DRUGI ZAKON TERMODINAMIKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DRUGI ZAKON TERMODINAMIKE"

Transcript

1 DRUGI ZKON ERMODINMIKE Povratni i nepovratni procesi Ranije smo razmotrili više različitih procesa pomoću kojih se termodinamički sistem (u našem razmatranju, idealan gas) prevodi iz jednog stanja ravnoteže u neko drugo stanje ravnoteže. Pri tom smo pod pojmom ravnoteže podrazumevali takvo stanje gasa u kojem se njegovi parametri stanja (pritisak, temperatura i zapremina) ne menjaju bez spoljašnjih uticaja. ko to nije slučaj, sistem nije u ravnoteži. Uopšteno, pod pojmom procesa možemo smatrati sve promene na telima (ili sistemima tela) koje menjaju stanje tog tela, a ako ih možemo tretirati metodama termodinamike nazivamo ih termodinamičkim procesima. Svakodnevno iskustvo nas uči da su u prirodi neki događaji (procesi) nemogući i nikada se ne dešavaju, dok su neki drugi mogući, ali se odigravaju samo u jednom smeru. Na primer, pouzdano znamo da predmet koji se nalazi na stolu, nikada neće sam od sebe da poskoči, da se zagreje, ili da se deformiše. Za ovakve događaje bilo bi potrebno uložiti neku energiju. akođe, molekuli vazduha u prostoriji nikada se neće pomeriti svi u jedan kraj prostorije, nikada se neće dogoditi da, zbog hlađenja, kafa u šolji počne spontano da se vrti, niti je moguće da se jedan kraj metae kašičice, koja leži na stolu, zagreje, a drugi kraj da se ohladi. Međutim, procesi koji se odvijaju u suprotnom smeru od navedenih su mogući i dešavaju se sasvim spontano. Naime, ako u jednom kraju prostorije otvorite ventil na boci sa komprimovanim vazduhom, on će se vrlo brzo proširiti po čitavoj prostoriji. Mešajući kafu kašičicom, vi ste joj predali energiju (kinetička energija rotacije).posle nekog vremena kafa će prestati da se okreće (usled trenja sa zidovima šoljice i unutrašnjeg trenja između slojeva tečnosti) dok će višak energije biti pretvoren u unutrašnju energiju i temperatura kafe će neznatno porasti u odnosu na temperaturu okoline. (Razmislite: zašto, onda, kružnim pokretima kašike hladite vruću supu?) akođe, ako na sto spustite kašičicu čiji je jadan kraj zagrejan, a drugi ne, posle izvesnog vremena uočićete da su temperature krajeva izjednačene. Mnogo je sličnih primera iz svakodnevnog života koji se spontano odvijaju samo u jednom smeru i nikada se ne mogu odigrati u suprotnom. akve procese nazivamo nepovratnim ili ireverzibiim procesima. Sa stanovišta kinetičke teorije i zakona statistike, možemo reći da se spontano mogu odigrati samo oni procesi koji vode u stanje veće verovatnoće. (Mnogo je veća verovatnoća da veliki broj molekula vazduha zauzme celu zapreminu prostorije, nego da su svi skoncentrisani u jednom delu prostorije. Razlika ovih verovatnoća je utoliko veća, ukoliko je broj molekula veći). Postavlja se pitanje: Da li su u prirodi mogući povratni ili reverzibii procesi? Pod tim pojmom smatrali bismo procese koji bi se na potpuno spontan način odvijali u dva suprotna smera, što bi značilo da se verovatnoća stanja ne menja. Detaljnije, potpuno reverzibilan bi bio onaj proces koji se dešava beskrajno sporo-kvazistatički (što se proces sporije odigrava bliži je ravnotežnom stanju) uz izuzetno malu (infinitezimau) promenu spoljašnjih uslova. ako bi tokom procesa termodinamički sistem, praktično, prolazio kroz niz ravnotežnih stanja, koja slede jedno za drugim, u oba smera. Odgovor na gore postavljeno pitanje je : ne. Mnoge pojave se, međutim, uz određene pretpostavke, mogu približiti pojmu povratnog procesa. Na primer, ako bismo zanemarili trenje pri kretanju klatna, onda bi ovakav proces odgovarao povratnom procesu u termodinamici.

2 Drugi zakon termodinamike formulacija I ko se vratimo na primer mešanja kafe kašičicom, uočićemo da je došlo do pretvaranja rada (koji vrši kašičica) u toplotu na potpuno jasan i prirodan način. Obrnuti proces, pretvaranje toplote u rad, u ovom slučaju, bi nas, najblaže rečeno, veoma iznenadio i teško da bismo mogli naći objašnjenje za tako nešto. Još jedan očigledan primer pretvaranja rada u toplotu nam je svima blizak i razumljiv. rljajući dlan o dlan lako ćete zagrejati ruke, ali obrnut proces nije moguć. Smer u kojem će se procesi odigravati na prirodan način, a, imajući u vidu gornje primere, i pretvaranje toplote u rad mora biti u skladu sa Drugim zakonom termodinamike, kojeg možemo formulisati na sledeći način: Nije moguć proces pri kome bi se toplota potpuno pretvorila u mehanički rad bez drugih promena (procesa). Pokušajmo da osporimo ovo tvrđenje. U tom cilju posmatrajmo cilindar, čiji su bočni zidovi toplotno izolovani, a koji leži na rezervoaru toplote čija je temperatura. U cilindru se nalazi idealan gas, a sa gornje strane je zatvoren lako pokretljivim klipom na kome se nalazi posuda sa olovnim kuglicama. Uklanjanjem određenog broja kuglica dozvolićemo gasu da se širi unutar cilindra, potiskujući klip naviše, istovremeno zadržavajući konstantnu temperaturu, apsorbujući toplotu iz rezervoara. Promene stanja ideaog gasa, u ovom slučaju, možemo predstaviti na P- dijagramu izotermom (učini to). Površina ispod krive, kako smo ranije naučili, jednaka je izvršenom radu na podizanju klipa. Kako nije došlo do promene unutrašnje energije gasa ( const U 0 ), a imajući u vidu Prvi zakon termodinamike ( U + ) na prvi pogled mogli bismo zaključiti da je ukupna apsorbovana toplota pretvorena u rad na podizanju klipa. Da li to znači da gore navedeni Drugi zakon termodinamike ne važi? Naravno da ne. Naime, drugi deo tvrđenja (...bez drugih promena...) nije zadovoljen, pošto se ideai gas na kraju procesa ne nalazi u istom stanju u kojem se nalazio na početku, promenila se zapremina gasa, kao i njegov pritisak. Da bi se ovaj zahtev ispoštovao i gas vratio u prvobitno stanje, na kraju svakog procesa pretvaranja toplote u rad potrebno je obezbediti da sistem klipcilindar radi ciklično. Uređaji koji na ovaj način rade, u ciklusu, pretvarajući toplotu u rad, nazivaju se toplotne mašine. oplotne mašine

3 Na slici je dat šematski prikaz rada toplotne mašine. U toku jednog ciklusa iz toplijeg rezervoara (temperatura ) radno telo toplotne mašine prima energiju u vidu toplote ( ). Deo ove toplote se koristi za vršenje rada (), a ostatak toplote se predaje hladnijem rezervoaru (temperature ). (Podsetimo se da smo ranije naučili da je toplota koju termodinamički sistem prima pozitivna veličina, 0, dok je toplota koju sistem predaje okolini, negativna, 0.) Pošto toplotna mašina (M) radi ciklično, na kraju svakog ciklusa unutrašnja energija gasa je nepromenjena ( U 0 ), pa, imajući u vidu Prvi zakon termodinamike možemo napisati da je koristan rad u tom ciklusu: M Očigledno je da ovako dobijen rad može biti pozitivna veličina (rad koji je izvršio sistem) ili negativna (rad koji je izvršen nad sistemom). Jasno je da je cilj da svaka toplotna mašina vrši što je moguće veći koristan rad, tj., da što veća količina apsorbovane toplote bude pretvorena u rad. Koliko je neka mašina uspešna na ovom zadatku definiše se koeficijentom korisnog dejstva: Na osnovu gornjeg izraza, očigledno je da koeficijent korisnog dejstva može imati vrednosti između 0 i (0 ). Drugi zakon termodinamike formulacija II oplotna mašina koja bi imala koeficijent korisnog dejstva jednak jedinici (efikasnost 00%) morala bi svu apsorbovanu količinu toplote da pretvori u rad. Šematski prikaz takve, ideae toplotne mašine, dat je na slici desno. U praksi nije moguće napraviti ideau mašinu koja bi neograničeno dugo davala rad na račun toplote okoih tela; ni jedna reaa mašina nema stepen efikasnosti 00%. Ovo nam omogućava da Drugi zakon termodinamike formulišemo i na sledeći način: IM 0 Nije moguć perpetuum mobile druge vrste (ne postoje ideae toplotne mašine). Drugi zakon termodinamike formulacija III Nemoguć je spontan (bez dešavanja drugih promena) prelaz toplote sa tela niže temperature na telo više temperature. Uređaj koji prenosi toplotu sa hladnijeg na toplije mesto naziva se rashladni uređaj. Njegov šematski prikaz dat je na slici dole levo, dok je desno predstavljen ideai rashladni uređaj.

4 RU U svakodnevnom životu srećemo se najčešće sa rashladnim uređajem koga nazivamo frižider. Ulogu visokotemperaturskog rezervoara kome se, u ovom slučaju, predaje toplota, igra prostorija u kojoj se frižider nalazi, a taj proces se odvija uz vršenje rada nad sistemom od strane motora koji pokreće uređaj. Efikasnost rashladnog uređaja meri se koeficijentom hlađenja: IRU k Drugi zakon termodinamike formulacija I Ideai rashladni uređaj bio bi onaj koji bi mogao da hladi bez ulaganja rada (0), pa bi koeficijent hlađenja bio beskonačan. Jasno je da takav uređaj nije moguće napraviti, pa bi Drugi zakon termodinamike, u tom smislu, mogao da bude formulisan i na sledeći način: Ne postoji idealan rashladni uređaj. Karnoov ciklus Iako dve formulacije Drugog zakona termodinamike eksplicitno tvrde da nije moguće napraviti ideau toplotnu mašinu, odnosno rashladni uređaj, ne prestaje težnja mnogih pronalazača u svetu da konstruišu upravo takvu, ideau mašinu. Koliko je zapravo moguće približiti se realizaciji takve ideje, možda je moguće razumeti detaljnijim razmatranjem rada jedne ideae toplotne mašine koja bi predstavljala granični slučaj rada jedne reae mašine. Na slici je prikazana jedna ideaa toplotna mašina. Nju predstavlja cilindar, zatvoren klipom, ispod koga se nalazi idealan gas. Zidovi cilindra su napravljeni od termoizolacionog materijala koji potpuno sprečava razmenu toplote sa okolinom (obojene površine), kao i postolje na koje se cilindar stavlja nakon uklanjanja sa rezervoara toplote. Dimenzije i priroda visokotemperaturskog ( ) i

5 niskotemperaturskog ( ) rezervoara su takvi, da malo oduzimanje (dodavanje) toplote rezervoaru, neće promeniti njegovu temperaturu, tj., const.i const. akođe, zanemaruje se trenje između klipa i zidova cilindra, kao i turbulencija gasa, a količina gasa unutar cilindra je konstantna ( ništa ne može da uđe, ni da izađe iz cilindra ). Osim toga, svi procesi koji se odigravaju tokom rada ove mašine i koji dovode do promene parametara stanja gasa (pritiska, zapremine i temperature), su toliko spori da ih možemo smatrati kvazistatičkim. ime se postiže, kako smo ranije naglasili, da je sistem stao u stanju toplotne ravnoteže i njegove promene stanja možemo prikazati na P- dijagramu. Dakle, u skladu sa ranijom definicijom, svi procesi su reverzibii, pa je i sama mašina reverzibia. Ovakvu mašinu nazivamo Karnoovom mašinom, a ciklus po kome radi, Karnoov ciklus. Prvi korak u radu Karnoove mašine je sledeći: Neka se klip nalazi u položaju sa oznakom na gornjoj slici. ermoizolaciona podloga cilindra je uklonjena i on je postavljen na toplotni rezervoar. Idealan gas prima količinu toplote od rezervoara i njegova temperatura se izjednačava sa temperaturom rezervoara ( ). Njegov pritisak je P, a zapremina. Opisano stanje predstavlja se na P- dijagramu tačkom (vidi sliku). Postepenim uklanjanjem opterećenja (setimo se npr. posude sa olovnim kuglicama) dozvolićemo gasu da se širi, ne menjajući temperaturu (ukoliko bi se gas pri širenju hladio manjak toplote bi se nadoknadio iz rezervoara toplote), istovremeno vršeći rad na podizanju klipa u položaj. Ovo stanje gasa opisuje se parametrima, P i, što odgovara tački na P- dijagramu. Proces (prelaska gasa iz stanja u stanje ) naziva se izotermska ekspanzija, krivu na P- dijagramu, kojom je predstavljen taj proces, izotermom, a rad koji gas pri tom vrši brojno je jednak površini ispod te krive. U sledećem koraku prenesimo cilindar na postolje od termoizolacionog materijala i veoma sporim, postepenim uklanjanjem opterećenja dozvolimo gasu širenje do zapremine. Ovo širenje je adijabatsko jer nema razmene toplote sa okolinom (čitav sistem je toplotno izolovan, 0). emperatura gasa pada i postaje, jer je gas na račun svoje unutrašnje energije izvršio (pozitivan) rad na podizanju klipa u položaj. Za ovaj položaj klipa pritisak u gasu je P. Proces se naziva adijabatska ekspanzija, odgovarajuća kriva na P- dijagramu je adijab ata, a izvršeni rad je jednak površini ispod te krive. Zatim se cilindar stavlja na niskotemperaturski rezervoar. eoma laganim dodavanjem opterećenja na klip gas se sabija do položaja klipa, čemu odgovara pritisak P i zapremina. oplota oslobođena ( negativna toplota ) pri sabijanju gasa predata je rezervoaru toplote, čime je obezbeđeno da temperatura gasa ostane nepromenjena,. Stanju gasa koje se karakteriše parametrima, P,, odgovara tačka na P- dijagramu. Proces, naziva se izotermska kompresija, a nad gasom je izvršen rad (negativan rad) brojno jednak površini ispod odgovarajuće izoterme. Poslednji korak sastoji se u postepenom dodavanju opterećenja na klip, pri čemu je cilindar na izolatorskom postolju. Klip se vraća u početni položaj (položaj ), gas se sabija do pritiska P i zapremine, nema razmene toplote sa okolinom ( 0). Proces naziva se adijabatska kompresija, a gas vrši negativan rad (zapravo, nad

6 gasom je izvršen rad) koji je brojno jednak površini ispod odgovarajuće adijabate i temperatura gasa raste do. Ovime je ciklus zatvoren. Primetimo da je ukupan izvršeni rad ( + + +, gde je 0, 0, 0 i 0 ) jednak šrafiranoj površini na P- dijagramu stanja. Razmotrimo i pitanje koeficijenta korisnog dejstva Karnoove mašine ( ). Imajući u vidu raniju definiciju ovog koeficijenta, kao i činjenicu da se pri adijabatskim promenama stanja ne razmenjuje toplota sa okolinom, možemo napisati: (gde je termodinamička temperatura, naravno, izražena u Kelvinima, pa samim tim ne može biti negativna). Za one koji žele da znaju više, pokažimo kako je dobijen izraz za koeficijent korisnog dejstva Karnoove mašine izražen preko temperature. Pođimo od: nr nr nr nr nr nr Posle odgovarajućih skraćivanja, dobija se: Kako su procesi i adijabatski za njih možemo napisati jednačine adijabate u obliku γ const, odnosno: γ γ γ γ γ, jer je (proces je izotermski). Na isti način je: γ γ γ jer je (proces je izotermski). Deljenjem gornja dva izraza, dobijamo: γ γ,

7 γ γ. Zamenom ovog rezultata u izraz za, nakon skraćivanja dobijamo: Naglasimo da ovaj izraz važi samo za slučaj ideae toplotne mašine Karnoove mašine i da se ne može koristiti u drugim slučajevima. Naime, za razliku od drugih cikličnih procesa jedino se Karnoov ciklus sastoji od dve izoterme i dve adijabate, čije smo jednačine koristili u gornjem izvođenju. Zaključujemo da efikasnost Karnoove mašine zavisi isključivo od temperatura toplotnih rezervoara između kojih radi i što je ta razlika veća, veća je i efikasnost ove mašine. Ni jedna reaa mašina čiji se radni ciklus odvija između dve temperature ne može imati veći koeficijent korisnog dejstva od Karnoove mašine koja radi između istih temperatura. Dakle, Karnoova mašina predstavlja granični slučaj ponašanja reaih mašina. Zadržaćemo se na ovom tvrđenju bez dokazivanja, što prevazilazi naše potrebe i ciljeve ovog kursa. Pomenimo još, na kraju, da zbog toga što je Karnoov ciklus reverzibilan, moguć je i Karnoov rashladni uređaj, čiji bi koeficijent hlađenja bio utoliko veći, ukoliko je razlika temperatura između rezervoara toplote manja, jer je: k

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

SPONTANI PROCESI II ZAKON TERMODINAMIKE

SPONTANI PROCESI II ZAKON TERMODINAMIKE SPONANI PROCESI II ZAKON ERMODINAMIKE I zakon termodinamike se bavi termodinamičkim procesom kao procesom koji je praćen ekvivalentnošću različitih oblika energije bez ikakvih ograničenja odnosno ne govori

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

II zakon termodinamike

II zakon termodinamike Poglavlje.3 II zakon termodinamike Pravac i smer spontanih promena Drugi zakon termodinamike-definicije Karnoova teorema i ciklus Termodinamička temperaturska Prvi zakon termodinamike: Energija univerzuma

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika Molekularna fizika proučava strukturu i svojstva supstanci polazeći od molekularno -kinetičke teorije: supstance su sastavljene od vrlo malih čestica (molekula, atoma i jona) koji se nalaze u stalnom haotičnom

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Termodinamika. Termodinamika

Termodinamika. Termodinamika ermodinamika Postoje brojne definicije termodinamike kao nauke o toploti. ako na primjer, prema Enriku Fermiju: Glavni sadržaj termodinamike je opisivanje transformacije toplote u mehnaički rad i obratno

Διαβάστε περισσότερα

NULTI I PRVI ZAKON TERMODINAMIKE

NULTI I PRVI ZAKON TERMODINAMIKE NULTI I PRVI ZAKON TERMODINAMIKE NULTI ZAKON (princip)termodinamike ako su dva sistema A i B u međusobnom termičkom kontaktu, i u ravnoteži sa trećim sistemom C onda su u ravnoteži i jedan sa drugim Ako

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike . ERMODINAMIKA.. rvi zakon termodinamike ermodinamika je naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Količina topline T 2 > T 1 T 2 T 1

Količina topline T 2 > T 1 T 2 T 1 Izvršeni rad ermodinamički sustav može vršiti rad na račun unutrašnje energije. Smatramo da je rad pozitivan ako sustav vrši rad, odnosno da je negativan ako se rad vrši nad sustavom djelovanjem vanjskih

Διαβάστε περισσότερα

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje ENROPIJA Spontani procesi u prirodi se uvek odvijaju u određenom smeru (npr. prelazak toplote sa toplijeg na hladnije telo) što nije moguće opisati termodinamičkim funkcijama do sad obrađenim. Nulti zakon

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

kvazistatičke (ravnotežne) promene stanja idealnih gasova

kvazistatičke (ravnotežne) promene stanja idealnih gasova zbirka zadataka iz termodinamike strana 1/71 kvazistatičke (ravnotežne) promene stanja idealnih gasova 1.1. Vazduh (idealan gas), (p 1 =2 bar, t 1 =27 o C) kvazistatički menja stanje pri stalnoj zapremini

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena 13. TERMODINAMIKA - dio fizike koji proučava vezu izmeñu topline i drugih oblika energije (mehanički rad) - toplinski strojevi: parni stroj, hladnjak, motori s unutrašnjim izgaranjem - makroskopske veličine:

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

dt dx dt dx dt dx Radi pojednostavljenja određivanja funkcije raspodele temperature u prostoru i vremenu, uvode se sledeće pretpostavke:

dt dx dt dx dt dx Radi pojednostavljenja određivanja funkcije raspodele temperature u prostoru i vremenu, uvode se sledeće pretpostavke: KONSTRUKCIJE, MATERIJALI I GRAðENJE Fond: 4+ Prof. dr Vlastimir RADONJANIN Prof. dr Mirjana MALEŠEV PREDAVANJE br. 3 Prema drugom zakonu termodinamike, toplota se kreće od toplijeg tela ka hladnijem telu,

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Termodinamički zakoni

Termodinamički zakoni Termodinamički zakoni Stanje sistema Opisano je preko varijabli stanja tlak volumen temperatura unutrašnja energija Makroskopsko stanje izoliranog sistema može se specificirati jedino ako je sistem u unutrašnjoj

Διαβάστε περισσότερα

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike I zakon termodinamike je doveo do uvoñenja unutrašnje nje energije, U koja nam omogućava da odredimo koje termodinamičke promene su moguće: samo one u kojima unutrašnja energija izolovanog sistema ostaje

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile RAD SILE Sila se može tokom kretanja opisati kao zavisnost od vremena t ili od trenutnog vektora položaja r. U poglavlju o impulsu sile i količini kretanja je pokazano na koji način se može povezati kretanje

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

TERMODINAMIKA.

TERMODINAMIKA. TERMODINAMIKA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 Termodinamika naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

0. OSNOVNE DEFINICIJE

0. OSNOVNE DEFINICIJE 0. OSNOVNE DEFINICIJE Termodinamicki sistem je deo opsteg prostora odvojen od okoline granicom sistema. Ako kroz granice sistema ne dolazi do toplotnih interakcija sistema i okoline takav sistem zave se

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

for := to do

for <brojacka_promenljiva> := <pocetna_vrednost> to <krajnja_vrednost> do <naredba> Naredbe ponavljanja U većini programa se javljaju situacije kada je potrebno neku naredbu ili grupu naredbi izvršiti više puta. Ukoliko je naredbu potrebno izvršiti konačan i mali broj puta, problem je

Διαβάστε περισσότερα

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012.

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012. Kazimir Majorinc Povijest Lispa 12. j Razmjena vještina Hacklab u mami 10. studeni 2012. MIT Research Laboratory of Electronics, Quarterly Progress Report, 15. travnja, 1959. Sadrži jednu od bar četiri

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0.

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0. 73 7 Diferenciranje 7. Marginalna funkcija i izvod Ako su dve veličine, y i x, povezane linearnom funkcijom, y = f(x) = kx + n, onda se y menja ravnomerno u odnosu na x, tj. važi formula (43) y x = k =

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα