298 Appendix A Selected Answers
|
|
- Μυρίνη Μαγγίνας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 A Selected Answers (/3)x +(1/3) y = x ( /3)x +(1/3) y = x+,, y = x+6, 6, y = x/+1/, 1/, y = 3/, y-intercept: 3/, no x-intercept y = ( /3)x,, yes y = 0, y = x+, y = x y = 75t (t in hours); 164 minutes y = (9/5)x+3, ( 40, 40) y = 0.15x x (a) y = { 0 0 x < 100 (x/10)0 100 x 1000 x < x y = { 0.15x 0 x x < x x < x (a) P = x+ (b) x = 0000P (/5)x (16/5) (a) x +y = 9 (b) (x 5) +(y 6) = 9 (c) (x+5) +(y +6) = (a) x =, y = 3, m = 3/, y = (3/)x 3, 13 (b) x =, y = 3, m = 3, y = 3x+, 10 (c) x =, y =, m = 1, y = x, (x+/7) +(y 41/7) = 1300/ {x x 3/} {x x } {x x 1 and x } {x x < 0} {x x R}, i.e., all x 97
2 98 Appendix A Selected Answers {x x 0} {x h r x h+r} {x x 1 or x < 0} {x /3 < x < 1/3} {x x 0 and x 1} {x x 0 and x 1} R {x x 3}, {x x 0} A = x(500 x), {x 0 x 50} V = r(50 πr ), {r 0 < r 50/π} A = πr +000/r, {r 0 < r < } , , , , /3, 4/7, 7/4, 3/ , , , 3(3+ x) x+ x x , , , 3+3 x+ x m , 5/, 0, 15, 5, , 4.1, 4.01, 4.001, 4+ t , 9.849, , t undefined / does not exist a (a) 8, (b) 6, (c) dne, (d), (e), (f) 8, (g) 7, (h) 6, (i) 3, (j) 3/, (k) 6, (l).4.1. x/ 169 x t.4.3. x+1/x.4.4. ax+b x.4.8. /(x+1) 3/ /(t+) y = 3x or 1.3 or x x x πx π (3/4)x / (9/7)x 6/ x +4x x 4 +6x+10/x x+5
3 Appendix A Selected Answers x +x x +6x x x/ 65 x y = 13x/ y = 4x 48 π t/5+5, 49/5 n ka k x k k= x 3 /16 3x/ x (x 3 5x+10)+x 3 (3x 5) (x +5x 3)(5x 4 8x +6x 7)+ (x+5)(x 5 6x 3 +3x 7x+1) 65 x x x x 65 x x x 0 65 x x f = 4(x 3), y = 4x x x 3 5x+10 x3 (3x 5) (x 3 5x+10) x+5 x 5 6x 3 +3x 7x+1 (x +5x 3)(5x 4 8x +6x 7) (x 5 6x 3 +3x 7x+1) 1 x 65 x + x 3/ (65 x ) 3/ x x y = 17x/4 41/ y = 11x/165/ y = 19/169 5x/ / x 3 9x +x x 4x+/ x (x +1) x 65 x x x x / 169 x (x 4) 5 x (x 4x+5)x/ 5 x x/ r x x 3 / 1+x x(5 x) 3/ x x+1 1 x + x +x+1 (1 x) / 5 x 5 x /x ( ) 1 69 / x x x x x+1/x x 3 x (1/x) 300x (100 x ) 5/ 1+3x 3(x+x 3 ) /3 ( ) 4x(x 4x 3 +4x / +1)+ 1+(x +1) (x +1) + 1+(x +1) (x+8) (4 x) x(x +5) x(6 x ) x (1 4x 3 ) /x (4x)(x x+3) /(x+1) (8x )/(4x x+1) x +5x
4 300 Appendix A Selected Answers x(x 4) 3 +6(3x +1)(x 4) /(x) x/(x +1) (x 6x+7)/(x 3) /(3x 4) x 4 +7x 3 +18x +18x (5 4x)/((x+1) (x 3) ) /((+3x) ) x 6 + 7x x x x +8x y = 3x/96 9/ y = 3 x/ y = 13x/ 3/ y = x y = x nπ π/, any integer n nπ ±π/6, any integer n ( + 6)/ (1+ 3)/(1 3) = t = π/ / / / sin( x)cos( x)/ x sinx x + xcosx cosx sin x (x+1)sinx (x +x)cosx sin x sinxcosx sin x cos x sin x sinxcos(cosx) tanx+xsec x xtanx csc x sec x(1+sinx) tanxcosx (1+sinx) cscxcotx x sin(3x )+46x 4 cos(3x ) cos(cos(6x)) sin(6x) secθtanθ (1+secθ) = sinθ (cosθ +1) t 4 cos(6t) 6t 5 sin(6t) t (sin(3t) + tcos(3t))/cos(t) + t 3 sin(3t)sin(t)/cos (t) nπ/, any integer n π/+nπ, any integer n y = 3x/+3/4 3π/ y = 8 3x+4 8 3π/ y = 3 3x/ 3π/ π/6+nπ, 5π/6+nπ, any integer n ln(3)x3 x e x cosx sinx e x e x cos(e x ) cos(x)e sinx
5 ( x sinx cosxlnx+ sinx ) x x e x +x 3 e x x ln() xln(3)(1/3) x e 4x (4x)/x (3x +3)/(x 3 +3x) tan(x) (1 ln(x ))/(x ln(x )) sec(x) x cos(x) (cos(x)/x sin(x)ln(x)) e x/y (x+y)/(x+y) (xy 3x y )/(xy 3y x ) sin(x) sin(y)/(cos(x) cos(y)) y/ x (ysec (x/y) y )/(xsec (x/y)+y ) (y cos(x+y))/(cos(x+y) x) y /x y = x± y = x/± ( 3, 3), ( 3, 3), ( 3, 3), ( 3, 3) y = 7x/ 3 8/ y = ( y 1/3 1 x+y 1/3 1 x 1 +x 1/3 1 y 1 )/x 1/ (y y 1 ) = (x3 1 +x 1 y 1 x 1 ) (y 3 1 +y 1x 1 +y 1) (x x 1 ) 1+x Appendix A Selected Answers 301 x 1 x 4 e x e x x cos(x 3 )/ 1 sin (x 3 ) (arcsinx) 1 x e x / 1 e x (1+lnx)x x ln5(1+x x )arctan(x x ) / / / / / / / /7
6 30 Appendix A Selected Answers / / / / / / does not exist y = 1 and y = min at x = 1/ min at x =, max at x = max at x =, min at x = min at x = ±1, max at x = min at x = none none min at x = 7π/1 + kπ, max at x = π/1+kπ, for integer k none local max at x = local min at x = local min at x = one min at x = 1/ 5... min at x =, max at x = max at x =, min at x = min at x = ±1, max at x = min at x = none none min at x = 7π/1 + kπ, max at x = π/1+kπ, for integer k none max at x = 0, min at x = ± min at x = 3/, neither at x = min at nπ, max at π/+nπ min at nπ, max at (n+1)π min at π/+nπ, max at 3π/+nπ min at x = 1/ min at x =, max at x = max at x =, min at x = min at x = ±1, max at x = min at x = none none
7 Appendix A Selected Answers min at x = 7π/1 + nπ, max at x = π/1+nπ, for integer n max at x = 63/ max at x = max at 5 /4, min at 5 / none max at, min at min at / none min at nπ max at nπ, min at π/+nπ max at π/+nπ, min at 3π/+nπ concave up everywhere concave up when x < 0, concave down when x > concave down when x < 3, concave up when x > concave up when x < / 3 or x > 1/ 3, concave down when / 3 < x < 1/ concave up when x < 0 or x > /3, concave down when 0 < x < / concave up when x < 0, concave down when x > concave up when x < or x > 1, concave down when < x < 0 or 0 < x < concave down on ((8n)π/4,(8n+ 3)π/4), concave up on ((8n + 3)π/4,(8n+7)π/4), for integer n concave down everywhere concave up on (,(1 497)/4) and (1+ 497)/4, ) concave up on (0, ) concave down on (nπ/3,(n + 1)π/3) concave up on (0, ) concave up on (,) and (0, ) concave down everywhere concave up everywhere concave up on (π/4+nπ, 3π/4+nπ) inflection points at nπ, ±arcsin( /3)+nπ up/incr: (3, ), up/decr: (, 0), (, 3), down/decr: (0, ) max at (,5), min at (0,1) P/4 P/ w = l = 5 /3, h = 5 /3, h/w = 1/ , h/s = w = l = 1/3 V 1/3, h = V 1/3 / /3, h/w = 1/ square feet l /8 square feet $ r h/r = h/r = r = 5 cm, h = 40/π cm, h/r = 8/π /π / Go direct from A to D (a), (b) 7/
8 304 Appendix A Selected Answers (a) a/6, (b) (a + b a ab+b )/ meters wide by 1.5 meters tall If k /π the ratio is ( kπ)/4; if k /π, the ratio is zero: the window should be semicircular with no rectangular part a/b w = r/ 3, h = r/ / 3 58% r = 5/(π) 1/3.7 cm, h = 5 5/3 /π 1/3 = 4r 10.8 cm h = 750 ( ) π 1/3, r = π 750 ( ) 750 1/6 π h/r = The ratio of the volume of the sphere to the volume of the cone is 1033/ / , so the cone occupies approximately 8.54% of the sphere P should be at distance c 3 a/( 3 a+ 3 b) from charge A / $ There is a critical point when sinθ 1 /v 1 = sinθ /v, and the second derivative is positive, so there is a minimum at the critical point /(16π) cm/s /(1000π) meters/second /4 m/s /5 m/s π mi/min ft/s /(3π) cm/s /0 ft/s / m/s /64 m/min π/7 m/s π/144 m/min π /36 ft 3 /s tip: 6 ft/s, length: 5/ ft/s tip: 0/11 m/s, length: 9/11 m/s / mph / km/hr m/s / km/hr m/s m/s / km/hr / / km/hr /49 m/s (a) x = acosθ asinθcot(θ+β) = asinβ/sin(θ +β), (c) ẋ 3.79 cm/s x 3 = or y = 65/16, dy = y = 11/10, dy = y = sin(π/50), dy = π/50
9 Appendix A Selected Answers dv = 8π/ c = 1/ c = x 3 /3+47x / 5x+k arctanx+k x 4 /4 lnx+k cos(x)/+k / x x x b a rectangles: 41/4 = 10.5, 8 rectangles: 183/16 = / (16/3)x 3/ 7... t 3 +t x /z lns (5x+1) 3 / (x 6) 3 / x 5/ / / x t t, t < ; t 4t+8, t / ln(10) e / /6/ x 3x x(x 4 3x ) e x xe x tan(x ) 7... xtan(x 4 ) It rises until t = 100/49, then falls. The position of the object at time t is s(t) = 4.9t + 0t + k. The net distance traveled is 45/, that is, it ends up 45/ meters below where it started. The total distance traveled is 605/98 meters π 0 sintdt = net: π, total: π/ / A = 18, B = 44/3, C = 10/ (1 t) 10 / x 5 /5+x 3 /3+x (x +1) 101 / (1 5t) /3 / (sin 4 x)/ (100 x ) 3/ / x 3 / sin(sinπt)/π /(cos x) = (1/)sec x ln cosx tan (x)/
10 306 Appendix A Selected Answers / cos(tanx) / / (7/8)(x 7) 8/ (3 7 +1)/ f(x) / x/ sin(x)/ cosx+(cos 3 x)/ x/8 (sinx)/4+(sin4x)/ (cos 5 x)/5 (cos 3 x)/ sinx (sin 3 x)/ x/8 (sin4x)/ (sin 3 x)/3 (sin 5 x)/ (cosx) 5/ / tanx cotx (sec 3 x)/3 secx ln cscx+cotx cscxcotx/ (1/)ln cscx + cotx x x / ln x+ x / x 9+4x / + (9/4)ln x+ 9+4x (1 x ) 3/ / arcsin(x)/8 sin(4 arcsin x)/3 + C ln x+ 1+x (x + 1) x +x/ ln x+1+ x +x / arctanx/x arcsin(x/) x 4 x / arcsin( x) x 1 x (x +1) 4x / cosx+xsinx x sinx sinx+xcosx (x)e x (1/)e x (x/) sin(x)/4 = (x/) (sinxcosx)/ xlnx x (x arctanx+arctanx x)/ x 3 cosx + 3x sinx + 6xcosx 6sinx x 3 sinx + 3x cosx 6xsinx 6cosx x /4 (cos x)/4 (xsinxcosx)/+ C x/4 (xcos x)/+(cosxsinx)/4+ C xarctan( x)+arctan( x) x sin( x) xcos( x) secxcscx cotx ln x /4+ln x+ / x 3 /3 4x 4ln x + 4ln x /(x+5) x ln x +ln x x+x 3 /3+8arctan(x/) (1/)arctan(x/+5/) x / ln(4+x ) (1/4)ln x+3 (1/4)ln x (1/5)ln x 3 (1/5)ln 1+x (1/3)ln x (1/3)ln x T,S: 4±0
11 Appendix A Selected Answers T: 9.815±0.8115; S: 9± T: 60.75±1; S: 60± T: ±0.0833; S: ± T: ± 0.006; S: ± T: ± 0.005; S: ± T:.8833±0.0834; S:.9000± T: ±0.0077; S: ± T: 1.097±0.0147; S: 1.089± T: 3.63±0.087; S: 3.6± (t+4) 4 4 (t 9) 5/ 5 (e t +16) cost 3 cos3 t tan t ln t +t ln 1 4/t tan(arcsin(t/5)) + C = t 5 5 t sin3t ttant+ln cost e t +1 3t sint + sin4t 4 3 ln t ln t sinarctant = 1+t /t (1+tant) (t +1) 5/ (t +1) 3/ 5 3 e t sint e t cost (t 3/ +47) ( t ) 1 3/ ( t ) 1/ ln sin(arctan(t/3)) + C = 9 ln(4t ) ln(9+4t ) 18 (arctan(t)) 4 3ln t ln t 4 cos 7 t cos5 t t lnt t (lnt) t lnt + t (t 3 3t +6t 6)e t ln(t + 1 5) ln(t+1+ 5) / / / / /3 /π /π 3 3/(π)/8
12 308 Appendix A Selected Answers / / / / / /π, 5/π , , (3 π)/(π), (18 3+π)/(4π) /49 meters, 0/49 seconds /98 meters, 30/49 seconds /49 meters, 1000/49 seconds s(t) = cost, v(t) = sint, maximum distance is 1, maximum speed is s(t) = sin(πt)/π +t/π, v(t) = cos(πt)/π+1/π, maximum speed is /π s(t) = t / sin(πt)/π +t/π, v(t) = t cos(πt)/π+1/π s(t) = t /+sin(πt)/π t/π, v(t) = t+cos(πt)/π/π π/ π/ π(π/) (a) 114π/5 (b) 74π/5 (c) 0π (d) 4π π, 4π πh (3r h)/ π /π; /π; / /A π/ /3, ft/s; 8 14 ft/s ,305,08,516 N-m ,457,854,041 N-m , 500π N-m π /3 N-m π N-m N-m /5 N-m N-m N-m N-m / / x = 45/8, ȳ = 93/ x = 0, ȳ = 4/(3π) x = 1/, ȳ = / x = 0, ȳ = 8/ x = 4/7, ȳ = / x = ȳ = 1/ x = 0, ȳ = 8/(9π) x = ȳ = 8/(9π) x = 0, ȳ = 44/(7π) / diverges diverges diverges
13 Appendix A Selected Answers diverges π/ diverges, diverges, diverges, no CPV π mph: 90.8 to 95.3 N-m 90 mph: to 10.6 N-m mph: to N-m µ = 1/c, σ = 1/c µ = (a+b)/, σ = (b a) / / r = ( 8)/ ln()+3/ a+a 3 / ln(( +1)/ 3) / e +1 ln( 1+e + 1)+ln( +1) π 3 16π π π π +πe+ 1 4 πe π 4e π e π π + 8π a > b: πb + πa b a b arcsin( a b /a), a < b: πb + ( ) πa b b a ln b a + b a a θ = arctan(3) r = 4cscθ r 3 cosθsin θ = r = r = sinθsec 3 θ rsinθ = sin(rcosθ) r = /(sinθ 5cosθ) r = secθ = r cos θ rsinθ = 3r cos θ rcosθ rsinθ r = sinθ (x +y ) = 4x y (x +y )y (x +y ) 3/ = y x +y = x y x 4 +x y = y (θcosθ + sinθ)/( θsinθ + cosθ), (θ +)/( θsinθ +cosθ) cosθ +sinθcosθ cos θ sin θ sinθ, 3(1+sinθ) (cos θ sin θ sinθ) (sin θ cos θ)/(sinθcosθ), /(4sin 3 θcos 3 θ) sinθcosθ cos θ sin θ, (cos θ sin θ) undefined
14 310 Appendix A Selected Answers π/ /3 sinθ 3sin 3 θ 3cos 3 θ cosθ, 3cos 4 θ 3cos θ + cos 3 θ(3cos θ ) π/1+ 3/ πa π/ π/ π/ π/ π/4 3 3/ π/+3 3/ / / π/ π/3+ 3/ π/3 3/ π 3 / π π/4 3/ π/ π 15/ 7arccos(1/4) π x = t sin(t), y = 1 cos(t) x = 4cost cos(4t), y = 4sint sin(4t) x = cost+cos(t), y = sint sin(t) x = cost+tsint, y = sint tcost There is a horizontal tangent at all multiples of π π/ π cost dt Four points: 3 3 5,± ,± π/ / π / (π/, 1) π 3 / π 5 5, (π 4π +1 + ln(π + 4π +1))/ lim n n /(n +1) = 1/ lim n 5/(1/n +14) = 1/ n=1 1 n diverges, so 3 1 n diverges / n=1
15 Appendix A Selected Answers / / / diverges diverges converges converges converges converges diverges converges N = N = N = any integer greater than e converges converges diverges converges converges converges converges diverges diverges diverges converges diverges converges diverges converges absolutely diverges converges conditionally converges absolutely converges conditionally converges absolutely diverges converges conditionally converges converges converges diverges R = 1, I = (,1) R =, I = (, ) R = e, I = ( e,e) R = e, I = ( e,+e) R = 0, converges only when x = R = 1, I = [ 6, 4] the alternating harmonic series (n+1)x n (n+1)(n+)x n C (n+1)(n+) x n, R = 1 (n+1)(n+) xn+ () n x n /(n)!, R = x n /n!, R =
16 31 Appendix A Selected Answers () n(x 5)n, R = 5 5 n+1 () n(x)n, R = 1 n n= ln() converges () n(x )n n n, R = converges n=1 () n (n+1)(x) n, R = n=1 n= (n) n! n x n = (n)! n (n)!n! xn, R = x+x 3 / () n x 4n+1 /(n)! () n x n+1 /n! x + x4 4 x ; x1 1! x+ x3 3 + x5, error ± diverges converges converges diverges diverges diverges converges converges converges converges converges converges converges converges diverges (, ) ( 3, 3) ( 3, 3) (, 1) radius is 0 it converges only when x = ( 3, 3) (, ) (ln()) n n! x n () n n+1 xn+1 n+1 xn x/ + () n (n 3) n n! n= () n x n π = () n n+1 xn+1 () n 4 n+1 x n
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
% APPM$1235$Final$Exam$$Fall$2016$
Name Section APPM$1235$Final$Exam$$Fall$2016$ Page Score December13,2016 ATTHETOPOFTHEPAGEpleasewriteyournameandyoursectionnumber.The followingitemsarenotpermittedtobeusedduringthisexam:textbooks,class
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
8 η Διάλεξη Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης 11 Οκτωβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
Answers to Selected Exercises
Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος
Scratch Διδακτική του Προγραμματισμού Παλαιγεωργίου Γιώργος Μάρτιος 2009 MIT Scratch Το Scratch είναι ένα πλούσιο σε οπτικοαουστικά μέσα προγραμματιστικό περιβάλλον στο οποίο οι αρχάριοι προγραμματιστές
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) =
Differentiate y xcos(2x 2 ( x 1 2 3 Differentiate f (x sinx f (x cos(1 + x - 2*xˆ2 + x*(-1 + 4*x*sin(1 + x - 2*xˆ2 Differentiate y -24*cot(x*csc(xˆ3 3 + tanx 100 Differentiate G(t (cost 4 1 (sec(xˆ2/(2*sqrt(3
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases