πόση ποσότητα νερού δηµιουργήθηκε πάγος 49dm 3. Αν dm 3 είναι ο αρχικός όγκος του νερού, τότε η αύξηση λόγω της πήξης είναι 3 46 Εποµένως ο όγκος του πάγου είναι = = Τότε σύµφωνα µε το πρόβληµα είναι Εποµένως ο αρχικός όγκος του νερού ήταν 46 dm 3 49 = 49 άρα 46 = 49 : οπότε = = Μία µπάλα αναπηδά σε ύψος ίσο µε τα 7 του ύψους από το οποίο αφέθηκε να πέσει. Αν µετά από τρείς αναπηδήσεις η µπάλα φτάνει σε ύψος 1 cm, να βρείτε από ποιο ύψος αφέθηκε αρχικά να πέσει. Έστω cm το αρχικό ύψος. Στην πρώτη αναπήδηση η µπάλα θα φτάσει σε ύψος 7, στη δεύτερη αναπήδηση σε ύψος 7 7 = 4 και στην τρίτη αναπήδηση 49 σε ύψος = 8. Αυτό το ύψος όµως είναι ίσο µε 1 cm Άρα 343 = 1 οπότε = 1: = 1 = 514,5 cm Άρα το αρχικό ύψος από το οποίο αφέθηκε να πέσει η µπάλα ήταν 514,5 cm 9. Ένα αεροπλάνο έχει 384 θέσεις διατεταγµένες σε σειρές των 4 θέσεων. Να βρείτε πόσες σειρές θέσεων έχει το αεροπλάνο. Αν είναι το πλήθος των σειρών, τότε σε αυτές υπάρχουν 4 θέσεις. Σύµφωνα µε το πρόβληµα είναι 4 = 384 άρα = 384 : 4 = 96 Άρα το αεροπλάνο έχει 96 σειρές των 4 θέσεων

5 5 10. Ένα τούβλο ζυγίζει 1 kg και µισό τούβλο. Να βρείτε πόσο ζυγίζουν τα 10 τούβλα. Αν είναι το βάρος του τούβλου τότε είναι το βάρος του µισού τούβλου Σύµφωνα µε το πρόβληµα, αν από το βάρος του τούβλου αφαιρέσουµε το βάρος του µισού τούβλου το αποτέλεσµα είναι 1 kg. Οπότε = 1 άρα = 1, = 1, = ηλαδή το ένα τούβλο ζυγίζει kg Οπότε τα 10 τούβλα ζυγίζουν 10 = 0 kg. 11. Οι ηλικίες δύο αδελφών έχουν άθροισµα 77. Ο µικρότερος αδελφός έχει ηλικία ίση µε το µισό της ηλικίας του µεγαλύτερου αυξηµένη κατά 17. Να βρείτε τις ηλικίες των αδελφών. Αν είναι η ηλικία του µεγαλύτερου αδελφού τότε ο µικρότερος είναι + 17 ετών. Όµως σύµφωνα µε το πρόβληµα είναι = = = = = = = = 10 άρα = 10:3 = 40 Εποµένως ο µεγαλύτερος αδελφός ήταν 40 ετών και ο µικρότερος = 37 ετών

6 6 1. Τα 7 ενός χρηµατικού ποσού είναι 500. Να βρείτε πόσα χρήµατα είναι τα 3 4 του ποσού. Αν είναι το ποσό τότε τα 7 αυτού είναι 7 Με βάση το πρόβληµα, είναι 7 = 500 άρα = 500 : 7 = = 1800 ηλαδή το ποσό είναι 1800 και εποµένως τα 3 4 αυτού είναι = Η διαφορά της ηλικίας ενός παιδιού από τον πατέρα του είναι 8 έτη. Να βρείτε την ηλικία του πατέρα αν η ηλικία του παιδιού είναι 14 έτη. Αν είναι η ηλικία του πατέρα, τότε η διαφορά της ηλικίας του παιδιού από αυτήν είναι 14 και µε βάση το πρόβληµα 14 = 8 άρα = = 4 ηλαδή ο πατέρας είναι 4 ετών 14. Ένας µανάβης ξόδεψε τα µισά από τα χρήµατα του και αγόρασε 30kg πατάτες που κόστιζαν 0,40 το κιλό, 5kg µήλα που κόστιζαν 0,60 το κιλό και 15 kg πορτοκάλια που κόστιζαν 0,50 το κιλό. Να βρείτε πόσα χρήµατα είχε πριν τις αγορές ο µανάβης. Αν είναι το ποσό των χρηµάτων του µανάβη πριν τις αγορές τότε για τις αγορές ξοδεύτηκαν. Τα χρήµατα που πλήρωσε ο µανάβης για την αγορά των προϊόντων είναι 30 0, , ,50 = ,5 = 34,5 Σύµφωνα µε το πρόβληµα έχουµε = 34,5 άρα = 34,5 = 69 Άρα ο µανάβης είχε 69

