SPONTANI PROCESI II ZAKON TERMODINAMIKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SPONTANI PROCESI II ZAKON TERMODINAMIKE"

Transcript

1 SPONANI PROCESI II ZAKON ERMODINAMIKE

2 I zakon termodinamike se bavi termodinamičkim procesom kao procesom koji je praćen ekvivalentnošću različitih oblika energije bez ikakvih ograničenja odnosno ne govori o izvodljivosti tog procesa: -ne kaže da li voda može spontano da teče naviše ili ne; ako voda teče naviše a nema dovođenja energije spolja, smanjuje se unutrašnja energija sistema i to za onaj deo koliki je izvršeni rad nasuprot sili gravitacije; sledi pad temperature vode; -ne kaže da li će ravnomerno zagrejan komad metal spontano postati topliji na jednom kraju a hladniji na drugom kraju već samo kaže da porast energije na jednom kraju mora biti ekvivalentan smanjenju na drugom kraju; -kaže da je dobijeni rad ekvivalentan apsorbovanoj toploti ali ne precizira uslove pod kojima je to moguće. II zakon termodinamike daje kriterijume za mogućnost odigravanja nekog procesa, odnosno verovatnoću odigravanja tog procesa. Bavi se konverzijom u rad apsorbovane toplote. Spontani procesi-procesi koji se odigravaju sami po sebi, bez intervencije spolja, odnosno za njihovo odvijanje nije potrebno utrošiti rad već odigravanje tog procesa proizvodi rad: -širenje gasa iz oblasti višeg u oblast nižeg pritiska -prelaz toplote sa toplijeg na hladnije telo -mešanje gasova odnosno difuzija gasa u neki drugi gas -prelazak rastvarača iz razblaženijeg u koncentrovaniji rastvor odnosno rastvorka iz koncentrovanijeg u razblaženiji. U svakom od ovih procesa menjaju se parametri stanja sve dok sistem ne dođe u stanje ravnoteže (konstantnost parametara stanja) Spontanost procesa je tendencija sistema da postigne stanje termodinamičke ravnoteže

3 Formulacije II zakona termodinamike: -Klauzijusova formulacija II zakona termodinamike: toplota sama po sebi (spontano) prelazi sa toplijeg na hladnije telo; -omsonova definicija II zakona termodinamike: toplota hladnijeg tela koje učestvuje u procesu ne može poslužiti kao izvor energije za vršenje rada; -nespontan proces ne može biti jedini proces u kružnom procesu. Uporedo sa nespontanim procesom mora se odigrati i spontani proces, koji predstavlja izvor energije za obavljanje nespontanog procesa; -sledi da je nemoguće konstruisati mašinu koja bi radeći kružno svu apsorbovanu toplotu pretvarala u rad, a da pri tom ni u samom sistemu ni u okružujućoj okolini ne dođe ni do kakvih promena. Kada bi ovu mašinu bilo moguće konstruisati ona bi predstavljala perpetuum mobile II vrste. Odnosno nije moguć nikakav kružni proces čiji bi jedini rezultat bio samo apsorpcija toplote iz rezervoara uz vršenje ekvivalentne količine rada. -da bi se toplota pretvorila u rad ona mora biti uzeta iz rezervoara više temperature, zatim se deo može pretvoriti u rad, a deo mora biti oslobođen na nižoj temperaturi u hladniji rezervoar.

4 Spontani procesi se u početno, neravnotežno stanje ne vraćaju spontano odnosno bez spoljne intervencije što znači da spontani procesi nisu termodinamički reverzibii što čini osnov II zakona termodinamike. o su znači nepovratni, ireversibii procesi jer se početno stanje sistema ne uspostavlja spontano. Npr. spontano se neće odigravati sledeći procesi: koncentrovanje gasa u jednom delu cilindra; izdvajanje čistih gasova iz smeše; stvaranje gradijenta temperature duž prethodno ravnomerno zagrejane metae šipke odnosno neće spontano doći do toga da jedan kraj postane topliji itd. Početno stanje se postiže utroškom nekog rada: -punjenje akumulatora električnom energijom -podizanje tereta na neku visinu -sabijanje gasa Pri odigravanju nespontanog procesa, sistem se udaljava od ravnotežnog stanja pa ravnoteža praktično predstavlja granicu između ove dve vrste procesa. Za ovakve procese se kaže da je verovatnoća njihovog odigravanja ekstremno mala.

5 Početno stanje se ostvaruje ako se posmatrani sistem dovede u kontakt sa okolinom (ili drugim sistemom) tako da nespontan proces u posmatranom sistemu postane deo složenog procesa čiji je jedan stupanj spontan. Npr.: -voda se može razložiti na vodonik i kiseonik uvođenjem elektroda u sistem iz spoljašnjeg izvora struje, koji će na račun spontanog procesa unutar samog izvora da izvrši rad potreban za razlaganje vode; -metaa šipka koja ima svuda istu temperaturu može se vratiti u početno stanje kada joj je jedan kraj bio topliji, ako se jedan njen kraj dovede u kontakt sa hladnijim telom, oduzme deo toplote i prevede u rad. Zatim se dobijeni rad iskoristi za pretvaranje u toplotu i zagrevanje drugog dela šipke. Kada se sistem vrati u početno stanje u okolini ili sistemu koji je intervenciju izvršilo dolazi do trajnih promena.

6 Da bi se iz nekog oblika energije dobio rad potrebno je da postoji razlika potencijala (npr. padanjem vode sa višeg na niži nivo vrši se rad zbog razlike potencijaih energija; za vršenje električnog rada mora postojati razlika električnih potencijala itd.). Pretvaranje toplote u mehanički rad ostvaruje se pomoću toplotne mašine (dva toplotna rezervoara na konstantnim ali različitim temperaturama-razlika u energetskim potencijalima, pa postoji mogućnost da se toplota transformiše u rad). telo koje daje toplotu (izvor) toliko veliko da mala količina toplote koju preda radnom telu ne menja njegovu temperaturu telo koje prima toplotu i vrši rad nad trećim telom telo koje prima toplotu-utok oplotna mašina

7 Sledi zaključak da se u jednom ciklusu samo deo apsorbovane toplote pretvara u koristan rad dok se drugi deo predaje hladnjaku (ili okolini) koji je na nižoj temperaturi u odnosu na radno telo. Izvršeni rad jednak je razlici primljene toplote i toplote predate hladnijem rezervoaru. ukupni rad apsorbovana toplota stepen iskorišćenja ili koeficijent korisnog dejstva radnog tela odnos količine toplote koja je iskorišćena za vršenje rada i primljene količine toplote odnosno deo apsorbovane toplote koja se može pretvoriti u rad

8 oplotnim mašinama i izračunavanjima u vezi njihovog rada bavio se Karno. On i definiše toplotnu mašinu kao sistem koji može razmenjivati sa okolinom energiju u obliku rada i toplote. Postavio je i teoremu koja glasi: -sve reverzibie toplotne mašine koje rade između dve iste temperature imaju istu efikasnost odnosno iskorišćenje ili drugim rečima efikasnost ne zavisi od prirode radne supstance niti od načina rada već samo od temperatura rezervoara. Posmatra se hipotetička toplotna mašina (zamišljen eksperiment): radno telo je mol ideaog gasa u cilindru sa klipom bez težine i trenja procesi se izvode beskonačno sporo odnosno reverzibio u ciklusu termodinamičku okolinu radnom telu čine dva velika toplotna rezervoara (termostata) na različitim temperaturama i sistem razmenjuje toplotu sa njima uslov je da je temperatura gasa u cilindru uvek za beskonačno malu vrednost manja od temperature izvora i za beskonačno malu vrednost veća od temperature utoka razmena toplote se ostvaruje okruživanjem cilindra dijatermičkim zidovima izolacija se ostvaruje okruživanjem adijabatskim zidovima sistem razmenjuje energiju sa okolinom u obliku rada (teg određene mase koji se diže kad se gas širi odnosno spušta kad se gas sabija) da bi se ovaj proces razmene energije u obliku rada izvodio reverzibio potrebno je da se gas širi ili sabija beskonačno sporo a to će biti kada je pritisak gasa uvek za beskonačno malu vrednost veći ili manji od okoline.

9 P- dijagram Karnoovog kružnog ciklusa Ciklus čine uzastopna procesa: dva izotermska procesa-širenje i sabijanje (razmena toplote sa okolinom) dva adijabatska procesa-širenje i sabijanje (nema razmene toplote sa okolinom)

10 Izotermsko širenje A-B na od do adijabatski zid pritisak gasa se održava stao većim od pritiska okoline pa se gas neprekidno širi U R R ; ; 0 0 cilindar doveden u termički kontakt sa termostatom čija je temperatura za d veća od temperature gasa mašina vrši rad-teg se diže ΔU=0 (izotermski proces) sistemu se energija za vršenje rada dovodi spolja ( )

11 Adijabatsko širenje B-C od do adijabatski zid 0 U C U 0 ( ); 0 pritisak se i dalje održava većim od okoline pa gas nastavlja da se širi ali adijabatski podiže se teg ali sada na račun unutrašnje energije (unutrašnja energija se smanjuje, gas se hladi od na )

12 Izotermsko sabijanje C-D od do temperatura rezervoara za d niža od temperature gasa u cilindru adijabatski zid U 0 R R ; R 0 ; 0 Pritisak je sada za beskonačno malu vrednost niži od pritiska okoline pa se gas reverzibio sabija. Daje toplotu okolini ( ) a temperatura gasa ostaje konstantna. Okolina vrši rad nad sistemom, teg se spušta, temperatura je konstantna jer toplota prelazi na hladnije telo.

13 Adijabatsko sabijanje D-A od na adijabatski zid adijabatski zid 0 U C U 0 ( ); 0 adijabatsko sabijanje od na na račun porasta unutrašnje energije pa temperatura gasa raste od do. Sistem je vraćen u početno stanje

14 ) ( ) ( C R C R i R R R ( i ) i ( i ) leže na istim adijabatama pa važi: γ = const. Ukupan rad je suma svih izvršenih i primljenih radova:

15 -koeficijent korisnog dejstva zavisi samo od temperature izvora i utoka -može se povećati povećanjem temperature ili smanjenjem temperature kada je η= odnosno pri kojim uslovima je moguće toplotu potpuno transformisati u rad? kada bi se maksimao snizila temperatura utoka tako da bude jednaka nuli što je nemoguće, odnosno na osnovu III zakona termodinamike nemoguće je dostići temperaturu apsolutne nule, ili kada bi se temperatura izvora maksimao (do beskonačnosti) povećala što je takođe nemoguće Npr. ako se radno telo nalazi između dva rezervoara sa temperaturama 0 o C i 0 o C η=5% što znači da ¼ termae energije ide u mehanički rad a ¾ kao gubitak na temperaturu utoka. Ako bi se radno telo nalazilo između 550 o C i 00 o C η=55%; između 00 o C i 00 o C η=56%. Iskorišćenje u praksi je nešto manje od terijski izračunatog zbog gubitka usled trenja.

16 Analizom Karnoovog ciklusa može se zaključiti sledeće:. Čak i u ideaoj mašini (bez trenja i drugih gubitaka) sva toplota se ne može pretvoriti u rad. Jedan njen deo uvek mora preći na hladnije telo (hladnjak).. Deo toplote koji se pretvara u rad zavisi od temperature hladnijeg i toplijeg tela, tj. η = f(, ). Drugim rečima, sve reversibie mašine koje rade između istih temperatura imaju istu efikasnost, što predstavlja Karnoovu teoremu. Koeficijent korisnog dejstva uvek je manji od jedinice (0 < η < ). Kada je η = 0 onda je = i ciklus ne postoji. Nulta tačka termodinamičke toplotne skale prema jednačini (η = ( - )/ ) definisana je kao temperatura hladnijeg rezervoara, za koji je efikasnost jedinica (η = ), odnosno, ona za koju toplotna mašina svu apsorbovanu toplotu pretvara u rad što je nemoguće postići.. ciklus razmenjena toplota na temperaturi 0 u Karnoovom ciklusu suma razmenjenih toplota jednaka je nuli. Nijedan drugi ciklus ne može da ima koeficijent korisnog dejstva veći od Karnoovog ciklusa, pa je Karnoov ciklus najefikasniji za transformaciju toplotne u druge vrste energije.

17 oplota razmenjena u reversibiom procesu veća je od toplote razmenjene u ireversibiom procesu ( rev > irev, pri istim temperaturama toplijeg i hladnijeg rezervoara). U ireversibiom procesu se deo izvršenog rada pretvara u toplotu, zbog čega je manji ukupni rad pa za ovaj proces važi nejednačina: η rev > η irev stepen iskorišćenja reverzibiih mašina je veći od stepena iskorišćenja ireverzibiih mašina

DRUGI ZAKON TERMODINAMIKE

DRUGI ZAKON TERMODINAMIKE DRUGI ZKON ERMODINMIKE Povratni i nepovratni procesi Ranije smo razmotrili više različitih procesa pomoću kojih se termodinamički sistem (u našem razmatranju, idealan gas) prevodi iz jednog stanja ravnoteže

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena 13. TERMODINAMIKA - dio fizike koji proučava vezu izmeñu topline i drugih oblika energije (mehanički rad) - toplinski strojevi: parni stroj, hladnjak, motori s unutrašnjim izgaranjem - makroskopske veličine:

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika 2. OSNOVNI POJMOVI 2.1 Fizika i termodinamika Fizika nauka koja se bavi izučavanjem procesa kretanja materije u svim njenim pojavnim oblicima. Kako je osnovna kvantitativna mera kretanja materije energija

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Hidraulični sistem je tehnički sistem za pretvaranje i prenos energije i upravljanje

Hidraulični sistem je tehnički sistem za pretvaranje i prenos energije i upravljanje 1 Hidraulični sistemi Hidraulični sistem je tehnički sistem za pretvaranje i prenos energije i upravljanje njome. U ovom poglavlju se analiziraju: osnovne funkcije hidrauličnog sistema, hidraulični prenosnik,

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE

LABORATORIJSKE VEŽBE IZ FIZIKE LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa: UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Sadržaj 1 Kalem Sadržaj Kalem 1 Kalem - definicije Kalem Kalem je pasivna elektronska komponenta koja

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. dr Jovo Jednak Proizvodnja, proizvodna funkcija, dodata vrednost i priroda inputa Transformacija faktora proizvodnje (inputa) u učinak zove se proces proizvodnje.

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14.

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14. LABORATORIJSKE VEŽBE IZ FIZIKE za generaciju 03/4. UNIVERZITET U NIŠU UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka rada pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Dnevno kolebanje temperature

Dnevno kolebanje temperature TEMPERATURA VAZDUHA TEMPERATURA VAZDUHA Temperatura vazduha spada među najvažnije klimatske elemente. Zavisi od sunčeve radijacije, odnosno od toplotnog bilansa. Temperatura vazduha se menja po prostoru

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

PRIKAZ REZULTATA EKSPLOATACIJE TOPLOTNE PUMPE(VAZDUH-VODA) MIDEA U UPRAVNOJ ZGRADI CIM GASA, SUBOTICA

PRIKAZ REZULTATA EKSPLOATACIJE TOPLOTNE PUMPE(VAZDUH-VODA) MIDEA U UPRAVNOJ ZGRADI CIM GASA, SUBOTICA PRIKAZ REZULTATA EKSPLOATACIJE TOPLOTNE PUMPE(VAZDUH-VODA) MIDEA U UPRAVNOJ ZGRADI CIM GASA, SUBOTICA Toplotna pumpa sa izdvojenim hidromodulom Kompaktna toplotna pumpa sa ugrađenom hidromodulom SADRŽAJ

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16.

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16. LABORATORIJSKI PRAKTIKUM - FIZIKA za generaciju 015/16. SPISAK LABORATORIJSKIH VEŽBI IZ FIZIKE 1. VEŽBA - a) Određivanje ubrzanja Zemljine teže pomoću matematičkog klatna b) Određivanje Jungovog modula

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! * " ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! *  ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ) KONX OM PAX ( ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU) *! " ) ( - # $ ' & % HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ASTROLOGY SADRŽAJ UVOD... 4 PRVI DEO -

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema Glava 1 Atmosfera 1.1 Nastanak planetarne atmosfere Atmosfera 1 Zemlje je relativno tanak sferni gasoviti omotač koji gravitacija drži uz Zemlju. U postupku analize Zemljine atmosfere i ljudskog uticaja

Διαβάστε περισσότερα

Kočnice automobila. UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Katedra za elektroniku Automobilska elektronika. Aleksandar Milić br.

Kočnice automobila. UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Katedra za elektroniku Automobilska elektronika. Aleksandar Milić br. UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Katedra za elektroniku Automobilska elektronika SEMINARSKI RAD Kočnice automobila Student Aleksandar Milić br. indeksa 12007 Profesor Branislav Petrović S a d r

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

σ - univerzalna konstanta

σ - univerzalna konstanta 9. ELEKTROTERMIJA Elektrotermija je oblast elektrotehnike u kojoj se proučava konverzija električne energije u toplotu. Pri tome se proučavaju, kako fizički fenomeni ove konverzije, tako i tehnički uređaji

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen ELEKTOTEHNIKA 3. ISTOSMJENA ELEKTIČNA STUJA I STUJNI KUGOVI Doc. dr. sc. Vitomir Komen, dipl. ing. el. /77 SADŽAJ: 3. Nastajanje električne struje 3. Električni strujni krug istosmjerne struje 3.3 Električni

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

VREME JE ZA prelazak na PAMETNO GREJANJE

VREME JE ZA prelazak na PAMETNO GREJANJE VZDUHVOD SISTEMI TOPLOTNIH PUMPI Split type VREME JE Z prelazak na PMETNO GREJNJE Štedite sa ECODNOM Onovljiva tehnologija grejanja Sistem omogućava grejanje prostorija i tople komfor sa jedne strane i

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

TERMOTEHNIČKI ASPEKTI ENERGETSKE EFIKASNOSTI ZGRADA GRIJANJE STAMBENOG PROSTORA

TERMOTEHNIČKI ASPEKTI ENERGETSKE EFIKASNOSTI ZGRADA GRIJANJE STAMBENOG PROSTORA KURS IZ ENERGETSKE EFIKASNOSTI TERMOTEHNIČKI ASPEKTI ENERGETSKE EFIKASNOSTI ZGRADA GRIJANJE STAMBENOG PROSTORA 1 Grijanje stambenog prostora UVOD ZADATAK GRIJANJA STANJE UGODNOSTI POTREBNA KOLIČINA TOPLOTE

Διαβάστε περισσότερα

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti-

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- Prenos toplote preko poda (temelja) koji je u kontaktu

Διαβάστε περισσότερα

Chi-kvadrat test. Chi-kvadrat (χ2) test

Chi-kvadrat test. Chi-kvadrat (χ2) test 1 Chi-kvadrat test Chi-kvadrat (χ2) test Test za proporcije, porede se frekvence Neparametarski test Koriste se dihotomne varijable Proverava se veza između dva faktora Npr. tretmana i bolesti pola i smrtnosti

Διαβάστε περισσότερα

Far za biciklu sa LED diodama

Far za biciklu sa LED diodama Far za biciklu sa LED diodama Zelene, žute, crvene i infracrvene svetleće diode su sa nama još od ranih sedamdesetih godina XX veka. Početkom XXI veka su se najzad pojavile i dugo očekivane plave, ultraljubičaste

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

KURS ZA ENERGETSKI AUDIT 5.2

KURS ZA ENERGETSKI AUDIT 5.2 KURS ZA ENERGETSKI AUDIT 5.2 Instalacije: HLADJENJE I VENTILACIJA Pripremio: Dr Igor Vušanović ŠTA SADRŽE INSTALACIJE ZA HLAĐENJE? Instalacije za hlađenje sadrže: Izvor toplotne/rashladne energije (toplotna

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

Matematički modeli sistema

Matematički modeli sistema Matematički modeli sistema U analizi i sintezi SAU se koriste kvantitativni matematički modeli koji opisuju fiziku sistema. Generalno, dinamika sistema je opisana običnim diferencijalnim jednačinama. lasa

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

VISOKA ŠKOLA ELEKTROTEHNIKE I RAČUNARSTVA STRUKOVNIH STUDIJA

VISOKA ŠKOLA ELEKTROTEHNIKE I RAČUNARSTVA STRUKOVNIH STUDIJA VISOKA ŠKOLA ELEKTROTEHNIKE I RAČUNARSTVA STRUKOVNIH STUDIJA Predmet: Senzori i aktuatori na vozilima Seminarski rad: Davači temperature Student: Veselinović Petar - Školska godina 2008/2009.- Davači temperature

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα