Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:"

Transcript

1 Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα (completeness) # Ευκολία υλοποίησης. = Αναπαράσταση Γνώσης + Αλγόριθµοι Αναζήτησης

2 Κατηγορίες Προβληµάτων! Πραγµατικά και πολύπλοκα προβλήµατα (real world problems): # σκάκι (chess), # πλανόδιος πωλητής (traveling salesperson), # Ν-βασίλισσες (N-queens), # σάκος (knapsack), κλπ.! Απλά προβλήµατα (toy problems) # κύβοι (blocks), # Ν-puzzle, # τρίλιζα (tic-tac-toe), # λαβύρινθος (maze), # πύργοι του Ανόι (Hanoi towers), # κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), # ποτήρια (water glass), κλπ.

3 κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe), λαβύρινθος (maze),

4 πύργοι του Ανόι (Hanoi towers), κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), ποτήρια (water glass),

5 Περιγραφή Προβληµάτων µε Χώρο Καταστάσεων! Κόσµος προβλήµατος # Κλειστός κόσµος (closed world) # Ανοιχτός κόσµος (open world) Κατάσταση προβλήµατος Κατάσταση ενός κόσµου είναι ένα στιγµιότυπο (instance) ή φωτογραφία (snapshot) µίας συγκεκριµένης χρονικής στιγµής της εξέλιξης του κόσµου. Κατάσταση (state) ενός κόσµου είναι µία επαρκής αναπαράσταση του κόσµου σε µία δεδοµένη χρονική στιγµή.

6 Παράδειγµα Αντικείµενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Α είναι ελεύθερος Κύβος Α πάνω στον κύβο Β Κύβος Β Κύβος Γ είναι ελεύθερος Κύβος Β πάνω στο Τ Κύβος Γ Τ έχει αρκετό ελεύθερο χώρο Κύβος Γ πάνω στο Τ Τ είναι Τραπέζι Κύβος Β δεν είναι ελεύθερος Αντικείµενα Ιδιότητες Σχέσεις 3 Ιεραπόστολοι Βάρκα δύο ατόµων Ιεραπόστολοι στην αριστερή όχθη 3 Κανίβαλοι Κανίβαλοι στην αριστερή όχθη Βάρκα Βάρκα στην αριστερή όχθη Αριστερή Όχθη εξιά Όχθη

7 Τελεστές µετάβασης! Τελεστής µετάβασης (transition operator) είναι µια αντιστοίχηση µίας κατάστασης του κόσµου σε νέες καταστάσεις. Παράδειγµα Τελεστής: Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά Προϋποθέσεις: Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Οαριθµός των ιεραποστόλων που θα προκύψει στην αριστερή όχθη να µην είναι µικρότερος από τον αριθµό των κανιβάλων ή να µην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσµατα: Οαριθµός των ιεραποστόλων στην αριστερή όχθη µειώνεται κατά 2. Οαριθµός των ιεραποστόλων στην δεξιά όχθη αυξάνεται κατά 2. Η βάρκα είναι πλέον δεξιά και όχι αριστερά

8 Χώρος Καταστάσεων! Χώρος καταστάσεων (state space ή domain space) ενός προβλήµατος ονοµάζεται το σύνολο όλων των έγκυρων καταστάσεων.

9 Αρχικές και Τελικές καταστάσεις! Η αρχική (initial state) και τελική (final ή goal state) κατάσταση εκφράζουν το δεδοµένο και το ζητούµενο αντίστοιχα. Ορισµός προβλήµατος! Ένα πρόβληµα (Problem) ορίζεται ως η τετράδα P=(I,G,T,S)όπου: # I είναι η αρχική κατάσταση, I S # G είναιτοσύνολοτωντελικώνκαταστάσεων,g S # T είναιτοσύνολοτωντελεστώνµετάβασης, T:S S # S είναι ο χώρος καταστάσεων.

10 Λύση προβλήµατος Λύση (Solution) σε ένα πρόβληµα (I, G, T, S), είναι µία ακολουθία από τελεστές µετάβασης t 1,t 2,...t n T µε την ιδιότητα g=t n (...(t 2 (t 1 (I)))...), όπου g G Παράδειγµα Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη

11 Περιγραφή µε Αναγωγή (1/2)! Μία ακολουθία από τελεστές ανάγουν την περιγραφή ενός προβλήµατος σε υποπροβλήµαταταοποίαείναιάµεσα επιλύσιµα, αρχέγονα (Primitive Problems).! Για να µεταφερθούν n>1 δίσκοι από τον στύλο i στο στύλο k, πρέπει: # να µεταφερθούν n-1 δίσκοι από το i στο j, # να µεταφερθεί 1 δίσκος από το i στο k, # να µεταφερθούν n-1 δίσκοι από το j στο k. Αρχική και τελική περιγραφή προβλήµατος

12 Περιγραφή µε Αναγωγή (2/2) Τελεστής αναγωγής! Ένας τελεστής αναγωγής (reduction operator) ανάγει ένα πρόβληµα σε υποπροβλή- µατα. Ορισµός προβλήµατος! Ένα πρόβληµα ορίζεται τυπικά ως η τετράδα P=(ID,GD,TR,PP) # όπου ID είναι η αρχική περιγραφή, # GD είναι ένα σύνολο από τελικές περιγραφές, # TR είναι ένα σύνολο τελεστών αναγωγής και # PP είναι ένα σύνολο από αρχέγονα προβλήµατα.

13 Αλγόριθµοι Αναζήτησης Τυφλοί Όνοµα Αλγορίθµου Συντοµογραφία Ελληνική Ορολογία Depth-First Search DFS Αναζήτηση Πρώτα σε Βάθος Breadth-First Search BFS Αναζήτηση Πρώτα σε Πλάτος Iterative Deepening ID Επαναληπτική Εκβάθυνση Bi-directional Search BiS Αναζήτηση ιπλής Κατεύθυνσης Branch and Bound B&B Επέκταση και Οριοθέτηση Beam Search BS Ακτινωτή Αναζήτηση Ευριστικοί Hill Climbing HC Αναρρίχηση Λόφων Best-First Search BestFS Αναζήτηση Πρώτα στο Καλύτερο A* (A-star) A* Α* (Άλφα Άστρο) Παιχνιδιών 2 ατόµων Minimax Minimax Αναζήτηση Μεγίστου-Ελαχίστου Alpha-Beta AB Άλφα-Βήτα

14 Χώρος Αναζήτησης οθέντος ενός προβλήµατος (I,G,T,S), χώρος αναζήτησης (search space) SP είναιτοσύνολοόλων των καταστάσεων που είναι προσβάσιµες από την αρχική κατάσταση. Μία κατάσταση s ονοµάζεται προσβάσιµη (accessible) αν υπάρχει µια ακολουθία τελεστών µετάβασης t 1,t 2,...t k T τέτοια ώστε s=t k (...(t 2 (t 1 (I)))...).! O χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, δηλαδή SP S.! Ο χώρος αναζήτησης µπορεί να αναπαρασταθεί µε γράφο. Είναι πάντα εφικτό να µετατραπεί ο γράφος σε δένδρο αναζήτησης (search tree), το οποίο όµως µπορεί να έχει µονοπάτια απείρου µήκους.

15 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (1/2) Τµήµα ένδρου Κόµβος (Node) Ρίζα (Root) Φύλλο (Tip, Leaf) Κλαδί (Branch) Λύση (Solution) Επέκταση (Expansion) Παράγοντας ιακλάδωσης (Branching Factor) Αναπαράσταση Κατάσταση Αρχική Κατάσταση Τελική Κατάσταση ή Αδιέξοδο (Dead Node), δηλαδή κατάσταση στην οποία δεν µπορεί να εφαρµοστεί κανένας τελεστής µετάβασης. Τελεστής Μετάβασης που µετατρέπει µια κατάσταση-γονέα (Parent State) σε µία άλλη κατάσταση-παιδί (Child State). Μονοπάτι (Path) που ενώνει την αρχική µε µία τελική κατάσταση Η διαδικασία παραγωγής όλων των καταστάσεων-παιδιών ενός κόµβου. Ο αριθµός των καταστάσεων-παιδιών που προκύπτουν από µία επέκταση. Επειδή δεν είναι σταθερός αριθµός, αναφέρεται και ως Μέσος Παράγοντας ιακλάδωσης (Average Branching Factor).! Ο παράγοντας διακλάδωσης (branching factor) εκφράζει τον αριθµό των καταστάσεων που προκύπτουν από µία άλλη κατάσταση.

16 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (2/2) Το φαινόµενο της εκθετικής αύξησης του αριθµού των κόµβων του δένδρου ονοµάζεται συνδυαστική έκρηξη (combinatorial explosion).

17 Χαρακτηριστικά Αλγορίθµων! Ένας αλγόριθµος ονοµάζεται εξαντλητικός (exhaustive) όταντοσύνολοτων καταστάσεων που εξετάζει ο αλγόριθµος για να βρει τις απαιτούµενες λύσεις είναι ίσο µε τοχώροαναζήτησης, δηλαδή V=SP.! Ένας αλγόριθµος αναζήτησης ονοµάζεται πλήρης (complete) αν εγγυάται ότι θα βρει µία λύση για οποιαδήποτε τελική κατάσταση, αν τέτοια λύση υπάρχει. Σε αντίθετη περίπτωση, οαλγόριθµος ονοµάζεται ατελής (incomplete).! Μία λύση ονοµάζεται βέλτιστη (optimal) αν οδηγεί στην καλύτερη, σύµφωνα µε τη διάταξη, τελική κατάσταση. Όταν δεν υπάρχει διάταξη, µία λύση ονοµάζεται βέλτιστη αν είναι η συντοµότερη (shortest).! Ένας αλγόριθµος αναζήτησης καλείται αποδεκτός (admissible) αν εγγυάται ότι θα βρει τη βέλτιστη λύση, αν µια τέτοια λύση υπάρχει.

18 ιαδικασία Επιλογής Αλγορίθµου Αναζήτησης! Η επιλογή ενός αλγορίθµου βασίζεται στα εξής κριτήρια: # αριθµός των καταστάσεων που αυτός επισκέπτεται # δυνατότητα εύρεσης λύσεων εφόσον αυτές υπάρχουν # αριθµός των λύσεων # ποιότητα των λύσεων # αποδοτικότητά του σε χρόνο # αποδοτικότητά του σε χώρο (µνήµη) # ευκολία υλοποίησής του Κλάδεµα ή αποκοπή καταστάσεων (pruning) του χώρου αναζήτησης είναι η διαδικασία κατά την οποία ο αλγόριθµος απορρίπτει, κάτω από ορισµένες συνθήκες, κάποιες καταστάσεις.

19 Γενικός Αλγόριθµος Αναζήτησης Μέτωπο της αναζήτησης (search frontier) ενός αλγορίθµου είναι το διατεταγµένο σύνολο (λίστα) των καταστάσεων που ο αλγόριθµος έχει ήδη επισκεφτεί, αλλά δεν έχουν ακόµη επεκταθεί. Κλειστό σύνολο (closed set) ενός αλγορίθµου αναζήτησης είναι το σύνολο όλων των καταστάσεων που έχουν ήδη επεκταθεί από τον αλγόριθµο.! Με έναν απλό έλεγχο, αν η κατάσταση προς επέκταση ανήκει ήδη στο κλειστό σύνολο, αποφεύγονται οι βρόχοι (loops).

20 Γενικός Αλγόριθµος Αναζήτησης: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο αναζήτησης είναι άδειο τότε σταµάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση του µετώπου της αναζήτησης. 4. Αν είναι η κατάσταση αυτή µέρος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν είναι η κατάσταση αυτή τελική κατάσταση τότε τύπωσε τη λύση και πήγαινε στο βήµα Εφάρµοσε τους τελεστές µετάβασης για να παράγεις τις καταστάσεις-παιδιά. 7. Βάλε τις νέες καταστάσεις-παιδιά στο µέτωπο της αναζήτησης. 8. Κλάδεψε τις καταστάσεις που δε χρειάζονται (σύµφωνα µε κάποιο κριτήριο), βγάζοντάς τες από το µέτωπο της αναζήτησης. 9. Κάνε αναδιάταξη στο µέτωπο της αναζήτησης (σύµφωνα µε κάποιο κριτήριο). 10. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2.

21 Γενικός Αλγόριθµος (Ψευδοκώδικας) algorithm general(initialstate, FinalState) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalState do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Next Expand(CurrentState); Frontier insert(next,frontier); Frontier prune(frontier); Frontier reorder(frontier); Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end.

22 Αλγόριθµοι Τυφλής Αναζήτησης! Οι αλγόριθµοι τυφλής αναζήτησης (blind search algorithms) εφαρµόζονται σε προβλήµατα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

23 Παράδειγµα Το πρόβληµα των ποτηριών

24 Τελεστής Γέµισε το ποτήρι των Χ ml µέχρι το χείλος από τη βρύση Προϋποθέσεις Το ποτήρι των Χ ml έχει 0ml Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml Τελεστής Γέµισε το ποτήρι των Χ ml απότοποτήριτωνυml Προϋποθέσεις Το ποτήρι των Χ ml έχει Ζ ml Το ποτήρι των Ymlέχει Wml(W 0) Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml καιτοποτήριτωνυml έχει W-(X-Z), αν W X-Z ή Το ποτήρι των Χ ml έχει Ζ+W ml και Το ποτήρι των Υ ml έχει 0, αν W<X-Z Τελεστής Άδειασε το ποτήρι των Χ ml στο νεροχύτη Προϋποθέσεις Το ποτήρι έχει περιεχόµενο Αποτελέσµατα Το ποτήρι των Χ ml έχει 0ml

25 ένδρο αναζήτησης στο πρόβληµα των ποτηριών

26 Αναζήτηση Πρώτα σε Βάθος Οαλγόριθµος πρώτα σε βάθος (Depth-First Search - DFS) επιλέγει προς επέκταση την κατάσταση που βρίσκεται πιο βαθιά στο δένδρο. Ο αλγόριθµος DFS: 1.Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2.Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3.Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4.Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα 2. 5.Αν η κατάσταση είναι µία από τις τελικές, τότε ανέφερε τη λύση. 6.Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7.Εφάρµοσε τους τελεστές µετάβασης για να βρεις τις καταστάσεις-παιδιά. 8.Βάλε τις καταστάσεις-παιδιά στην αρχή του µετώπου της αναζήτησης. 9.Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2.

27 Ο αλγόριθµος DFS (Ψευδοκώδικας) algorithm dfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end.

28 Αναζήτηση Πρώτα σε Βάθος Σχόλια! Το µέτωπο της αναζήτησης είναι µια δοµή στοίβας(stack LIFO, Last In First Out)! Η εξέτασηαµέσως προηγουµένων (χρονικά) καταστάσεων ονοµάζεται χρονική οπισθοδρόµηση (chronological backtracking).! Πλεονεκτήµατα: # Έχει µικρέςαπαιτήσειςσεχώροδιότιτοµέτωπο της αναζήτησης δε µεγαλώνει πάρα πολύ.! Μειονεκτήµατα: # εν εγγυάται ότι η πρώτη λύση που θα βρεθεί είναι η βέλτιστη (µονοπάτι µε τοµικρότερο µήκος ή µε µικρότερο κόστος). # Εν γένει θεωρείται ατελής (αν δεν υπάρχει έλεγχος βρόχων ή αν ο χώρος αναζήτησης είναι µη πεπερασµένος)

29 Αναζήτηση Πρώτα σε Βάθος Πρόβληµα των ποτηριών Μέτωπο της αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Α,, Γ> {Α,Β} Α -(βρόχος) <, Γ> {Α,Β} <Β,Ζ,Γ> <Β,Ζ,Γ,Γ> {Α,Β, } Β -(βρόχος) <Ζ,Γ,Γ> {Α,Β, } Ζ <Α,Θ, > <Α,Θ,,Γ,Γ> {Α,Β,,Ζ} Α -(βρόχος) <Θ,,Γ,Γ> {Α,Β,,Ζ} Θ <Ζ,,Ι> <Ζ,,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ζ -(βρόχος) <,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} -(βρόχος) <Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ι <Κ,Γ,Β> <Κ,Γ,Β,,Γ,Γ> {Α,Β,,Ζ,Θ,Ι} Κ ΤΕΛΙΚΗ

30 Αναζήτηση Πρώτα σε Πλάτος Οαλγόριθµος αναζήτησης πρώτα σε πλάτος (Breadth First Search - BFS) εξετάζει πρώτα όλες τις καταστάσεις που βρίσκονται στο ίδιο βάθος και µετά συνεχίζει στην επέκταση καταστάσεων στο αµέσως επόµενο επίπεδο. Ο αλγόριθµος BFS: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2.Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3.Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4.Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα 2. 5.Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση. 6.Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7.Εφάρµοσε τους τελεστές µεταφοράς για να βρεις τις καταστάσεις-παιδιά. 8.Βάλε τις καταστάσεις-παιδιά στο τέλος του µετώπου της αναζήτησης. 9.Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2.

31 Ο αλγόριθµος BFS (Ψευδοκώδικας) algorithm bfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet begin ChildrenStates Expand(CurrentState); Frontier Frontier ^ ChildrenStates; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end.

32 Αναζήτηση Πρώτα σε Πλάτος Σχόλια! Το µέτωπο της αναζήτησης είναι µια δοµή ουράς(queue FIFO, δηλαδή First In First Out).! Πλεονεκτήµατα: # Βρίσκει πάντα την καλύτερη λύση (µικρότερη σε µήκος). # Είναι πλήρης.! Μειονεκτήµατα: # Το µέτωπο της αναζήτησης µεγαλώνει πολύ σε µέγεθος.

33 Αναζήτηση Πρώτα σε Πλάτος Πρόβληµα των ποτηριών Μέτωπο αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Γ,Α, > {Α,Β} Γ <Ε,Α> <Α,,Ε,Α> {Α,Β,Γ} Α -(βρόχος) <,Ε,Α> {Α,Β,Γ} <Β,Ζ,Γ> <Ε,Α,Β,Ζ,Γ> {Α,Β,Γ, } Ε <Α,Η> <Α,Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Α -(βρόχος) <Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Β -(βρόχος) <Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Ζ <Α,Θ, > <Γ,Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Γ -(βρόχος) <Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Α -(βρόχος) <Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Η <Ε,Γ> <Α,Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Α -(βρόχος) <Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Θ <Ζ,,Ι> <,Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} -(βρόχος)

34 <Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ε -(βρόχος) <Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Γ -(βρόχος) <Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ζ -(βρόχος) <,Ι> {Α,Β,Γ,,Ε,Ζ,Η} -(βρόχος) <Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ι <Κ,Γ,Β> <Κ,Γ,Β> {Α,Β,Γ,,Ε,Ζ,Η,Ι} Κ ΤΕΛΙΚΗ

35 Αλγόριθµος Επαναληπτικής Εκβάθυνσης Οαλγόριθµος επαναληπτικής εκβάθυνσης (Iterative Deepening - ID) συνδυάζει µε τονκαλύτερο τρόπο τους DFS και BFS. Ο αλγόριθµος ID: 1.Όρισε το αρχικό βάθος αναζήτησης (συνήθως 1). 2.Εφάρµοσε τον αλγόριθµο DFS µέχρι αυτό το βάθος αναζήτησης. 3.Αν έχεις βρει λύση σταµάτησε. 4.Αύξησε το βάθος αναζήτησης (συνήθως κατά 1). 5.Πήγαινε στο βήµα 2. Ο αλγόριθµος ID (Ψευδοκώδικας) algorithm id(initialstate, FinalStates) begin depth 1 while solution is not found do bounded_dfs(initialstate,finalstates,depth); depth depth+1 endwhile; end.

36 Αναζήτηση ID Σχόλια! Μειονεκτήµατα: # Όταν αρχίζει ο DFS µε διαφορετικόβάθοςδεθυµάται τίποτα από την προηγούµενη αναζήτηση.! Πλεονεκτήµατα: # Είναι πλήρης. # Αν το βάθος αυξάνεται κατά 1 σε κάθε κύκλο και ο ID βρει λύση, τότε αυτή η λύση θα είναι η καλύτερη.

37 Αναζήτηση ιπλής Κατεύθυνσης (1/2) Ηιδέατηςαναζήτησης διπλής κατεύθυνσης (Bidirectional Search -BiS) πηγάζει από τη δυνατότητα του παραλληλισµού (parallelism) στα υπολογιστικά συστήµατα.! Προϋποθέσεις κάτω από τις οποίες µπορεί να εφαρµοστεί: # Οι τελεστές µετάβασης είναι αντιστρέψιµοι (reversible), και # Είναι πλήρως γνωστή η τελική κατάσταση.! Μειονεκτήµατα: # Υπάρχει επιπλέον κόστος που οφείλεται στην επικοινωνία µεταξύ των δύο αναζητήσεων.

38 Αναζήτηση ιπλής Κατεύθυνσης (2/2)

39 Επέκταση και Οριοθέτηση Ο αλγόριθµος επέκτασης και οριοθέτησης (Branch and Bound -B&B) εφαρµόζεται σε προβλήµατα όπου αναζητείται η βέλτιστη λύση, δηλαδή εκείνη µε τοελάχιστοκόστος.! Η λειτουργίατουβ&β βασίζεται στο κλάδεµα καταστάσεων (pruning) και κατά συνέπεια στην ελάττωση του χώρου αναζήτησης

40 Ο αλγόριθµος B&B: 1.Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2.Αρχική τιµή της καλύτερης λύσης είναι το + (όριο). 3.Αν το µέτωπο της αναζήτησης είναι κενό, τότε σταµάτησε. Η καλύτερη µέχρι τώρα λύση είναι και η βέλτιστη. 4.Βγάλε την πρώτη σε σειρά κατάσταση από το µέτωπο της αναζήτησης. 5.Αν η κατάσταση ανήκει στο κλειστό σύνολο, τότε πήγαινε στο 3. 6.Αν η κατάσταση είναι τελική, τότε ανανέωσε τη λύση ως την καλύτερη µέχρι τώρα και ανανέωσε την τιµή του ορίου µε την τιµή που αντιστοιχεί στην τελική κατάσταση. Πήγαινε στο 3. 7.Εφάρµοσε τους τελεστές µεταφοράς για να παράγεις τις καταστάσειςπαιδιά και την τιµή που αντιστοιχεί σε αυτές. 8.Βάλε τις καταστάσεις-παιδιά, των οποίων η τιµή δεν υπερβαίνει το όριο, µπροστά στο µέτωπο της αναζήτησης. 9.Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο 3.

41 Ο αλγόριθµος B&B (Ψευδοκώδικας) algorithm b&b(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; BestCost ; while Frontier do CurrentState First(Frontier); CurrentCost Cost(Current_State); Frontier delete(currentstate,frontier); if CurrentState Closed then begin if CurrentState FinalStates and CurrentCost < BestCost then BestCost CurrentCost; else if CurrentCost < BestCost then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; end; endwhile; end.

42 Ο αλγόριθµος B&B Σχόλια! Ο B&B µπορεί να συνδυαστεί µε δυναµικό προγραµµατισµό (dynamic programming), όπου το κλάδεµα δεγίνεταιµόνο σε σύγκριση µε το τρέχον όριο, δηλαδή τη βέλτιστη λύση µέχρι εκείνη τη στιγµή, αλλά γίνεται και για κάθε κατάσταση που είναι περιττή.

43 Ο αλγόριθµος B&B: Το πρόβληµα TSP Μέτωπο της αναζήτησης Κόστος Λύσης Κατάσταση Παιδιά <α> + α αβ 8,αγ 5,αδ 10,αε 8 <αβ 8,αγ 5,αδ 10,αε 8 > + αβ αβγ 15,αβδ 14, αβε 14 <αβγ 15,αβδ 14,αβε 14,αγ 5,...> + αβγ αβγδ 24, αβγε 18 <αβγδ 24,αβγε 18, αβδ 14,αβε 14...> + αβγδ αβγδε 28 <αβγδε 28,αβγε 18, αβδ 14,...> + αβγδε αβγδεα 36 < αβγδεα 36, αβγε 18, αβδ 14,..> 36 αβγδεα Τελική Κατάσταση <αβγε 18, αβδ 14,... > 36 αβγε αβγεδ 22 <αβγεδ 22,αβδ 14,...> 36 αβγεδ αβγεδα 32 < αβγεδα 32,αβδ 14,αβε 14...> 32 αβγεδα 32 Τελική Κατάσταση <αβδεγα 26,...> 26 αβδεγα Τελική Κατάσταση <αβεγδ 26,...> 26 αβεγδ Κλάδεµα <αεβγδ 30,...> 26 αεβγδ Κλάδεµα <> ΕλάχιστηΤιµή ΤΕΛΟΣ

44 Εφαρµογή των Αλγορίθµων Τυφλής Αναζήτησης Το πρόβληµα του Λαβύρινθου

45 Ορισµός του Προβλήµατος του Λαβυρίνθου! Αρχική κατάσταση είναι η θέση µε συντεταγµένες (1,4).! Το σύνολο τελικών καταστάσεων περιέχει µόνο τη θέση (15,10).! Οι τελεστές µεταφοράς είναι οι εξής: # πήγαινε µία θέση αριστερά, # πήγαινε µία θέση επάνω, # πήγαινε µία θέση δεξιά, # πήγαινε µία θέση κάτω, εφόσον η θέση είναι ελεύθερη.! Ο χώρος καταστάσεων είναι όλες οι ελεύθερες θέσεις, χωρίς εµπόδια, του πλέγµατος.

46 Εφαρµογή του αλγορίθµου DFS

47 Λύση στο πρόβληµα του λαβύρινθου µε χρήσηdfs

48 Εφαρµογή αλγορίθµου BFS

49 Λύση στο πρόβληµα του λαβύρινθου µε χρήσηbfs

50 Εφαρµογή του ID στο πρόβληµα του λαβυρίνθου

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012

Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012 Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012 Ον/μο φοιτητή: Μπεγέτης Νικόλαος Α.Μ.: 1115200700281 Άσκηση 1(i) Το πλάνο εκτέλεσης για το πρόβλημα

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τμημα Πληροφορικης και Τηλεματικης Τσάμη Παναγιώτα ΑΜ: 20833 ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΥΣΤΗΜΑΤΑ Άσκηση 1 Αθήνα 13-12-2011 Αναφορά Ενότητα 1 A Δημιουργήστε στο φλοιό 3 εντολές (alias) που η

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν.

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν. ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ /Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ Δρ Γιώργος Α. Δημητρίου Ευφυή Κινούμενα Ρομπότ 139 Ρομποτικός Εντοπισμός Θέσης Δεδομένα Χάρτης του περιβάλλοντος Ακολουθία παρατηρήσεων Ζητούμενο Εκτίμηση της θέσης του

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Γενικά Σχόλια (1) 2 Για το τελικό διαγώνισμα θα χρειαστείτε: Φοιτητική

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση»

Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση» Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση» Διδάσκων: Ε. Χαρμανδάρης Θέμα: «Το πρόβλημα του περιπλανώμενου πωλητή, ακριβείς, ευριστικές και ενδιαφέρουσες λύσεις» Φώτογλου Ιωακείμ,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 15 Βασικές Αρχές και Τεχνικές Σχεδιασµού

ΚΕΦΑΛΑΙΟ 15 Βασικές Αρχές και Τεχνικές Σχεδιασµού ΚΕΦΑΛΑΙΟ 15 Βασικές Αρχές και Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Ενεργειών (Planning) Προβλήµατα σχεδιασµού

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Mh apofasisimèc gl ssec. A. K. Kapìrhc

Mh apofasisimèc gl ssec. A. K. Kapìrhc Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στην FORTRAN Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Fortran FORmula TRANslation: (Μία από τις πρώτες γλώσσες τρίτης γενιάς) Εκδόσεις FORTRAN (1957) FORTRAN II (1958) FORTRAN III

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Προϋποθέσεις για Αµοιβαίο Αποκλεισµό Μόνο µία διεργασία σε κρίσιµο τµήµασεκοινό πόρο Μία διεργασία που σταµατά σε µη κρίσιµο σηµείο δεν πρέπει να επιρεάζει τις υπόλοιπες διεργασίες εν πρέπει να υπάρχει

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Περιγραφή Κυκλωμάτων με χρήση της VHDL Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Οργάνωση Παρουσίασης Περιγραφή Δομής σε VHDL (Structural Description) Μηχανές Πεπερασμένων Καταστάσεων

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

ΟΤΑ Επιχειρησιακή Νοηµοσύνη. Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics)

ΟΤΑ Επιχειρησιακή Νοηµοσύνη. Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics) ΟΤΑ Επιχειρησιακή Νοηµοσύνη Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics) Πρακτική Άσκηση (επίπεδο 2): Η άσκηση ζητά να εκτελεσθεί

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Πτυχιακή εργασία του ΑΣΤΕΡΙΟΥ ΚΑΚΛΑΜΑΝΟΥ Εισηγητής : ΠΑΝΑΓΙΩΤΗΣ Α ΑΜΙ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Τεχνικές Προγραμματισμού

Τεχνικές Προγραμματισμού Νικόλαος Β. Πλατής Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής Τεχνικές Προγραμματισμού Μάρτιος 2001 1. Εισαγωγή 1.1 Βασικές έννοιες Η επιστήμη της Πληροφορικής μελετά την επίλυση προβλημάτων με τη βοήθεια

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 3 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ DVR KTEC

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ DVR KTEC ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ DVR KTEC 1) Πατάμε δεξί κλικ Μενού 2) Όνομα Χρήστη βάζουμε «admin» 3) Κωδικός Πρόσβασης το αφήνουμε «κενό» 4) Πατάμε OK και μπαίνουμε στο Μενού Είσοδος στο μενού Στην πρώτη εκκίνηση μετά

Διαβάστε περισσότερα

7. Βασικά στοιχεία προγραµµατισµού.

7. Βασικά στοιχεία προγραµµατισµού. 7. Βασικά στοιχεία προγραµµατισµού. ΗΜ01-Θ1Γ Δίνονται οι παρακάτω έννοιες: 1. Λογικός τύπος δεδοµένων 2. Επιλύσιµο 3. Ακέραιος τύπος δεδοµένων 4. Περατότητα 5. Μεταβλητή 6. Ηµιδοµηµένο 7. Πραγµατικός τύπος

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Θεωρία Υπολογισµού και Πολυπλοκότητα

Θεωρία Υπολογισµού και Πολυπλοκότητα Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Java Παύλος Εφραιμίδης Java Βασικά Στοιχεία της γλώσσας Java 1 Τύποι Δεδομένων Η Java έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) τύπους δεδομένων αναφορές Java Βασικά

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Παιχνίδια σε Javascript

Παιχνίδια σε Javascript Παιχνίδια σε Javascript Μάθημα 1ο Μια Γρήγορη Εισαγωγή στη Γλώσσα Τα Εργαλεία Την Javascript μπορούμε (όπως και την HTML) να τη γράψουμε σε ένα απλό συντάκτη κειμένου, ή σε ένα περιβάλλον όπως το Bluefish

Διαβάστε περισσότερα