7 7 15. Μία βρύση γεµίζει µία δεξαµενή σε 1 λεπτά, µία άλλη σε 0 λεπτά και µία τρίτη σε 30 λεπτά. Να βρεθεί σε πόσα λεπτά θα γεµίσει η δεξαµενή αν τρέχουν και οι τρείς βρύσες µαζί. Έστω ότι η δεξαµενή θα γεµίσει σε λεπτά. Η πρώτη βρύση γεµίζει την δεξαµενή σε 1 λεπτά, οπότε στο 1 λεπτό γεµίζει το 1 της δεξαµενής και σε λεπτά γεµίζει τα 1 1 Οµοίως οι άλλες βρύσες σε λεπτά γεµίζουν τα αντίστοιχα. Οπότε σε λεπτά κάθε µία βρύση γεµίζει τα : 0 και 30 της δεξαµενής αντίστοιχα. Τρέχοντας και οι τρεις µαζί για λεπτά γεµίζει η δεξαµενή. Άρα γεµίζουν τα της δεξαµενής. 5 Εποµένως ισχύει ότι = = = 60 οπότε 10 = 60 άρα = 6 60 ηλαδή η δεξαµενή θα γεµίσει σε 6 λεπτά. της δεξαµενής 1 = 5 60, 0 = 3 60, 30 = Η περίµετρος ενός ισοσκελούς τριγώνου είναι 80cm. Να βρεθούν οι πλευρές του αν κάθε µία από τις ίσες πλευρές είναι κατά 7 cm µεγαλύτερη από την βάση του. Έστω το µήκος της βάσης. Τότε κάθε µία από τις ίσες πλευρές είναι + 7 Με βάση το πρόβληµα έχουµε = = 80 3 = = 66 οπότε = 66 : 3 = ηλαδή η βάση είναι cm και κάθε µία από τις ίσες πλευρές είναι + 7 = 9 cm.

8 8 17. ύο γωνίες είναι συµπληρωµατικές. Αν η µεγαλύτερη ισούται µε το τετραπλάσιο της µικρότερης ελαττωµένο κατά 0 ο να βρεθούν οι δύο γωνίες. Έστω η µικρότερη γωνία τότε η µεγαλύτερη είναι 4 0 και αφού οι γωνίες είναι συµπληρωµατικές έχουµε = = 90 5 = = 110 άρα = 110 : 5 = Πράγµα που σηµαίνει ότι η µικρότερη γωνία είναι ο και η µεγαλύτερη 90 ο ο = 68 ο 18. Σ ένα τρίγωνο η γωνία Α είναι 5 ο µεγαλύτερη της Β και η Β είναι τριπλάσια της Γ. Να βρεθούν οι γωνίες του τριγώνου. Έστω ότι Γ = µοίρες. Τότε Β = 3 και Α = Όµως το άθροισµα των γωνιών ενός τριγώνου είναι ίσο µε 180 ο Άρα = = = = 175 οπότε = 175 : 7 = 5 µοίρες Εποµένως Γ = 5 ο, Β = 75 ο και Α = 80 ο

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ 1 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για τη λύση του προβλήµατος : ιαβάζουµε µε µεγάλη προσοχή το πρόβληµα Ξεχωρίζουµε τα δεδοµένα από τα ζητούµενα Συµβολίζουµε τον άγνωστο µε µία µεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ 1 5. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ ΑΣΚΗΣΕΙΣ 1. ύο υπάλληλοι έχουν µηνιαίο µισθό 1500. Στον έναν από τους δύο έγινε αύξηση % και στον άλλο µείωση 5% πάνω στις αποδοχές του πρώτου υπαλλήλου όπως αυτές διαµορφώθηκαν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για να λύσουµε ένα πρόβληµα, αφού το διαβάσουµε καλά, εντοπίζουµε τον άγνωστο και τον συµβολίζουµε µε µία µεταβλητή. Με βάση τα δεδοµένα του προβλήµατος καταστρώνουµε την

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ 1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ 1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΜΡΟΣ Β.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΙΑ ΤΗΣ 07.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΙΑ ΤΗΣ Ορισμός Σφαίρα λέγεται το στερεό σώµα που παράγεται, αν περιστρέψουµε ένα κυκλικό δίσκο (Ο, ρ) γύρω από µία διάµετρό του. Θέση επιπέδου

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας.

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. 1. ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. α) Στην παραπάνω εικόνα οι χρωματιστοί δείκτες μας δείχνουν κάποιους αριθμούς. Συμπληρώστε τον παρακάτω

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εξισώσεις & Ανισώσεις

Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εξισώσεις & Ανισώσεις Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο Εξισώσεις & Ανισώσεις Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα σχολικά βιβλία του ΟΕΔΒ

Διαβάστε περισσότερα

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης .5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα: ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ Α.1. Να γράψετε τις παρακάτω εκφράσεις με τη βοήθεια μιας μεταβλητής: i) Το πενταπλάσιο ενός αριθμού. ii) Το διπλάσιο

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της µε την ευθεία

Διαβάστε περισσότερα

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1 2.1 ΕΦΠΤΟΜΕΝΗ ΟΞΕΙΣ ΩΝΙΣ ΘΕΩΡΙ Εφαπτοµένη οξείας γνίας : Έστ ένα ορθογώνιο τρίγνο και µία από τις οξείες γνίες του. Ονοµάζουµε εφαπτοµένη της γνίας και συµβολίζουµε µε εφ το λόγο της απέναντι κάθετης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε.

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε. Επίλυση προβλημάτων με τη χρήση εξισώσεων 1. Ένας πατέρας είναι σήμερα 38 ετών και η κόρη του είναι 6 ετών. Έπειτα από πόσα χρόνια η ηλικία της κόρης θα είναι ίση με μ το 1 3 της πατέρα. ηλικίας του Απάντηση:

Διαβάστε περισσότερα

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2.

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2. ΜΡΟΣ Β 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ 1 Ορισμοί μβαδόν τετραγώνου 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α. E α α α μβαδόν ορθογωνίου Το εμβαδόν ενός ορθογωνίου µε πλευρές

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν Ερωτήσεις ανάπτυξης 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + 3 β) α = + ( 1) ν ν γ) α ν = 1 1 1 1 + + + L + 1 3 34 ν ν + 1 δ) α1 = 0, αν+ 1 = 3α + 1 ν ( ). ** Να

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης

Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης Μια φορά και έναν καιρό στην τριγωνογειτονιά ζούσαν 3 φίλοι: ο Αµβλυγωνούλης, ο Oξυγωνούλης και ο Oρθογωνούλης. Κάθε ένας ζούσε σε ένα σπιτάκι ανάλογο µε το σχήµα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο 6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ ÊåöÜëáéï 7 ï Åõèýãñáììá ó Þìáôá âéâëéïììüèçìá : -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ âéâëéïììüèçìá 3: -Åìâáäü ôñéãþíïõ -Åìâáäü

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

1.3. Εμβαδά επίπεδων σχημάτων

1.3. Εμβαδά επίπεδων σχημάτων 1.3. μβαδά επίπεδων σχημάτων 1 cm 1 cm μβαδόν τετραγώνο ς θεωρήσομε ένα τετράγωνο πλεράς cm. Μπορούμε να το χωρίσομε σε = = «τετραγωνάκια» πλεράς 1 cm, καθένα από τα οποία έχει εμβαδόν 1 cm. Άρα, το τετράγωνο

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ Ασκήσεις εμπέδωσης ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ.Να λυθούν οι εξισώσεις: i) + = + 4-9 = + 7 6- = 9- iv) 4- = - v) ( + 4)-(-) = + vi) 4 - (7 + ) = v (+)-4 = ( + ) v 7[(y-)-(y-4)] = 8 i) - {4-[-(-) + ]} = 4 -

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα