Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
|
|
- Μέγαιρα Ζωγράφου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος. Σ Σε κάθε ισοσκελές τρίγωνο η διάµεσος είναι και ύψος και διχοτόµος. Ένα τρίγωνο είναι οξυγώνιο όταν έχει µία γωνία οξεία. Η µεσοκάθετος ισαπέχει από τις πλευρές της. ύο τρίγωνα που έχουν και τις τρεις γωνίες τους ίσες µία προς µία,είναι ίσα. ύο ορθογώνια τρίγωνα που έχουν την υποτείνουσα και µια γωνία αντίστοιχα ίσες µία προς µία, είναι ίσα. ΘΕΜ ο ) Να συµπληρώσετε τα κενά : (0 µονάδες) Η ευθεία ε που είναι κάθετη στο ευθύγραµµο τµήµα και διέρχεται από το µέσο του λέγεται μεσοκάθετος του ευθύγραµµου τµήµατος Κάθε σημείο της μεσοκαθέτου ενός ευθύγραμμου τμήματος έχει την χαρακτηριστική ιδιότητα να ισαπέχει από τα άκρα του, και αντίστροφα, δηλαδή κάθε σημείο που ισαπέχει από τα άκρα ενός τμήματος ανήκει στη μεσοκάθετό του.
2 Κάθε σημείο της διχοτόμου μιας γωνίας έχει την χαρακτηριστική ιδιότητα να ισαπέχει από τις πλευρές της και αντίστροφα, δηλαδή κάθε εσωτερικό σημείο μιας γωνίας που ισαπέχει από της πλευρές, είναι σημείο της διχοτόμου της. Το μοναδικό κάθετο τμήμα ΟΚ που άγεται από το κέντρο Ο προς τη χορδή λέγεται απόστημα της χορδής και έχει την ιδιότητα να διχοτομεί τη χορδή και το αντίστοιχο τόξο της. ) Κυκλώστε το γράµµα που αντιστοιχεί στη σωστή απάντηση και αιτιολογήστε την απάντησή σας. ν οι διχοτόµοι των γωνιών και ενός ισόπλευρου τριγώνου τέµνονται στο, τότε το τρίγωνο είναι. Ισόπλευρο. Ισοσκελές. Ορθογώνιο Δ. Σκαληνό Ε. Τίποτα από τα παραπάνω Το τρίγωνο είναι ισοσκελές οπότε = και επειδή φέραμε τις διχοτόμους τους θα είναι και = ( ως μισά ίσων γωνιών ) Δηλαδή το τρίγωνο Δ θα είναι ισοσκελές. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε ) τότε :. B. B. = πό σηµείο εκτός ευθείας διέρχεται µοναδική κάθετος στην ευθεία. ν, είναι χορδές ενός κύκλου (Κ) και ΚΕ, ΚΖ είναι αντίστοιχα τα αποστήµατά τους τότε :. B = ΚΕ = ΚΖ. B = ΚΕ ΚΖ. B = ΚΕ = ΚΖ ύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα.
3 ΘΕΜ 3 ο ) Στο παρακάτω σχέδιο υπάρχουν δύο κατοικίες και. Σε ποιο σηµείο του δρόµου πρέπει να τοποθετηθεί στάση λεωφορείου, ώστε να µην αδικείται κανένας από τους κατοίκους ; Η στάση του λεωφορείου πρέπει να γίνει σε σηµείο της µεσοκαθέτου του ευθύγραµµου τµήµατος, έτσι ώστε να ισαπέχει από τα χωριά. Εποµένως, η στάση πρέπει να γίνει στο σηµείο Κ. K A ) Θεωρούµε ισοσκελές τρίγωνο ( = ). Προεκτείνουµε τη βάση του και προς τα δύο µέρη κατά ίσα τµήµατα =Ε.Να αποδειχτούν : ) Ότι το τρίγωνο Ε είναι ισοσκελές. = Ε ( Π Π) Ε ) = ισοσκελές ) = Ε υπόθεση ( ) ως παραπληρωµατικές 3) = των ίσων γωνιών = Σε δύο ίσα τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες και αντίστροφα, εποµένως = Ε Ε ισοσκελές ) Τα σηµεία και Ε ισαπέχουν από τις ευθείες των ίσων πλευρών ( δηλαδή ότι ισαπέχουν από τις ευθείες και αντίστοιχα ).
4 Κ = Ε Κ Ε ) Είναι ορθογώνια ( Κ = = 90 ) 0 ) = Ε ( ερώτηµα ) 3) = Ε (αφού = Ε) Σε δύο ίσα τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες και αντίστροφα οπότε Κ = Ε ΘΕΜ 4 ο ) Σε κύκλο ( Ο, ρ ) θεωρούµε τις ίσες χορδές και, οι προεκτάσεις των οποίων τέµνονται στο Μ. ν ΟΚ και Ο τα αποστήµατα των χορδών και αντίστοιχα, να αποδείξετε ότι : Κ Ο Μ )Κ = Τ ο απόστηµα διχοτοµεί τη χορδή ( συγκεκριµένα ο φορέας του αποστήµατος είναι µεσοκάθετος της χορδής ) εποµένως Κ = Κ και =. Θα έχουµε : = ή Κ = δηλαδή Κ = ή απλά θα είναι Κ = ως µισά ίσων τµηµάτων. )Τα τρίγωνα ΜΟΚ και ΜΟ είναι ίσα Μ Ο Κ = Μ Ο ) Είναι ορθογώνια ( Κ = = 90 ) ( ) ) ΟΚ = Ο Ως αποστήµατα των ίσων χορδών 3) ΟΜ = ΟΜ ( κοινή ) 3) Μ =Μ και Μ =Μ φού ΜΟΚ = ΜΟ απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες και αντίστροφα. Εποµένως ΜΚ = Μ. Θα έχουµε:μ = ΜΚ + Κ = Μ + = Μ ή απλά Μ = Μ ως άθροισµα ίσων τµηµάτων. Όπως είδαµε ΜΚ = Μ ή Μ + Κ = Μ +, όµως Κ = εποµένως Μ = Μ ή απλά ως διαφορά ίσων τµηµάτων
5 ) Θεωρούµε γωνία x O y, τα σηµεία, της πλευράς Οx και τα σηµεία, της πλευράς Οy τέτοια ώστε Ο = Ο και Ο = Ο. ν Μ είναι το σηµείο τοµής των τµηµάτων και, να αποδείξετε ότι : O Μ A y x α) Τα τρίγωνα Ο και Ο είναι ίσα, Ο = Ο ( Π Π ) ) Ο = Ο (υπόθεση) ) Ο = Ο (υπόθεση) 3) Ο = Ο (κοινή) β) τα τρίγωνα Μ και Μ είναι ίσα πό την ισότητα τριγώνων στο α) ερώτηµα, προκύπτει ότι = και =, εποµένως: Μ = Μ ( Π ) ) ( ως παραπληρωµατικές ίσων γωνιών) = ) = 3) = ( ως διαφορά ίσων τµηµάτων ) γ) η ΟΜ είναι διχοτόµος της x O y. πό το δεύτερο ερώτηµα προκύπτει ότι Μ = Μ οπότε : Ο Μ = ΟΜ (Π Π Π) ) Μ = Μ ) ΟΜ = ΟΜ ( κοινή ) 3) Ο = Ο ( υπόθεση) Εποµένως Ο = Ο δηλαδή η ΟΜ είναι διχοτόµος της x O y.
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
Διαβάστε περισσότερα3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης
.5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΣτοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος
3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότερα1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότεραΑΓ=ΑΔ(υπόθεση) ΒΔ = ΓΕ υποθεση
ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ Άσκηση 1.Συγκρίνουμε τα τρίγωνα και. 2 1 =(υπόθεση) = (υπόθεση) = 2 1 κατακορυφήν γωνίες πό το κριτήριο Π--Π τα τρίγωνα είναι ίσα άρα και = Άσκηση 2 Χαράζουμε τις και επειδή τα, είναι σημεία
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Διαβάστε περισσότερα6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότερα5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //
1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΟρισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραΤρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
Διαβάστε περισσότεραΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.
ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. Στο ισοσκελές τρίγωνο ΑΒΓ φέρνουµε διχοτόµο ΑΔ Σύγκριση Τριγώνων ΑΒΔ και ΑΓΔ: -ΑΒ=ΑΓ (δεδοµένο) -ΒΑΔ=ΓΑΔ (αφού ΑΔ διχοτόµος) -ΑΔ
Διαβάστε περισσότεραΤρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.
Διαβάστε περισσότερα6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
Διαβάστε περισσότεραβ. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.
1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΣωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
Διαβάστε περισσότερα1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Διαβάστε περισσότεραΟνοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότεραΘΕΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σ (σωστή) ή Λ (λανθασμένη)
Διαγώνισμα Γεωμετρίας Α Λυκείου Ισότητα Τριγώνων Κυριακή 8 Νοεμβρίου 2015 Τα θέματα και οι απαντήσεις τους ΘΕΜΑ Α Α 1. Α 2. Α 3. Πως ορίζεται η μεσοκάθετος ευθύγραμμου σχήματος; Να αναφέρετε την ιδιότητα
Διαβάστε περισσότερα1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο ΤΡΙΓΩΝΑ. Στοιχεία και είδη τριγώνων. Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ;
ΚΕΦΛΙΟ 3ο ΤΡΙΩΝ Στοιχεία και είδη τριγώνων Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου.
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραγεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
Διαβάστε περισσότερα5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότερα3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ
1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες
Διαβάστε περισσότεραΑπέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
Διαβάστε περισσότερα5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :
5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Διαβάστε περισσότεραΑ λ γ ε β ρ Λ υ κ ε ι ο υ Γ ε ω μ ε τ ρ ι α Α Λ υ κ ε ι ο υ
Κ Κ α α ι ι τ τ ο ο Λ Λ υ υ σ σ α α ρ ρ ι ι............ λ λ λ λ ι ι ω ς ς!!!!!! λ γ ε β ρ Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι α Λ υ κ ε ι ο υ π ι μ ε λ ε ι α Τ α κ η ς Τ σ α κ α λ α κ ο ς w w w. d r m a t h s
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΤο εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότεραΓενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 140
ενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 40. ίνεται τρίγωνο ορθογώνιο στο. πό τα άκρα, της υποτείνουσας φέρουµε κάθετες x και y στη και προς το ίδιο µέρος της. πό το µέσο Μ της φέρουµε κάθετη στην, που τέµνει
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραΕρωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότερα2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ
1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΙΑ ΤΑ ΚΕΦΑΛΑΙΑ 2 και 3
ΡΩΤΗΣΙΣ ΘΩΡΙΣ Ι Τ ΚΦΛΙ και 3 1. Τι λέμε κυρτή γωνία, μη κυρτή γωνία, διχοτόμο γωνίας, κάθετες ευθείες. προβολή ή ίχνος σημείου σε ευθεία;. Πότε δύο σημεία λέγονται συμμετρικά ως προς ευθεία; 3. Τι λέμε
Διαβάστε περισσότεραΛ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότερα2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
Διαβάστε περισσότεραΓ ε ω μ ε τ ρ ι α. A Λ υ κ ε ι ο υ. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς
ε ω μ ε τ ρ ι α A Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς ε ω μ ε τ ρ ι α A Λ υ κ ε ι ο υ ασικα εωμετρικα Σχηματα Τριγωνα Παραλληλες Ευθειες Παραλληλογραμμα - Τραπεζια Εγγεγραμμενα
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014
ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +
Διαβάστε περισσότεραΓραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
Διαβάστε περισσότεραΤηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]
ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΠΕΜΠΤΗ 5 ΙΑΝΟΥΑΡΙΟΥ 2017 ΚΑΘ/ΤΗΣ ΣΠΑΝΟΣ Σ. ΒΑΘΜΟΣ: /100, /20 (1) (α) Να αποδείξετε ότι: Δυο χορδές ενός κύκλου είναι ίσες αν και μόνο αν
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
ρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd..0 σκήσεις σχολικού βιβλίου (σελ. 3 4) ρωτήσεις Κατανόησης. ύο διαφορετικές ευθείες μπορεί να έχουν i) κανένα κοινό σημείο ii) Ένα
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΓεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)
Διαβάστε περισσότερα2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.
1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα
Διαβάστε περισσότεραΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
Διαβάστε περισσότεραΕρωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΤρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου
Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότερα5 η εκάδα θεµάτων επανάληψης
5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο
Διαβάστε περισσότερα