Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης."

Transcript

1 Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα (completeness) Ευκολία υλοποίησης. Τεχνητή Νοηµοσύνη = Αναπαράσταση Γνώσης + Αλγόριθµοι Αναζήτησης Τεχνητή Νοηµοσύνη 13

2 Κατηγορίες Προβληµάτων Πραγµατικά και πολύπλοκα προβλήµατα (real world problems): σκάκι (chess), πλανόδιος πωλητής (traveling salesperson), Ν-βασίλισσες (N-queens), σάκος (knapsack), κλπ. Απλά προβλήµατα (toy problems) κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe), λαβύρινθος (maze), πύργοι του Ανόι (Hanoi towers), κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), ποτήρια (water glass), κλπ. Τεχνητή Νοηµοσύνη 14

3 κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe), λαβύρινθος (maze), Τεχνητή Νοηµοσύνη 15

4 πύργοι του Ανόι (Hanoi towers), κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), ποτήρια (water glass), Τεχνητή Νοηµοσύνη 16

5 Περιγραφή Προβληµάτων µε Χώρο Καταστάσεων Κόσµος προβλήµατος Κλειστός κόσµος (closed world) Ανοιχτός κόσµος (open world) Κατάσταση προβλήµατος Κατάσταση ενός κόσµου είναι ένα στιγµιότυπο (instance) ή φωτογραφία (snapshot) µίας συγκεκριµένης χρονικής στιγµής της εξέλιξης του κόσµου. Κατάσταση (state) ενός κόσµου είναι µία επαρκής αναπαράσταση του κόσµου σε µία δεδοµένη χρονική στιγµή. Τεχνητή Νοηµοσύνη 17

6 Παράδειγµα Αντικείµενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Α είναι ελεύθερος Κύβος Α πάνω στον κύβο Β Κύβος Β Κύβος Γ είναι ελεύθερος Κύβος Β πάνω στο Τ Κύβος Γ Τ έχει αρκετό ελεύθερο χώρο Κύβος Γ πάνω στο Τ Τ είναι Τραπέζι Κύβος Β δεν είναι ελεύθερος Αντικείµενα Ιδιότητες Σχέσεις 3 Ιεραπόστολοι Βάρκα δύο ατόµων Ιεραπόστολοι στην αριστερή όχθη 3 Κανίβαλοι Κανίβαλοι στην αριστερή όχθη Βάρκα Βάρκα στην αριστερή όχθη Αριστερή Όχθη εξιά Όχθη Τεχνητή Νοηµοσύνη 18

7 Τελεστές µετάβασης Τελεστής µετάβασης (transition operator) είναι µια αντιστοίχηση µίας κατάστασης του κόσµου σε νέες καταστάσεις. Παράδειγµα Τελεστής: Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά Προϋποθέσεις: Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Ο αριθµός των ιεραποστόλων που θα προκύψει στην αριστερή όχθη να µην είναι µικρότερος από τον αριθµό των κανιβάλων ή να µην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσµατα: Ο αριθµός των ιεραποστόλων στην αριστερή όχθη µειώνεται κατά 2. Ο αριθµός των ιεραποστόλων στην δεξιά όχθη αυξάνεται κατά 2. Η βάρκα είναι πλέον δεξιά και όχι αριστερά Τεχνητή Νοηµοσύνη 19

8 Χώρος Καταστάσεων Χώρος καταστάσεων (state space ή domain space) ενός προβλήµατος ονοµάζεται το σύνολο όλων των έγκυρων καταστάσεων. Τεχνητή Νοηµοσύνη 20

9 Αρχικές και Τελικές καταστάσεις Η αρχική (initial state) και τελική (final ή goal state) κατάσταση εκφράζουν το δεδοµένο και το ζητούµενο αντίστοιχα. Ορισµός προβλήµατος Ένα πρόβληµα (Problem) ορίζεται ως η τετράδα P = ( I, G, T, S ) όπου: I είναι η αρχική κατάσταση, I S G είναι το σύνολο των τελικών καταστάσεων, G S T είναι το σύνολο των τελεστών µετάβασης, T: S S S είναι ο χώρος καταστάσεων. Τεχνητή Νοηµοσύνη 21

10 Λύση προβλήµατος Λύση (Solution) σε ένα πρόβληµα (I, G, T, S), είναι µία ακολουθία από τελεστές µετάβασης t 1, t 2,...t n T µε την ιδιότητα g = t n (...(t 2 (t 1 (I)))...), όπου g G Παράδειγµα Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Τεχνητή Νοηµοσύνη 22

11 Περιγραφή µε Αναγωγή (1/2) Μία ακολουθία από τελεστές ανάγουν την περιγραφή ενός προβλήµατος σε υποπροβλήµατα τα οποία είναι άµεσα επιλύσιµα, αρχέγονα (Primitive Problems). Για να µεταφερθούν n>1 δίσκοι από τον στύλο i στο στύλο k, πρέπει: να µεταφερθούν n-1 δίσκοι από το i στο j, να µεταφερθεί 1 δίσκος από το i στο k, να µεταφερθούν n-1 δίσκοι από το j στο k. Αρχική και τελική περιγραφή προβλήµατος Τεχνητή Νοηµοσύνη 23

12 Περιγραφή µε Αναγωγή (2/2) Τελεστής αναγωγής Ένας τελεστής αναγωγής (reduction operator) ανάγει ένα πρόβληµα σε υποπροβλήµατα Ορισµός προβλήµατος Ένα πρόβληµα ορίζεται τυπικά ως η τετράδα P = ( ID, GD, TR, PP ) όπου ID είναι η αρχική περιγραφή, GD είναι ένα σύνολο από τελικές περιγραφές, TR είναι ένα σύνολο τελεστών αναγωγής και PP είναι ένα σύνολο από αρχέγονα προβλήµατα. Τεχνητή Νοηµοσύνη 24

13 Αλγόριθµοι Αναζήτησης Τυφλοί Όνοµα Αλγορίθµου Συντοµογραφία Ελληνική Ορολογία Depth-First Search DFS Αναζήτηση Πρώτα σε Βάθος Breadth-First Search BFS Αναζήτηση Πρώτα σε Πλάτος Iterative Deepening ID Επαναληπτική Εκβάθυνση Bi-directional Search BiS Αναζήτηση ιπλής Κατεύθυνσης Branch and Bound B&B Επέκταση και Οριοθέτηση Beam Search BS Ακτινωτή Αναζήτηση Ευριστικοί Hill Climbing HC Αναρρίχηση Λόφων Best-First Search BestFS Αναζήτηση Πρώτα στο Καλύτερο A* (A-star) A* Α* (Άλφα Άστρο) Παιχνιδιών 2 ατόµων Minimax Minimax Αναζήτηση Μεγίστου-Ελαχίστου Alpha-Beta AB Άλφα-Βήτα Τεχνητή Νοηµοσύνη 25

14 Χώρος Αναζήτησης οθέντος ενός προβλήµατος (I,G,T,S), χώρος αναζήτησης (search space) SP είναι το σύνολο όλων των καταστάσεων που είναι προσβάσιµες από την αρχική κατάσταση. Μία κατάσταση s ονοµάζεται προσβάσιµη (accessible) αν υπάρχει µια ακολουθία τελεστών µετάβασης t 1,t 2,...t k T τέτοια ώστε s=t k (...(t 2 (t 1 (I)))...). O χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, δηλαδή SP S. Ο χώρος αναζήτησης µπορεί να αναπαρασταθεί µε γράφο. Είναι πάντα εφικτό να µετατραπεί ο γράφος σε δένδρο αναζήτησης (search tree), το οποίο όµως µπορεί να έχει µονοπάτια απείρου µήκους. Τεχνητή Νοηµοσύνη 26

15 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (1/2) Τµήµα ένδρου Κόµβος (Node) Ρίζα (Root) Φύλλο (Tip, Leaf) Κλαδί (Branch) Λύση (Solution) Επέκταση (Expansion) Παράγοντας ιακλάδωσης (Branching Factor) Αναπαράσταση Κατάσταση Αρχική Κατάσταση Τελική Κατάσταση ή Αδιέξοδο (Dead Node), δηλαδή κατάσταση στην οποία δεν µπορεί να εφαρµοστεί κανένας τελεστής µετάβασης. Τελεστής Μετάβασης που µετατρέπει µια κατάσταση-γονέα (Parent State) σε µία άλλη κατάσταση-παιδί (Child State). Μονοπάτι (Path) που ενώνει την αρχική µε µία τελική κατάσταση Η διαδικασία παραγωγής όλων των καταστάσεων-παιδιών ενός κόµβου. Ο αριθµός των καταστάσεων-παιδιών που προκύπτουν από µία επέκταση. Επειδή δεν είναι σταθερός αριθµός, αναφέρεται και ως Μέσος Παράγοντας ιακλάδωσης (Average Branching Factor). Ο παράγοντας διακλάδωσης (branching factor) εκφράζει τον αριθµό των καταστάσεων που προκύπτουν από µία άλλη κατάσταση. Τεχνητή Νοηµοσύνη 27

16 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (2/2) Το φαινόµενο της εκθετικής αύξησης του αριθµού των κόµβων του δένδρου ονοµάζεται συνδυαστική έκρηξη (combinatorial explosion). Τεχνητή Νοηµοσύνη 28

17 Χαρακτηριστικά Αλγορίθµων Ένας αλγόριθµος ονοµάζεται εξαντλητικός (exhaustive) όταν το σύνολο των καταστάσεων που εξετάζει ο αλγόριθµος για να βρει τις απαιτούµενες λύσεις είναι ίσο µε το χώρο αναζήτησης, δηλαδή V=SP. Ένας αλγόριθµος αναζήτησης ονοµάζεται πλήρης (complete) αν εγγυάται ότι θα βρει µία λύση για οποιαδήποτε τελική κατάσταση, αν τέτοια λύση υπάρχει. Σε αντίθετη περίπτωση, ο αλγόριθµος ονοµάζεται ατελής (incomplete). Μία λύση ονοµάζεται βέλτιστη (optimal) αν οδηγεί στην καλύτερη, σύµφωνα µε τη διάταξη, τελική κατάσταση. Όταν δεν υπάρχει διάταξη, µία λύση ονοµάζεται βέλτιστη αν είναι η συντοµότερη (shortest). Ένας αλγόριθµος αναζήτησης καλείται αποδεκτός (admissible) αν εγγυάται ότι θα βρει τη βέλτιστη λύση, αν µια τέτοια λύση υπάρχει. Τεχνητή Νοηµοσύνη 29

18 ιαδικασία Επιλογής Αλγορίθµου Αναζήτησης Η επιλογή ενός αλγορίθµου βασίζεται στα εξής κριτήρια: αριθµός των καταστάσεων που αυτός επισκέπτεται δυνατότητα εύρεσης λύσεων εφόσον αυτές υπάρχουν αριθµός των λύσεων ποιότητα των λύσεων αποδοτικότητά του σε χρόνο αποδοτικότητά του σε χώρο (µνήµη) ευκολία υλοποίησής του Κλάδεµα ή αποκοπή καταστάσεων (pruning) του χώρου αναζήτησης είναι η διαδικασία κατά την οποία ο αλγόριθµος απορρίπτει, κάτω από ορισµένες συνθήκες, κάποιες καταστάσεις. Τεχνητή Νοηµοσύνη 30

19 Γενικός Αλγόριθµος Αναζήτησης Μέτωπο της αναζήτησης (search frontier) ενός αλγορίθµου είναι το διατεταγµένο σύνολο (λίστα) των καταστάσεων που ο αλγόριθµος έχει ήδη επισκεφτεί, αλλά δεν έχουν ακόµη επεκταθεί. Κλειστό σύνολο (closed set) ενός αλγορίθµου αναζήτησης είναι το σύνολο όλων των καταστάσεων που έχουν ήδη επεκταθεί από τον αλγόριθµο. Με έναν απλό έλεγχο, αν η κατάσταση προς επέκταση ανήκει ήδη στο κλειστό σύνολο, αποφεύγονται οι βρόχοι (loops). Τεχνητή Νοηµοσύνη 31

20 Γενικός Αλγόριθµος Αναζήτησης: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο αναζήτησης είναι άδειο τότε σταµάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση του µετώπου της αναζήτησης. 4. Αν είναι η κατάσταση αυτή µέρος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν είναι η κατάσταση αυτή τελική κατάσταση τότε τύπωσε τη λύση και πήγαινε στο βήµα Εφάρµοσε τους τελεστές µετάβασης για να παράγεις τις καταστάσεις-παιδιά. 7. Βάλε τις νέες καταστάσεις-παιδιά στο µέτωπο της αναζήτησης. 8. Κλάδεψε τις καταστάσεις που δε χρειάζονται (σύµφωνα µε κάποιο κριτήριο), βγάζοντάς τες από το µέτωπο της αναζήτησης. 9. Κάνε αναδιάταξη στο µέτωπο της αναζήτησης (σύµφωνα µε κάποιο κριτήριο). 10. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη 32

21 Γενικός Αλγόριθµος (Ψευδοκώδικας) algorithm general(initialstate, FinalState) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalState do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Next Expand(CurrentState); Frontier insert(next,frontier); Frontier prune(frontier); Frontier reorder(frontier); Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Τεχνητή Νοηµοσύνη 33

22 Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind search algorithms) εφαρµόζονται σε προβλήµατα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Τεχνητή Νοηµοσύνη 34

23 Παράδειγµα Το πρόβληµα των ποτηριών Τεχνητή Νοηµοσύνη 35

24 Τελεστής Γέµισε το ποτήρι των Χ ml µέχρι το χείλος από τη βρύση Προϋποθέσεις Το ποτήρι των Χ ml έχει 0 ml Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml Τελεστής Γέµισε το ποτήρι των Χ ml από το ποτήρι των Υ ml Προϋποθέσεις Το ποτήρι των Χ ml έχει Ζ ml Το ποτήρι των Y ml έχει W ml (W 0) Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml και Το ποτήρι των Υ ml έχει W-(X-Z), αν W X-Z ή Το ποτήρι των Χ ml έχει Ζ+W ml και Το ποτήρι των Υ ml έχει 0, αν W<X-Z Τελεστής Άδειασε το ποτήρι των Χ ml στο νεροχύτη Προϋποθέσεις Το ποτήρι έχει περιεχόµενο Αποτελέσµατα Το ποτήρι των Χ ml έχει 0 ml Τεχνητή Νοηµοσύνη 36

25 ένδρο αναζήτησης στο πρόβληµα των ποτηριών Τεχνητή Νοηµοσύνη 37

26 Αναζήτηση Πρώτα σε Βάθος Ο αλγόριθµος πρώτα σε βάθος (Depth-First Search - DFS) επιλέγει προς επέκταση την κατάσταση που βρίσκεται πιο βαθιά στο δένδρο. Ο αλγόριθµος DFS: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3. Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν η κατάσταση είναι µία από τις τελικές, τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7. Εφάρµοσε τους τελεστές µετάβασης για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στην αρχή του µετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη 38

27 Ο αλγόριθµος DFS (Ψευδοκώδικας) algorithm dfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Τεχνητή Νοηµοσύνη 39

28 Αναζήτηση Πρώτα σε Βάθος Σχόλια Το µέτωπο της αναζήτησης είναι µια δοµή στοίβας (Stack LIFO, Last In First Out) Η εξέταση αµέσως προηγουµένων (χρονικά) καταστάσεων ονοµάζεται χρονική οπισθοδρόµηση (chronological backtracking). Πλεονεκτήµατα: Έχει µικρές απαιτήσεις σε χώρο διότι το µέτωπο της αναζήτησης δε µεγαλώνει πάρα πολύ. Μειονεκτήµατα: εν εγγυάται ότι η πρώτη λύση που θα βρεθεί είναι η βέλτιστη (µονοπάτι µε το µικρότερο µήκος ή µε µικρότερο κόστος). Εν γένει θεωρείται ατελής (αν δεν υπάρχει έλεγχος βρόχων ή αν ο χώρος αναζήτησης είναι µη πεπερασµένος) Τεχνητή Νοηµοσύνη 40

29 Αναζήτηση Πρώτα σε Βάθος Πρόβληµα των ποτηριών Μέτωπο της αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Α,, Γ> {Α,Β} Α - (βρόχος) <, Γ> {Α,Β} <Β,Ζ,Γ> <Β,Ζ,Γ,Γ> {Α,Β, } Β - (βρόχος) <Ζ,Γ,Γ> {Α,Β, } Ζ <Α,Θ, > <Α,Θ,,Γ,Γ> {Α,Β,,Ζ} Α - (βρόχος) <Θ,,Γ,Γ> {Α,Β,,Ζ} Θ <Ζ,,Ι> <Ζ,,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ζ - (βρόχος) <,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} - (βρόχος) <Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ι <Κ,Γ,Β> <Κ,Γ,Β,,Γ,Γ> {Α,Β,,Ζ,Θ,Ι} Κ ΤΕΛΙΚΗ Τεχνητή Νοηµοσύνη 41

30 Αναζήτηση Πρώτα σε Πλάτος Ο αλγόριθµος αναζήτησης πρώτα σε πλάτος (Breadth First Search - BFS) εξετάζει πρώτα όλες τις καταστάσεις που βρίσκονται στο ίδιο βάθος και µετά συνεχίζει στην επέκταση καταστάσεων στο αµέσως επόµενο επίπεδο. Ο αλγόριθµος BFS: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3. Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7. Εφάρµοσε τους τελεστές µεταφοράς για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στο τέλος του µετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη 42

31 Ο αλγόριθµος BFS (Ψευδοκώδικας) algorithm bfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet begin ChildrenStates Expand(CurrentState); Frontier Frontier ^ ChildrenStates; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Τεχνητή Νοηµοσύνη 43

32 Αναζήτηση Πρώτα σε Πλάτος Σχόλια Το µέτωπο της αναζήτησης είναι µια δοµή ουράς (Queue FIFO, δηλαδή First In First Out). Πλεονεκτήµατα: Βρίσκει πάντα την καλύτερη λύση (µικρότερη σε µήκος). Είναι πλήρης. Μειονεκτήµατα: Το µέτωπο της αναζήτησης µεγαλώνει πολύ σε µέγεθος. Τεχνητή Νοηµοσύνη 44

33 Αναζήτηση Πρώτα σε Πλάτος Πρόβληµα των ποτηριών Μέτωπο αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Γ,Α, > {Α,Β} Γ <Ε,Α> <Α,,Ε,Α> {Α,Β,Γ} Α - (βρόχος) <,Ε,Α> {Α,Β,Γ} <Β,Ζ,Γ> <Ε,Α,Β,Ζ,Γ> {Α,Β,Γ, } Ε <Α,Η> <Α,Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Α - (βρόχος) <Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Β - (βρόχος) <Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Ζ <Α,Θ, > <Γ,Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Γ - (βρόχος) <Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Α - (βρόχος) <Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Η <Ε,Γ> <Α,Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Α - (βρόχος) <Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Θ <Ζ,,Ι> <,Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} - (βρόχος) Τεχνητή Νοηµοσύνη 45

34 <Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ε - (βρόχος) <Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Γ - (βρόχος) <Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ζ - (βρόχος) <,Ι> {Α,Β,Γ,,Ε,Ζ,Η} - (βρόχος) <Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ι <Κ,Γ,Β> <Κ,Γ,Β> {Α,Β,Γ,,Ε,Ζ,Η,Ι} Κ ΤΕΛΙΚΗ Τεχνητή Νοηµοσύνη 46

35 Αλγόριθµος Επαναληπτικής Εκβάθυνσης Ο αλγόριθµος επαναληπτικής εκβάθυνσης (Iterative Deepening - ID) συνδυάζει µε τον καλύτερο τρόπο τους DFS και BFS. Ο αλγόριθµος ID: 1. Όρισε το αρχικό βάθος αναζήτησης (συνήθως 1). 2. Εφάρµοσε τον αλγόριθµο DFS µέχρι αυτό το βάθος αναζήτησης. 3. Αν έχεις βρει λύση σταµάτησε. 4. Αύξησε το βάθος αναζήτησης (συνήθως κατά 1). 5. Πήγαινε στο βήµα 2. Ο αλγόριθµος ID (Ψευδοκώδικας) algorithm id(initialstate, FinalStates) begin depth 1 while solution is not found do bounded_dfs(initialstate,finalstates,depth); depth depth+1 endwhile; end. Τεχνητή Νοηµοσύνη 47

36 Αναζήτηση ID Σχόλια Μειονεκτήµατα: Όταν αρχίζει ο DFS µε διαφορετικό βάθος δε θυµάται τίποτα από την προηγούµενη αναζήτηση. Πλεονεκτήµατα: Είναι πλήρης. Αν το βάθος αυξάνεται κατά 1 σε κάθε κύκλο και ο ID βρει λύση, τότε αυτή η λύση θα είναι η καλύτερη. Τεχνητή Νοηµοσύνη 48

37 Αναζήτηση ιπλής Κατεύθυνσης (1/2) Η ιδέα της αναζήτησης διπλής κατεύθυνσης (Bidirectional Search - BiS) πηγάζει από τη δυνατότητα του παραλληλισµού (parallelism) στα υπολογιστικά συστήµατα. Προϋποθέσεις κάτω από τις οποίες µπορεί να εφαρµοστεί: Οι τελεστές µετάβασης είναι αντιστρέψιµοι (reversible), και Είναι πλήρως γνωστή η τελική κατάσταση. Μειονεκτήµατα: Υπάρχει επιπλέον κόστος που οφείλεται στην επικοινωνία µεταξύ των δύο αναζητήσεων. Τεχνητή Νοηµοσύνη 49

38 Αναζήτηση ιπλής Κατεύθυνσης (2/2) Τεχνητή Νοηµοσύνη 50

39 Επέκταση και Οριοθέτηση Ο αλγόριθµος επέκτασης και οριοθέτησης (Branch and Bound - B&B) εφαρµόζεται σε προβλήµατα όπου αναζητείται η βέλτιστη λύση, δηλαδή εκείνη µε το ελάχιστο κόστος. Η λειτουργία του Β&Β βασίζεται στο κλάδεµα καταστάσεων (pruning) και κατά συνέπεια στην ελάττωση του χώρου αναζήτησης Τεχνητή Νοηµοσύνη 51

40 Ο αλγόριθµος B&B: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αρχική τιµή της καλύτερης λύσης είναι το + (όριο). 3. Αν το µέτωπο της αναζήτησης είναι κενό, τότε σταµάτησε. Η καλύτερη µέχρι τώρα λύση είναι και η βέλτιστη. 4. Βγάλε την πρώτη σε σειρά κατάσταση από το µέτωπο της αναζήτησης. 5. Αν η κατάσταση ανήκει στο κλειστό σύνολο, τότε πήγαινε στο Αν η κατάσταση είναι τελική, τότε ανανέωσε τη λύση ως την καλύτερη µέχρι τώρα και ανανέωσε την τιµή του ορίου µε την τιµή που αντιστοιχεί στην τελική κατάσταση. Πήγαινε στο Εφάρµοσε τους τελεστές µεταφοράς για να παράγεις τις καταστάσειςπαιδιά και την τιµή που αντιστοιχεί σε αυτές. 8. Βάλε τις καταστάσεις-παιδιά, των οποίων η τιµή δεν υπερβαίνει το όριο, µπροστά στο µέτωπο της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο 3. Τεχνητή Νοηµοσύνη 52

41 Ο αλγόριθµος B&B (Ψευδοκώδικας) algorithm b&b(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; BestCost ; while Frontier do CurrentState First(Frontier); CurrentCost Cost(Current_State); Frontier delete(currentstate,frontier); if CurrentState Closed then begin if CurrentState FinalStates and CurrentCost < BestCost then BestCost CurrentCost; else if CurrentCost < BestCost then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; end; endwhile; end. Τεχνητή Νοηµοσύνη 53

42 Ο αλγόριθµος B&B Σχόλια Ο B&B µπορεί να συνδυαστεί µε δυναµικό προγραµµατισµό (dynamic programming), όπου το κλάδεµα δε γίνεται µόνο σε σύγκριση µε το τρέχον όριο, δηλαδή τη βέλτιστη λύση µέχρι εκείνη τη στιγµή, αλλά γίνεται και για κάθε κατάσταση που είναι περιττή. Τεχνητή Νοηµοσύνη 54

43 Ο αλγόριθµος B&B: Το πρόβληµα TSP Μέτωπο της αναζήτησης Κόστος Λύσης Κατάσταση Παιδιά <α> + α αβ 8,αγ 5,αδ 10,αε 8 <αβ 8,αγ 5,αδ 10,αε 8 > + αβ αβγ 15,αβδ 14, αβε 14 <αβγ 15,αβδ 14,αβε 14,αγ 5,...> + αβγ αβγδ 24, αβγε 18 <αβγδ 24,αβγε 18, αβδ 14,αβε 14...> + αβγδ αβγδε 28 <αβγδε 28,αβγε 18, αβδ 14,...> + αβγδε αβγδεα 36 < αβγδεα 36, αβγε 18, αβδ 14,..> 36 αβγδεα Τελική Κατάσταση <αβγε 18, αβδ 14,... > 36 αβγε αβγεδ 22 <αβγεδ 22,αβδ 14,...> 36 αβγεδ αβγεδα 32 < αβγεδα 32,αβδ 14,αβε 14...> 32 αβγεδα 32 Τελική Κατάσταση <αβδεγα 26,...> 26 αβδεγα Τελική Κατάσταση <αβεγδ 26,...> 26 αβεγδ Κλάδεµα <αεβγδ 30,...> 26 αεβγδ Κλάδεµα <> Ελάχιστη Τιµή ΤΕΛΟΣ Τεχνητή Νοηµοσύνη 55

44 Εφαρµογή των Αλγορίθµων Τυφλής Αναζήτησης Το πρόβληµα του Λαβύρινθου Τεχνητή Νοηµοσύνη 56

45 Ορισµός του Προβλήµατος του Λαβυρίνθου Αρχική κατάσταση είναι η θέση µε συντεταγµένες (1,4). Το σύνολο τελικών καταστάσεων περιέχει µόνο τη θέση (15,10). Οι τελεστές µεταφοράς είναι οι εξής: πήγαινε µία θέση αριστερά, πήγαινε µία θέση επάνω, πήγαινε µία θέση δεξιά, πήγαινε µία θέση κάτω, εφόσον η θέση είναι ελεύθερη. Ο χώρος καταστάσεων είναι όλες οι ελεύθερες θέσεις, χωρίς εµπόδια, του πλέγ- µατος. Τεχνητή Νοηµοσύνη 57

46 Εφαρµογή του αλγορίθµου DFS Τεχνητή Νοηµοσύνη 58

47 Λύση στο πρόβληµα του λαβύρινθου µε χρήση DFS Τεχνητή Νοηµοσύνη 59

48 Εφαρµογή αλγορίθµου BFS Τεχνητή Νοηµοσύνη 60

49 Λύση στο πρόβληµα του λαβύρινθου µε χρήση BFS Τεχνητή Νοηµοσύνη 61

50 Εφαρµογή του ID στο πρόβληµα του λαβυρίνθου Τεχνητή Νοηµοσύνη 62

51 Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, η οποία χρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του. Ο ευριστικός µηχανισµός υλοποιείται µε ευριστική συνάρτηση (heuristic function), που έχει πεδίο ορισµού το σύνολο των καταστάσεων ενός προβλήµατος και πεδίο τιµών το σύνολο τιµών που αντιστοιχεί σε αυτές. Ευριστική τιµή (heuristic value) είναι η τιµή της ευριστικής συνάρτησης και εκφράζει το πόσο κοντά βρίσκεται µία κατάσταση σε µία τελική. Η ευριστική τιµή δεν είναι η πραγµατική τιµή της απόστασης από µία τερµατική κατάσταση, αλλά µία εκτίµηση (estimate) που πολλές φορές µπορεί να είναι και λανθασµένη. Τεχνητή Νοηµοσύνη 63

52 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (1/3) Ευριστικός µηχανισµός και συναρτήσεις σε λαβύρινθο Ευκλείδειος απόσταση (Euclidian distance): d(s, F) = (X S - X F) (YS - YF ) Απόσταση Manhattan (Manhattan distance): Md(S,F) = XS - XF + YS -YF Τεχνητή Νοηµοσύνη 64

53 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (2/3) Ευριστικός µηχανισµός και συναρτήσεις στο N-Puzzle Πόσα πλακίδια βρίσκονται εκτός θέσης. Το άθροισµα των αποστάσεων Manhattan κάθε πλακιδίου από την τελική του θέση. Τεχνητή Νοηµοσύνη 65

54 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (3/3) Ευριστικός µηχανισµός και συναρτήσεις στο TSP Η κοντινότερη πόλη έχει περισσότερες πιθανότητες να οδηγήσει σε µία καλή λύση. Τεχνητή Νοηµοσύνη 66

55 Αναζήτηση µε Αναρρίχηση Λόφων Η αναρρίχηση λόφων (Hill-Climbing Search - HC) είναι ένας αλγόριθµος αναζήτησης που µοιάζει πολύ µε τον DFS. Ο αλγόριθµος HC 1. Η αρχική κατάσταση είναι η τρέχουσα κατάσταση. 2. Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση και σταµάτησε. 3. Εφάρµοσε τους τελεστές µετάβασης για να βρεις τις καταστάσεις-παιδιά. 4. Βρες την καλύτερη κατάσταση σύµφωνα µε την ευριστική συνάρτηση. 5. Η καλύτερη κατάσταση γίνεται η τρέχουσα κατάσταση. 6. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη 67

56 Ο αλγόριθµος HC (Ψευδοκώδικας) algorithm hc(initialstate, FinalStates) begin Closed ; CurrentState InitialState; while CurrentState FinalStates do Children Expand(CurrentState); if Children= then exit; EvaluatedChildren Heuristic(Children); CurrentState best(evaluatedchildren); endwhile; end. Τεχνητή Νοηµοσύνη 68

57 Ο αλγόριθµος HC Σχόλια (1/2) Ο HC χρησιµοποιείται σε προβλήµατα όπου πρέπει να βρεθεί µία λύση πολύ γρήγορα, έστω και αν αυτή δεν είναι η καλύτερη, παίρνοντας όµως και το ρίσκο να µη βρεθεί καµία λύση, έστω και αν τέτοια υπάρχει. Πλεονεκτήµατα: Πολύ αποδοτικός και σε χρόνο και σε µνήµη, Μειονεκτήµατα: Είναι ατελής. Βασικά προβλήµατα του HC: Πρόποδες (foothill). Οροπέδιο (plateau). Κορυφογραµµή (ridges). Τεχνητή Νοηµοσύνη 69

58 Ο αλγόριθµος HC Σχόλια (2/2) Βελτιώσεις: Εξαναγκασµένη αναρρίχηση λόφου (Enforced Hill-Climbing - EHC) Προσοµοιωµένη εξέλιξη (Simulated Annealing - SA) Αναζήτηση µε απαγορευµένες καταστάσεις (Tabu Search - TS). Τεχνητή Νοηµοσύνη 70

59 Ακτινωτή Αναζήτηση Στον αλγόριθµο ακτινωτής αναζήτησης (Beam Search - BS) δεν κλαδεύονται όλες οι υπόλοιπες καταστάσεις όπως στον HC, αλλά ένας σταθερός αριθµός από τις καλύτερες από αυτές κρατείται στο µέτωπο αναζήτησης. Τεχνητή Νοηµοσύνη 71

60 Αναζήτηση Πρώτα στο Καλύτερο Ο αλγόριθµος αναζήτηση πρώτα στο καλύτερο (Best-First - BestFS) κρατά όλες τις καταστάσεις στο µέτωπο αναζήτησης. Ο αλγόριθµος BestFS 1. Βάλε την αρχική κατάσταση στο µέτωπο αναζήτησης. 2. Αν το µέτωπο αναζήτησης είναι κενό τότε σταµάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση από το µέτωπο αναζήτησης. 4. Αν η κατάσταση είναι µέλος του κλειστού συνόλου τότε πήγαινε στο Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση και σταµάτα. 6. Εφάρµοσε τους τελεστές µεταφοράς για να παράγεις τις καταστάσεις-παιδιά. 7. Εφάρµοσε την ευριστική συνάρτηση σε κάθε παιδί. 8. Βάλε τις καταστάσεις-παιδιά στο µέτωπο αναζήτησης. 9. Αναδιάταξε το µέτωπο αναζήτησης, έτσι ώστε η κατάσταση µε την καλύτερη ευριστική τιµή να είναι πρώτη. 10. Βάλε τη κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη 72

61 Ο αλγόριθµος BestFS (Ψευδοκώδικας) algorithm bestfs(initialstate, FinalStates) begin Closed ; EvaluatedInitialState Heuristic(<InitialState>) Frontier <EvaluatedInitialState>; CurrentState best(frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Children Expand(CurrentState); EvaluatedChildren Heuristic(Children); Frontier Frontier ^ EvaluatedChildren; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState best(frontier); endwhile; end. Τεχνητή Νοηµοσύνη 73

62 Ο αλγόριθµος BestFS Σχόλια Πλεονεκτήµατα: Προσπαθεί να δώσει µια γρήγορη λύση σε κάποιο πρόβληµα. Το αν τα καταφέρει ή όχι εξαρτάται πολύ από τον ευριστικό µηχανισµό. Είναι πλήρης. Μειονεκτήµατα: Το µέτωπο αναζήτησης µεγαλώνει µε υψηλό ρυθµό και µαζί του ο χώρος που χρειάζεται για την αποθήκευσή του, καθώς και ο χρόνος για την επεξεργασία των στοιχείων του. εν εγγυάται ότι η λύση που θα βρεθεί είναι η βέλτιστη S F Τεχνητή Νοηµοσύνη 74

63 Ο αλγόριθµος BestFS: το πρόβληµα του λαβύρινθου Μέτωπο Αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <5-5> <> ,5-67,4-57 <5-45,5-67,4-57> <5-5> ,6-44 <6-44,5-56,5-67,4-57> <5-5,5-4> ,6-33,7-43 <6-33,7-43,5-56,5-67,...> <5-5,5-4,6-4> ,6-23,7-32 <7-32,6-23,7-43,6-44,5-56,...> <5-5,5-4,...> ,6-44 <6-33,6-23,7-43,6-44,5-56,...> <...,6-3,...> 6-3 Βρόχος <6-23,7-43,6-44,5-56,5-67,...> <...> ,6-33 <7-43,6-44,5-25,...> <...> ,6-44,7-32 <7-32,7-54,6-44,5-25,...> <..,7-3,..> 7-3 Βρόχος <4-54,6-44,5-25,...> <...> ,8-53,7-65 <8-53,7-43,6-44,...> <...> ,7-54,9-52 <9-52,7-43,6-44,8-64,...> <...> ,9-41 <9-41,8-53,7-43,...> <...> ,9-52,10-42 <9-30,9-52,10-42,...> <...> 9-3 ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ Τεχνητή Νοηµοσύνη 75

64 Ο Αλγόριθµος Άλφα-Άστρο (Α*) Ο αλγόριθµος Α* (Άλφα Άστρο) είναι κατά βάσει BestFS, αλλά µε ευριστική συνάρτηση: F(S) = g(s) + h(s) η g(s ) δίνει την απόσταση της S από την αρχική κατάσταση, η οποία είναι πραγµατική και γνωστή, και η h(s) δίνει την εκτίµηση της απόστασης της S από την τελική κατάσταση µέσω µιας ευριστικής συνάρτησης, όπως ακριβώς στον BestFS. Τεχνητή Νοηµοσύνη 76

65 Ο Αλγόριθµος Άλφα-Άστρο (Α*) Σχόλια Αν για κάθε κατάσταση η τιµή h(s) είναι µικρότερη ή το πολύ ίση µε την πραγµατική απόσταση της S από την τελική κατάσταση, τότε ο Α* βρίσκει πάντα τη βέλτιστη λύση. Στην περίπτωση αυτή, ο ευριστικός µηχανισµός ονοµάζεται αποδεκτός (admissible) και ικανοποιεί το κριτήριο αποδοχής (admissibility criterion). Βελτιώσεις: Α* µε επαναληπτική εκβάθυνση (Iterative Deepening A* - IDA*) Τεχνητή Νοηµοσύνη 77

66 Εφαρµογή των Αλγορίθµων Ευριστικής Αναζήτησης Χώρος Καταστάσεων στο 8-puzzle Τεχνητή Νοηµοσύνη 78

67 Εφαρµογή αλγορίθµου BestFS Τεχνητή Νοηµοσύνη 79

68 Αλγόριθµοι Αναζήτησης σε Παιχνίδια ύο Αντιπάλων Σ ένα παιχνίδι δύο ατόµων το πρόβληµα ορίζεται ως εξής: Μια κατάσταση παριστάνει τη διάταξη των πιονιών σε κάποια χρονική στιγµή. Ο χώρος καταστάσεων αποτελείται από όλες αυτές τις πιθανές επιτρεπτές καταστάσεις. Οι τελεστές µετάβασης είναι οι επιτρεπτές κινήσεις που καθορίζονται από τους κανόνες του παιχνιδιού. Οι κανόνες του παιχνιδιού παίζουν και το ρόλο των προϋποθέσεων αυτών των τελεστών. Οι τελικές καταστάσεις του παιχνιδιού έχουν γνωστά χαρακτηριστικά. Οι κινήσεις δύο διαδοχικών επιπέδων ανήκουν σε διαφορετικό παίκτη, γιατί οι παίκτες παίζουν εναλλάξ. Το δένδρο που χτίζεται µε αυτόν τον τρόπο ονοµάζεται δένδρο του παιχνιδιού (game tree). Τεχνητή Νοηµοσύνη 80

69 Ο Αλγόριθµος Minimax (1/3) εδοµένης µίας κατάστασης του παιχνιδιού, ο αλγόριθµος αναζήτησης µεγίστουελαχίστου (Minimax) καλείται να αποφασίσει ποια θα είναι η επόµενη κίνησή του έναντι του αντιπάλου. Το µέτρο της υπεροχής του ενός ή του άλλου αντιπάλου δίνεται από µία ευριστική συνάρτηση που καλείται συνάρτηση αξιολόγησης (evaluation function) και η οποία εφαρµόζεται στα φύλλα του δένδρου του παιχνιδιού. Αλγόριθµος 1. Εφάρµοσε τη συνάρτηση αξιολόγησης σε όλους τους κόµβους-φύλλα του δένδρου. 2. Εως ότου η ρίζα του δένδρου αποκτήσει τιµή, επανέλαβε: 3. Αρχίζοντας από τα φύλλα του δένδρου και προχωρώντας προς τη ρίζα, µετέφερε τις τιµές προς τους ενδιάµεσους κόµβους του δένδρου ως εξής: i. Η τιµή κάθε κόµβου Max είναι η µέγιστη (maximum) των τιµών των κόµβων-παιδιών του. ii. Η τιµή κάθε κόµβου Min είναι η ελάχιστη (minimum) των τιµών των κόµβων-παιδιών του. 4.Καλύτερη κίνηση είναι η κίνηση που οδηγεί στον κόµβο που έδωσε την πιο συµφέρουσα στη ρίζα τιµή (µέγιστη για το Max, ελάχιστη για το Min). Τεχνητή Νοηµοσύνη 81

70 Ο Αλγόριθµος Minimax (2/3) Κατά σύµβαση, ο παίκτης που βρίσκεται στη ρίζα θεωρείται πως είναι ο Max. Οι καταστάσεις-φύλλα του δένδρου καλούνται και τερµατικές καταστάσεις (terminal states), οι οποίες όµως δεν είναι απαραίτητα τελικές καταστάσεις, απλά αποτελούν το όριο της αναζήτησης. Τεχνητή Νοηµοσύνη 82

71 Ο Αλγόριθµος Minimax (3/3) Τεχνητή Νοηµοσύνη 83

72 Εφαρµογή αλγορίθµου Minimax στο σκάκι Το κύριο µέληµα των προγραµµάτων σκάκι είναι να αναζητήσουν το δένδρο του παιχνιδιού σε όσο το δυνατόν µεγαλύτερο βάθος. Αν υπήρχε η δυνατότητα να φτάσουν µέχρι τις τελικές καταστάσεις του παιχνιδιού, τότε τα προγράµµατα θα ήταν ανίκητα. Μία συνάρτηση αξιολόγησης στο σκάκι Υπεροχή κοµµατιών: Κάθε κοµµάτι έχει κάποια αξία, π.χ. Βασιλιάς=10, Άλογο=5, Πιόνι=1 κλπ. Η αξία όλων των κοµµατιών κάθε χρώµατος προστίθεται. Υπεροχή θέσης: Κάθε κοµµάτι που βρίσκεται στα 4 κεντρικά τετράγωνα παίρνει επιπλέον 2 πόντους. Απειλές: Για κάθε απειλή που προβάλει ένας παίκτης παίρνει 3 επιπλέον πόντους, εκτός αν απειλεί το βασιλιά του άλλου παίκτη, οπότε παίρνει 20 πόντους. Τεχνητή Νοηµοσύνη 84

73 Τεχνητή Νοηµοσύνη 85

74 Ο Αλγόριθµος Alpha-Beta Ο αλγόριθµος Άλφα-Βήτα (Alpha-Beta - ΑΒ) αποφεύγει την αναζήτηση καταστάσεων που ικανοποιούν ορισµένες συνθήκες. Ο ΑΒ είναι όµοιος µε τον Minimax, αλλά µε κλάδεµα υποδένδρων, όπως κατά αντιστοιχία ο B&B µε τον DFS. Το κλάδεµα που κάνει ο ΑΒ, όπως άλλωστε και ο Β&Β, δεν είναι ευριστικό γιατί βασίζεται σε πραγµατικά νούµερα. Τεχνητή Νοηµοσύνη 86

75 Σύγκριση του AB µε τον Minimax (1/2) Παράδειγµα Minimax Παράδειγµα Alpha-Beta Τεχνητή Νοηµοσύνη 87

76 Σύγκριση του AB µε τον Minimax (2/2) Κατά προσέγγιση ο ΑΒ εξετάζει N τερµατικούς κόµβους, όπου Ν είναι οι τερµατικοί κόµβοι που εξετάζει ο αλγόριθµος Minimax. Η απόδοσή του βελτιώνεται µε διάφορες µεθόδους, όπως: Ευριστικό κλάδεµα του δένδρου παιχνιδιού. υναµική αντί στατικής συνάρτησης αξιολόγησης. Αποθήκευση τιµών των τερµατικών καταστάσεων (transposition tables). Προκαθορισµένες κινήσεις (χωρίς αναζήτηση) σε αρχικές και τελικές φάσεις του παιγνιδιού (Openings, End Game moves). Τεχνητή Νοηµοσύνη 88

77 Το Πρόβληµα του Ορίζοντα Μειονεκτήµατα: Το φαινόµενο του ορίζοντα (horizon effect). Αντιµετωπίζεται µε ανιχνευτές (scouts). Τεχνητή Νοηµοσύνη 89

78 Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction problem) αποτελείται από: Ένα σύνολο n µεταβλητών V 1, V 2,...,V n, Ένα σύνολο n πεδίων τιµών D 1,...D n, που αντιστοιχούν σε κάθε µεταβλητή έτσι ώστε V i D i, και Ένα σύνολο σχέσεων (περιορισµών) C 1, C 2,...C m όπου C i (V k,...,v m ) µια σχέση µεταξύ των µεταβλητών του προβλήµατος. Ανάλογα µε το πόσες µεταβλητές περιλαµβάνει ένας περιορισµός χαρακτηρίζεται ως: µοναδιαίος (unary) όταν περιλαµβάνει µια µεταβλητή, δυαδικός (binary) όταν περιλαµβάνει δύο µεταβλητές ή ανώτερης τάξης (higher order) όταν περιλαµβάνει περισσότερες. Τεχνητή Νοηµοσύνη 90

79 Λύση Προβλήµατος Περιορισµών Λύση αποτελεί µια ανάθεση τιµών στις µεταβλητές του προβλήµατος, τέτοια ώστε να ικανοποιούνται οι περιορισµοί, δηλαδή: Περιορισµοί που αφορούν τα πεδία των µεταβλητών Περιορισµοί του προβλήµατος V 1 = d 1, V 2 = d 2,... V n = d n d D 1 d 2 D 2... d i D n C 1 C 2... C m Τεχνητή Νοηµοσύνη 91

80 Παράδειγµα Προβλήµατος Ικανοποίησης Περιορισµών Έστω ότι πρέπει να ορισθεί η σειρά µε την οποία θα εισαχθούν τα προϊόντα Α, Β, Γ, µέσα σε ένα βιοµηχανικό µύλο. Λόγω κάποιων παρασκευαστικών παραµέτρων του τελικού προϊόντος, το προϊόν Α πρέπει να εισαχθεί στο µύλο µετά από το, το Γ πριν από το Β, και το Β πριν από το Α. V Α V Β και V Α V Γ και V Α V έτσι ώστε να µην πάρουν V Β V Γ και V Β V και V Γ V δύο προϊόντα την ίδια σειρά V Α > V το προϊόν Α µετά από το V Γ < V Β το προϊόν Γ πριν από το Β V Β < V Α το προϊόν Β πριν από το Α και το πρόβληµα έχει τις ακόλουθες τρεις δυνατές λύσεις: V Α = 4, V Β = 2, V Γ, = 1, V = 3 ηλαδή η σειρά είναι: Γ, Β,, Α V Α = 4, V Β = 3, V Γ, = 1, V = 2 ηλαδή η σειρά είναι: Γ,, Β, Α V Α = 4, V Β = 3, V Γ, = 2, V = 1 ηλαδή η σειρά είναι:, Γ, Β, Α Τεχνητή Νοηµοσύνη 92

81 Παραγωγή και οκιµή Η µέθοδος αποτελείται από µία γεννήτρια λύσεων και έναν ελεγκτή που ελέγχει αν οι λύσεις ικανοποιούν τους περιορισµούς. Η µέθοδος παράγει διαδοχικά τις ακόλουθες λύσεις: V Α = 1, V Β = 1, V Γ, = 1, V = 1 V Α = 1, V Β = 1, V Γ, = 1, V = 2... V Α = 4, V Β = 4, V Γ, = 4, V = 4 Ο ελεγκτής ελέγχει τις παραγόµενες λύσεις απορρίπτοντας όσες δεν ικανοποιούν τους περιορισµούς. Αν η γεννήτρια χρησιµοποιεί ως πληροφορία ότι το προϊόν Α παρασκευάζεται πάντα τελευταίο, παράγει µόνο τις λύσεις στις οποίες η τιµή της µεταβλητής V A είναι 4: V Α = 4, V Β = 1, V Γ, = 1, V = 1 V Α = 4, V Β = 2, V Γ, = 1, V = 1... V Α = 4, V Β = 4, V Γ, = 4, V = 4 Οι πιθανές λύσεις µειώνονται έτσι από 4 4 = 256 που ήταν στην προηγούµενη περίπτωση σε 4 3 = 64. Οι αλγόριθµοι αυτοί αναφέρονται συνήθως ως αλγόριθµοι επιδιόρθωσης (repair algorithms). Τεχνητή Νοηµοσύνη 93

82 Αναρρίχηση Λόφου (Hill-Climbing) Αλγόριθµος επιδιόρθωσης HC: 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για κάθε µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i. Αν κάποια από τις τιµές που εξετάστηκαν ελαχιστοποιεί το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στην αντίστοιχη µεταβλητή και επέστρεψε στο βήµα 2. ii. Αν δε υπάρχει τιµή που να ελαχιστοποιεί το πλήθος των περιορισµών, τότε επέστρεψε στο βήµα 1 (τοπικό ελάχιστο ο αλγόριθµος ξεκινά από µια νέα τυχαία ανάθεση τιµών). Μειονεκτήµατα: Εξετάζει ένα µεγάλο πλήθος "γειτονικών" καταστάσεων πριν επιλέξει την επόµενη τιµή η οποία θα µεταβληθεί, και Μπορεί να "πέσει" σε τοπικό ελάχιστο, δηλαδή µια κατάσταση στην οποία καµιά µεταβολή στις τιµές δε δίνει καλύτερη λύση.. Τεχνητή Νοηµοσύνη 94

83 Ευριστικός αλγόριθµος των ελαχίστων συγκρούσεων (min conflicts heuristic) 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για µια τυχαία µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i. Αν κάποια από τις τιµές για τη µεταβλητή που εξετάστηκαν µειώνει το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στη µεταβλητή. ii. Αν δεν υπάρχει τιµή που να µειώνει το πλήθος των περιορισµών που παραβιάζονται, τότε επέλεξε µια τιµή που να διατηρεί τον ίδιο αριθµό περιορισµών. iii. Αν δεν υπάρχει ούτε τέτοια τιµή, τότε άφησε την τιµή της εξεταζόµενης µεταβλητής. 4. Επέστρεψε στο βήµα 2. Τεχνητή Νοηµοσύνη 95

84 Κλασσικοί Αλγόριθµοι Αναζήτησης Οι αλγόριθµοι αναζήτησης που παρουσιάστηκαν σε προηγούµενες ενότητες είναι δυνατό να χρησιµοποιηθούν και για την επίλυση των προβληµάτων ικανοποίησης περιορισµών. Αλγόριθµοι Ελέγχου Συνέπειας Ολοκληρωµένος αλγόριθµος επίλυσης: Για κάθε περιορισµό αφαίρεσε από τα πεδία τιµών των µεταβλητών τις τιµές εκείνες που δεν µπορούν να συµµετέχουν στην τελική λύση. Στο µειωµένο χώρο αναζήτησης που προκύπτει από το προηγούµενο βήµα εφάρµοσε έναν κλασσικό αλγόριθµο αναζήτησης για να βρεθεί η λύση. Σε κάθε βήµα (ανάθεση τιµής) αυτής της αναζήτησης εφάρµοσε ξανά τον αλγόριθµο ελέγχου συνέπειας έτσι ώστε να αφαιρεθούν τυχόν τιµές από τα πεδία των µεταβλητών οι οποίες δεν µπορούν να συµµετέχουν στην λύση. Τεχνητή Νοηµοσύνη 96

85 Αλγόριθµοι Ελέγχου Συνέπειας Παράδειγµα (1/2) V Α V Β (C1) V Β V Γ (C4) V Α > V (C7) V Α V Γ (C2) V Β V (C5) V Γ < V Β (C8) V Α V (C3) V Γ V (C6) V Β < V Α (C9) Τα πεδία τιµών των µεταβλητών: V Α {1,2,3,4} V Β {1,2,3,4} V Γ {1,2,3,4} V {1,2,3,4} Λόγω C9 (V Β < V Α ), η µεταβλητή V Β δε µπορεί σε καµιά περίπτωση να πάρει την τιµή 4, αλλά ούτε και η V Α να πάρει την τιµή 1: V Α {2,3,4} V Β {1,2,3} V Γ {1,2,3,4} V {1,2,3,4} Λόγω V Γ < V Β (C8), η V Γ δεν µπορεί να πάρει την τιµή 3 ούτε και την τιµή 4, ενώ η V Β δε µπορεί να πάρει την τιµή 1: Τεχνητή Νοηµοσύνη 97

86 V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3,4} Λόγω V Α > V (C7) η V δεν µπορεί να πάρει την τιµή 4: V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3} Το πεδίο της V Β έχει µεταβληθεί, οπότε ο περιορισµός C9 πρέπει να επανεξεταστεί. Λόγω του V Β < V Α (C9) δεν µπορεί να υπάρχει η τιµή 2 στο πεδίο της V Α : V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3} Τώρα οι πιθανοί συνδυασµοί γίνονται =24, σε σχέση µε τους 256 που υπήρχαν αρχικά. Ο γράφος που προκύπτει ονοµάζεται γράφος περιορισµών (constraint graph). Τεχνητή Νοηµοσύνη 98

87 Γράφος Περιορισµών Περιορισµοί: V Α > V V Γ < V Β V Β < V Α Η παραπάνω διαδικασία είναι η βάση των αλγορίθµων ελέγχου συνέπειας (consistency check algorithms). Οι αλγόριθµοι που εντάσσονται στην παραπάνω κατηγορία ονοµάζονται συνήθως αλγόριθµοι συνέπειας τόξου (Arc Consistency- AC). Τεχνητή Νοηµοσύνη 99

88 Ο αλγόριθµος AC3 Έστω οι µεταβλητές V 1, V 2,..V n µε τιµές d 1, d 2,,d n από τα πεδία τιµών των µεταβλητών D 1, D 2,,D n (d 1 D 1, d 2 D 2, d n D n) και ένα σύνολο περιορισµών C(V i,v j ) για τις µεταβλητές αυτές, οι οποίοι αναπαριστώνται ως τόξα (V i,v j ). Για συντοµία, κάθε τόξο (V i,v j ) αναφέρεται ως (i,j). Επανέλαβε τα ακόλουθα βήµατα µέχρι το Q να γίνει κενό: 1. Επέλεξε ένα τόξο (i,j) και διέγραψε το από το Q 2. Για κάθε τιµή d i του πεδίου της µεταβλητής V i έλεγξε αν υπάρχει τουλάχιστον µία τιµή d j του πεδίου της µεταβλητής V j τέτοια ώστε να ικανοποιεί το περιορισµό C(V i,v j ) που αντιστοιχεί στο τόξο (i, j). 3. Αν δεν υπάρχει τέτοια τιµή d j τότε αφαίρεσε την τιµή d i από το πεδίο τιµών της V i. Αν το πεδίο τιµών της V i είναι κενό τότε τερµάτισε µε αποτυχία. 4. Αν έχει µεταβληθεί το πεδίο τιµών της V i τότε πρόσθεσε στο σύνολο Q όλα τα τόξα (k,i), που αντιστοιχούν στους περιορισµούς C(V k,v i ), για k i. Τεχνητή Νοηµοσύνη 100

89 Ο αλγόριθµος AC3 Σχόλια Χαρακτηριστικά του αλγορίθµου AC-3: Προϋποθέτει ότι οι περιορισµοί αφορούν µόνο δύο µεταβλητές, είναι δηλαδή δυαδικοί περιορισµοί (binary constraints). Οι µοναδιαίοι περιορισµοί που εµφανίζονται στα προβλήµατα περιορισµών αντιµετωπίζονται από τον αλγόριθµο ελέγχου συνέπειας κόµβου (node consistency). Για να επιλυθεί ένα πρόβληµα περιορισµών θα πρέπει να χρησιµοποιηθούν αλγόριθµοι ελέγχου συνέπειας τόξου σε συνδυασµό µε κάποιον αλγόριθµο αναζήτησης για να βρεθεί η τελική λύση. Βελτιώσεις: Η αρχή της συντοµότερης αποτυχίας (first fail principle). Τεχνητή Νοηµοσύνη 101

90 Παράδειγµα Μετά την εφαρµογή των περιορισµών αποµένουν οι ακόλουθες τιµές στα πεδία των µεταβλητών: V Α {3,4},V Β {2,3},V Γ {1,2},V {1,2,3} Τεχνητή Νοηµοσύνη 102

91 Κ- συνέπεια Ένας γράφος περιορισµών είναι Κ-συνεπής (K-consistent) εάν για κάθε Κ-1 µεταβλητές που ικανοποιούν τους περιορισµούς υπάρχει µια µεταβλητή Κ µε τέτοιο πεδίο ώστε να ικανοποιούνται ταυτόχρονα όλοι τους οι περιορισµοί που συνδέουν τις Κ µεταβλητές. Ένας γράφος είναι ισχυρά Κ-συνεπής (strongly K- consistent) εάν για κάθε L K, είναι L-συνεπής. Σε ένα γράφο µε Ν κόµβους, εάν εξασφαλισθεί ότι ο γράφος είναι ισχυρά Ν-συνεπής διαγράφονται όλες οι µη αποδεκτές τιµές από τα πεδία των µεταβλητών, όποτε η λύση µπορεί να βρεθεί χωρίς αναζήτηση. Τεχνητή Νοηµοσύνη 103

92 Κ-συνέπεια Παράδειγµα Συνθήκη µη απειλής µεταξύ των βασιλισσών: Όλες οι βασίλισσες πρέπει να είναι σε διαφορετική γραµµή: i, j: Q j Q i. Ισχύουν οι περιορισµοί: Q j Q j+n + n για n>1 και n+j 8 Q j Q j+n - n για n>1 και n+j 8 Τεχνητή Νοηµοσύνη 104

93 Γραφική αναπαράσταση των περιορισµών (1/2) Ανάθεση τιµής στην πρώτη βασίλισσα Ανάθεση τιµών στις δύο πρώτες βασίλισσες Τεχνητή Νοηµοσύνη 105

94 Γραφική αναπαράσταση των περιορισµών (2/2) Ανάθεση τιµών που δεν οδηγεί σε λύση Λύση στο πρόβληµα των 8 βασιλισσών Τεχνητή Νοηµοσύνη 106

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου

Διαβάστε περισσότερα

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 4 Αλγόριθµοι Ευριστικής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Ευριστικής Αναζήτησης Εισαγωγικά (/2) Ο χώρος αναζήτησης

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Αλγόριθμοι Ευρετικής Αναζήτησης

Αλγόριθμοι Ευρετικής Αναζήτησης Τεχνητή Νοημοσύνη Αλγόριθμοι Ευρετικής Αναζήτησης Εισαγωγικά (/) 05 Αλγόριθμοι Ευρετικής Αναζήτησης (Heuristic Search Algorithms) Ο χώρος αναζήτησης συνήθως αυξάνεται εκθετικά. Απαιτείται πληροφορία για

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction)

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Ηλίας Σακελλαρίου Δομή Περιορισμοί Προβλήματα ικανοποίησης περιορισμών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2014-2015 Τεχνητή Νοημοσύνη Πληροφορημένη αναζήτηση και εξερεύνηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search) Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο) 8 1 η ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Απάντηση 1ης άσκησης Κατάσταση (κόμβοι): Αναπαριστούμε μια κατάσταση του προβλήματος με ένα διατεταγμένο ζεύγος (X,Y) όπου X είναι τα λίτρα στο βάζο Α (χωρητικότητα

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 3

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 3 Version 1.0 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals)

Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals) Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals) Αρχικά είναι όλοι στην αριστερή όχθη initial_state(state(left(3,3),right(0,0), boat_left)). Σκοπός είναι να µεταφερθούν όλοι µε ασφάλεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Επίλυση προβληµάτων µε αναζήτηση

Επίλυση προβληµάτων µε αναζήτηση Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Αναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

Αναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Αναζήτηση (Search) συνέχεια 1 Ευριστικοί Αλγόριθµοι Αναζήτησης n Ευριστικοί Μηχανισµοί (Heuristics) n Αναζήτηση Πρώτα στο Καλύτερο (Best-First Search) n Αλγόριθµος Α* n Ιδιότητες Ευριστικών Συναρτήσεων

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Πληροφορηµένη αναζήτηση και εξερεύνηση

Πληροφορηµένη αναζήτηση και εξερεύνηση Πληροφορηµένη αναζήτηση και εξερεύνηση Στρατηγικές πληροφορηµένης αναζήτησης Πληροφορηµένη αναζήτηση (informed search) Συνάρτηση αξιολόγησης (evaluation function), f(n) Προτιµώνται οι µικρότερες τιµές

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων

Διαβάστε περισσότερα

Branch and Bound. Branch and Bound

Branch and Bound. Branch and Bound Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ 2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα