Σύνδεση με το προηγούμενο μάθημα. Βαρυτικές ελκτικές δυνάμεις. Το βαρυτικό πεδίο. Ένταση του βαρυτικού πεδίου. Το δυναμικό του βαρυτικού πεδίου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύνδεση με το προηγούμενο μάθημα. Βαρυτικές ελκτικές δυνάμεις. Το βαρυτικό πεδίο. Ένταση του βαρυτικού πεδίου. Το δυναμικό του βαρυτικού πεδίου"

Transcript

1 Γεωδαισία IV Μάθημα Εαρινού 6ου Εξαμήνου, Ακαδ. Έτος 0- ΤΕΠΑΚ, Τμ. Πολιτικών Μηχ./Τοπογράφων Μηχ. Και Μηχ. Γεωπληροφορικής Διδάσκων μαθήματος: Δημήτρης Δεληκαράογλου Επισκ. Καθ., Αναπλ. Καθ., ΣΑΤΜ, ΕΜΠ Σύνδεση με το προηγούμενο μάθημα Χαρακτηρισμός του γήινου πεδίου βαρύτητας Ελκτικές δυνάμεις και ένταση της βαρύτητας Το γήινο βαρυτικό δυναμικό Γεωδαισιακές γραμμές Γεωδαισιακά τρίγωνα, τετράπλευρα, Εμβαδά Βασικές έννοιες για τα προβλήματα γεωδαιτικής μεταφοράς συντεταγμένων από σημείο σε σημείο Βαρυτικές ελκτικές δυνάμεις Νόμος της παγκόσμιας έλξης: F = G m m / Οι ελκτικές δυνάμεις μεταξύ υλικών σωμάτων είναι ανάλογες του γινομένου των μαζών τους και αντιστρόφως ανάλογες του τετραγώνου της μεταξύ των κέντρων μάζας τους απόστασης. Εκφράζονται σε Newton ( N = kg m/s ) Βαρύτητα ονομάζεται η ιδιότητα των υλικών σωμάτων να έλκουν άλλα υλικά σώματα Τα ελκυόμενα σώματα κινούνται με επιταχυνόμενη κίνηση προς το έλκον σώμα. Οι έλξεις είναι αμοιβαίες. Είναι ένα μοντέλο που χρησιμοποιείται στη φυσική για να εξηγήσει πώς λειτουργεί η βαρύτητα στο σύμπαν. Στην αρχική της σύλληψη, κατά τον Νεύτωνα, η βαρύτηταήτανμια δύναμη μεταξύ σημειακών μαζών Μετά τον Νεύτωνα, ο Laplace προσπάθησε να μοντελοποιήσει την βαρύτητα ως ένα είδος δυναμικού πεδίου ή ρευστού Από τον 9ο αιώνα οι ερμηνείες για την βαρύτητα αναζητούνται στο πλαίσιο της θεωρίας των πεδίων, παρά στην επίδραση μιας σημειακής έλξης Το βαρυτικό πεδίο Ένταση του βαρυτικού πεδίου Το δυναμικό του βαρυτικού πεδίου ˆ = Μοναδιαίο διάνυσμα Tο φυσικό διανυσματικό μέγεθος που έχει μέτρο ίσο με το πηλίκο της δύναμης που ασκείται σε ένα σώμα μάζας m(=m ), το υπόθεμα, που βρίσκεται σε απόσταση από το κέντρο της πηγής βαρύτητας προς τη μάζα Μ (=m ) του σώματος που δημιουργεί το βαρυτικό πεδίο, και φορά πάντα προς το κέντρο μάζας της πηγής του πεδίου. έχει μονάδες επιτάχυνσης (δύναμη ανά μονάδα μάζας m/s²), και εξαρτάται τόσο από τη μάζα Μ του σώματος που δημιουργεί το βαρυτικό πεδίο, όσο και από την απόσταση από τη θέση αυτού gal = cm/s² mgal = 0-5 m/s μgal = 0-8 m/s Είναι ένα μονόμετρο μέγεθος που ορίζεται ως μείον το έργο ανά μονάδα μάζας που εκτελεί η δύναμη της βαρύτητας από μία αυθαίρετη θέση αναφοράς 0 σε μία απόσταση από την πηγή του βαρυτικού πεδίου. Στην περίπτωση μιας σημειακής πηγής (μάζας)

2 Το δυναμικό (έλξης) του βαρυτικού πεδίου Με την εκλογή του απείρου ως σημείο αναφοράς, το δυναμικό μίας σημειακής πηγής απλοποιείται σημαντικά Το βαρυτικό δυναμικό είναι παντού αρνητικό. Το βαρυτικό πεδίο που δημιουργεί ένα αντικείμενο συγκεκριμένων διαστάσεων προκύπτει από την κατάτμηση της κατανομής μάζας σε μικρές, στοιχειώδης μάζες τις οποίες θεωρούμε σημειακές και αθροίζοντας (= ολοκληρώνοντας) όλες τις επιμέρους στοιχειώδεις συνεισφορές δυναμικού. Ηεξίσωση του Poisson η επίλυσή της εξαρτάται από τη μορφή της συνάρτησης πυκνότητας ρ και τις αρχικές/συνοριακές συνθήκες του προβλήματος. Η χρησιμότητα του βαρυτικού δυναμικού έχει να κάνει με το γεγονός ότι είναι βαθμωτή ποσότητα. Οι διανυσματικές ποσότητες όπως είναι η ένταση του βαρυτικού πεδίου είναι πιο πολύπλοκες, καθώς οι πράξεις μεταξύ διανυσματικών ποσοτήτων απαιτεί προσεκτική μεταχείριση των συνιστωσών τους. Στο χώρο έξω από τις μάζες της Γης (δηλ. πάνω από τη γήινη επιφάνεια) όπου ρ=0, από την εξίσωση του Poisson προκύπτει η διαφορική εξίσωση του Laplace V = ΔV = 0. θ = x = cosλ sinθ y = sinλ sinθ z = cosθ = x + y + z x + y actan = accos z y x λ = actan = accos x x + y y = acsin x + y z x + y + z Σφαιρικές συντεταγμένες Η εξίσωση Laplace σε σφαιρικές συντεταγμένες V = ΔV V + V sin V θ + = 0 sinθ θ θ sin θ λ Σε περίπτωση σωμάτων με σφαιρική συμμετρία είναι απλούστερο να αναζητηθεί η λύση της σε σφαιρικές συντεταγμένες (αντί π.χ. σε καρτεσιανές) Ως αρχική προσέγγιση υποτίθεται ότι η Γη είναι σφαιρική με ακτινικά συμμετρική κατανομή της πυκνότητας της Οι λύσεις της εξίσωσης Laplace είναι γνωστές ως αρμονικές συναρτήσεις. Έχουν συνεχείς πρώτες και δεύτερες παραγώγους Το ελκτικό δυναμικό της Γης αποτελεί μια τέτοια συνάρτηση στο χώρο έξω από τη γήινη επιφάνεια Η εξίσωση Laplace σε σφαιρικές συντεταγμένες V = ΔV V + V sin V θ + = 0 sinθ θ θ sin θ λ Η εξίσωση Laplace για το δυναμικό V είναι της μορφής μιας κλασσικής μερικής διαφορικής εξίσωσης Πολυπλοκότερη επίλυση είναι μέσω των λεγόμενων συναρτήσεων του Geen. Συνήθως επιζητείται η λύση μέσω αριθμοσειρών Fouie (αρμονικοί συντελεστές) Οι λύσεις αναζητούνται με τη μέθοδο του διαχωρισμού των μεταβλητών: V(,θ,λ) = f() g(θ) h(λ) Επίλυση τριών διαφορικών εξισώσεων και από το γραμμικό συνδυασμό των επιμέρους λύσεων τους μορφοποίηση σε μια γενική λύση V = ΔV Επίλυση της εξίσωσης Laplace V + V sin V θ + = 0 sinθ θ θ sin θ λ Αρχικά θεωρούμε ότι V(,θ,λ) = f() Υ(θ,λ) και η εξίσωση Laplace μετασχηματίζεται στη μορφή Το αριστερό σκέλος είναι μόνο συνάρτηση του Το δεξιό εξαρτάται μόνο από τα θ και λ Συνεπώς το κάθε σκέλος πρέπει να είναι σταθερό, καταλήγοντας σε δύο εξισώσεις

3 V = ΔV Επίλυση της εξίσωσης Laplace V + V sin V θ + = 0 sinθ θ θ sin θ λ Ηλύσηγιατησυνάρτησηf Radial base functions δύο τύποι λύσεων της εξίσωσης Eule f() = n ή f() = (n+) ανάλογα με το εάν το σημείο ενδιαφέροντος είναι στην επιφάνεια ή στο εσωτερικό της γήινης επιφάνειας, ή στον εξωτερικό χώρο αντίστοιχα O βαθμός n είναιακέραιοςαριθμός, n = 0,,,... και ονομάζεται τάξη (degee) της λύσης Συνεπώς έχουμε δύο λύσεις για το ελκτικό δυναμικό V Άγνωστη ακόμα συνάρτηση Οι λύσεις για τις συναρτήσεις h, g V(,θ,λ) = f() g(θ) h(λ) = f() Υ(θ,λ) Ησυνάρτηση h(λ) είναι της μορφής h(λ) = e imλ h(λ) = sin(mλ) ή h(λ) = cos(mλ) όπου m = 0,,, 3, είναι η λεγόμενη τάξη (ode) Οι λύσεις για τις συναρτήσεις h, g V(,θ,λ) = f() g(θ) h(λ) = f() Υ(θ,λ) Ηανεύρεση των Υ n (θ,λ) γίνεται με τον διαχωρισμό g(θ) h(λ) και αντικατάσταση στην εξίσωση Ησυνάρτηση g(θ) είναι πιο πολύπλοκη Υ n (θ,λ) αποκαλούνται επιφανειακές αρμονικές συναρτήσεις Ογραμμικός συνδυασμός τους είναι επίσης λύση της εξίσωσης Laplace Οι λύσεις για τις συναρτήσεις h, g Η η δ.ε. που εξαρτάται από το θ αποκαλείται χαρακτηριστική δ.ε. των συναρτήσεων Legende, δεδομένου ότι παράγει λύσεις της μορφής g(θ) = P nm (cosθ) και g(θ) = Q nm (cosθ) g(θ) = P nm (cosθ) και g(θ) = Q nm (cosθ) ου είδους Συναρτήσεις Legende ου είδους Οι συναρτήσεις Legende ου είδους έχουν φυσική σημασία OισυναρτήσειςLegende ου είδους δεν είναι αποδεκτές λύσεις (παίρνουν απειροστή τιμή στους πόλους της γήινης σφαίρας) Ηλύση της αποτελείται από πολυώνυμα Legende και προσαρτημένες συναρτήσεις Legende Οφείλουν το όνομα τους στο γάλλο μαθηματικό Andien Maie Legende Ησυνάρτησηg(θ) Τα πολυώνυμα Legende είναι ορθογώνιες συναρτήσεις, που μπορούν να εκφράσουν μια συνάρτηση ως το άθροισμα επιμέρους συναρτήσεων. f ( x) = a P ( x) + a P ( x) + K. a P ( x) n n

4 Πολυώνυμα και Συναρτήσεις Legende Πολυώνυμα Legende Οφείλουν το όνομα τους στο γάλλο μαθηματικό Andien Maie Legende Είναι οι κανονικές λύσεις της διαφορικής εξίσωσης του Legende Συχνά αποκαλούνται και συναρτήσεις Legende είδους, συντελεστές Legende ή αρμονικές ζώνης Adien Maie Legende Η εξίσωση του Legende συναντάται σε πολλά προβλήματα της φυσικής, όπως στη επίλυση της εξίσωσης Laplace και άλλες συναφείς μερικές διαφορικές εξισώσεις, όταν αυτές εκφράζονται σε σφαιρικές συντεταγμένες Ορισμός: Τα πολυώνυμα Legende, P n (t), n=0,,, υπολογίζονται από τη σχέση του Rodigues t=cosθ=sinφ=x π.χ. Πολυώνυμα Legende P n Τρόποι υπολογισμού Προσαρτημένες Συναρτήσεις Legende P nm Πολυώνυμα Legende, n=,4,6,8,0 Πολυώνυμα Legende, n=,3,5,7,9

5 Πολυώνυμα Legende n=0,, 0 Πολυώνυμα Legende ερμηνεία τους Ζώνες αρνητικών τιμών P 6 (cosθ) Ζώνες θετικών τιμών Παράδειγμα Πολυώνυμο Legende P 6 (cosθ) κατά μήκος της περιφέρειας ενός κύκλου και γύρω από τη σφαίρα Πολυώνυμα Legende Τι χρειάζονται? Επειδή έχουν κατάλληλες ιδιότητες στη σφαίρα για x = cosθ=sinφ Παραδείγματα: Πολυώνυμα Legende Τι χρειάζονται? Επειδή έχουν κατάλληλες ιδιότητες στη σφαίρα για x = cosθ=sinφ Παραδείγματα: (a) P n (όπου n=ζυγός βαθμός) ικανοποιούν τις συνθήκες Τιμές ίσες με x = 0. Συγκεκριμένες x = (b) Απλοποιείται ο υπολογισμός των παραγώγων Πολυώνυμα Legende Τι χρειάζονται? Επειδή έχουν κατάλληλες ιδιότητες στη σφαίρα για x = cosθ=sinφ Παραδείγματα: Πολυώνυμα Legende Τι χρειάζονται? Επειδή έχουν κατάλληλες ιδιότητες στη σφαίρα για x = cosθ=sinφ Παραδείγματα: (c) Συνθήκη ορθογωνικότητας (c) Συνθήκη ορθογωνικότητας 0 Konecke delta Leopold Konecke Σημείωση: Το ολοκλήρωμα είναι σαν να υπολογίζουμε το εσωτερικό γινόμενο δύο διανυσμάτων: (A,B) (A,B) = AA + BB = 0 εάν τα διανύσματα είναι κάθετα μεταξύ τους Οι συνιστώσες των P n είναι οι τιμές τους σε κάθε x

6 t=cosθ=x Συνάγεται εύκολα ότι P n (t) είναι πολυώνυμο βαθμού n. Εάν το n είναι ζυγός αριθμός, το P n (t) περιέχει μόνο ζυγές δυνάμεις της μεταβλητής t και εάν το n είναι μονός αριθμός, το P n (t) περιέχει μόνο μονές δυνάμεις του t. Ο συντελεστής του t n στο P n (t) είναι (n)! = n ( n!) π.χ. στο P 5 (t) είναι (63/8) t 5 Εάν το n είναι ζυγός αριθμός, το P n (x) περιέχει μόνο ζυγές δυνάμεις της μεταβλητής x και εάν το n είναι μονός αριθμός, το P n (x) μόνο μονές δυνάμεις του x=t=cosθ. Οσυντελεστής του x n στο P n (x) (n)! = n ( n!) Εάν το n είναι ζυγός αριθμός, το P n (x) περιέχει μόνο ζυγές δυνάμεις της μεταβλητής x και εάν το n είναι μονός αριθμός, το P n (x) μόνο μονές δυνάμεις του x=t=cosθ. ΑΝΑΔΡΟΜΙΚΗ ΣΧΕΣΗ Οσυντελεστής του x n- στο P n (x) (n )! = n ( n )!( n )! ΚΛΕΙΣΤΗ ΣΧΕΣΗ ( ) j (n j)! n j Pn ( t) = t n n j! ( n j)! ( n j)! 0 j j ( ) (n j)! P n j n ( t) = t n n j! ( n j)! ( n j)! 0 j Εάν n = ζυγός αριθμός Εάν n = μονός αριθμός Παράδειγμα Ορισμός: Οι γενικευμένες (ή αλλιώς συναφείς ή προσαρτημένες) συναρτήσεις Legende, P nm (t), n=0,,, N max, m=0,,,,n υπολογίζονται από τη σχέση του Rodigues n-βαθμός m-τάξη ανάπτυγμα σε σειρά Taylo ως προς α= / (u=cosψ) ήεπειδή 3

7 Παραδείγματα, για x=t=cosθ Παραδείγματα Αναδρομικές σχέσεις Αναδρομικές σχέσεις Αναδρομικές σχέσεις Συναρτήσεις εκκίνησης για n=m και n=m+ (ή n-=m), δηλ, P nn, P n,n- π.χ. ξεκινώντας από τα P 33 =?? P 3 =?? Υπολογίζονται όλες οι υπόλοιπες συναρτήσεις βαθμού n και μικρότερης τάξης m < n- Αναδρομικές σχέσεις Συναρτήσεις εκκίνησης για n,m=n και n+,m=n, δηλ. P nn, P n+,n π.χ. ξεκινώντας από τα P 33 =?? (P 44 =??) P 43 =?? Υπολογίζονται όλες οι υπόλοιπες συναρτήσεις βαθμού n i >n+ και ίδιας τάξης m Υπολογίζεται το P 3 =?? Υπολογίζονται τα P 53, P 63, P 73. 4

8 Κανονικοποίηση Κανονικοποίηση μέσω αναδρομικών σχέσεων Πολυώνυμα ή Συναρτήσεις Legende cos mλ { sin mλ } x = συναρτήσεις * Τύπου C * Τύπου S συναρτήσεις ΖΩΝΗΣ Οι ε.σ.αρμονικές μηδενικής τάξης ταυτίζονται με τα πολυώνυμα Legende Είναι ανεξάρτητες του λ Αλλάζουν n φορές πρόσημο Διαιρούν τη σφαίρα σε ζώνες (αρμονικές ζωνών) * Επειδή περιέχουν αντίστοιχα όρους cosmλ και sinmλ συναρτήσεις ΖΩΝΗΣ n=?, m=? συναρτήσεις ΖΩΝΗΣ n=3, m=0 n=, m=0 5

9 συναρτήσεις ΖΩΝΗΣ n=4, m=0 συναρτήσεις ΖΩΝΗΣ n=5, m=0 συναρτήσεις ΖΩΝΗΣ n=6, m=0 συναρτήσεις ΖΩΝΗΣ Οι ε.σ.αρμονικές μηδενικής τάξης ταυτίζονται με τα πολυώνυμα Legende Είναι ανεξάρτητες του λ Αλλάζουν n φορές πρόσημο Διαιρούν τη σφαίρα σε ζώνες (αρμονικές ζωνών) συναρτήσεις ΤΟΜΕΑ Οι ε.σ.αρμονικές για m=n διαιρούν τη σφαίρα σε τομείς με θετικές και αρνητικές τιμές (τομεοειδείς αρμονικές) συναρτήσεις ΤΟΜΕΑ n=?, m=? n=4, m=4 6

10 συναρτήσεις ΤΟΜΕΑ n=5, m=5 συναρτήσεις ΤΡΑΠΕΖΟΕΙΔΟΥΣ ή ΤΕΣΣΕΡΟΕΙΔΕΙΣ συναρτησεις Οι ε.σ.αρμονικές για m n και m 0 αλλάζουν n-m φορές πρόσημο στο διάστημα 0 θ π οι συναρτήσεις cosmλ και sinmλ έχουν m ρίζες στο διάστημα 0 λ π διαιρούν τη σφαίρα σε τραπέζια με θετικές και αρνητικές τιμές (τραπεζοειδείς ή τεσσεροειδείς αρμονικές) Επιφανειακές σφαιρικές ΤΕΣΣΕΡΟΕΙΔΕΙΣ αρμονικές συναρτήσεις n=?, m=? Επιφανειακές σφαιρικές ΤΕΣΣΕΡΟΕΙΔΕΙΣ αρμονικές συναρτήσεις n=6, m= n=6, m= Επιφανειακές σφαιρικές ΤΕΣΣΕΡΟΕΙΔΕΙΣ αρμονικές συναρτήσεις n=6, m=3 7

11 Επιφανειακές αρμονικές Μετά τον υπολογισμό των συναρτήσεων h(λ) και g(θ), το δυναμικό έλξης στην επιφάνεια της Γης μπορεί πλέον να εκφρασθεί από τις λεγόμενες επιφανειακές αρμονικές του Laplace m = 0 Y nm (θ,λ) = P nm (cosθ) e imλ n = V(,θ,λ) = f() g(θ) h(λ)= f() Υ(θ,λ) όπου Y(θ,λ) = Y nm (θ,λ) = P nm (cosθ) e imλ m = Δηλ. γραμμικοί συνδυασμοί των προσαρτημένων συναρτήσεων Legende P nm (cosθ) με τριγωνομετρικούς αριθμούς cos(mλ) και sin(mλ) P nm (cosθ) sin(mλ) P nm (cosθ) cos(mλ) P nm (cosθ) sin(mλ) n = P nm (cosθ) cos(mλ) Y nm (θ,λ) = P nm (cosθ) e imλ m = 0 n = 3 m = 0 m = m = m = P nm (cosθ) sin(mλ) P nm (cosθ) cos(mλ) Y nm (θ,λ) = P nm (cosθ) e imλ P nm (cosθ) sin(mλ) n = 4 P nm (cosθ) cos(mλ) n = 3 m = 0 m = 0 m = m = 3 P nm (cosθ) sin(mλ) P nm (cosθ) cos(mλ) m =

12 Y nm (θ,λ) = P nm (cosθ) e imλ P nm (cosθ) sin(mλ) n = 5 P nm (cosθ) cos(mλ) n = 4 m = 0 m = 03 m = m = 4 m = P nm (cosθ) sin(mλ) P nm (cosθ) cos(mλ) P nm (cosθ) sin(mλ) n = 5 P nm (cosθ) cos(mλ) m = 3 P nm (cosθ) sin(mλ), Pnm(cosθ) cos(mλ) m = 4 m = 5 Ζώνης Τεσσεροειδείς Τομέα P n (m=0) P nm (m 0) P nm (m=n) Στερεές n P nm (cosθ) sin(mλ), n P nm (cosθ) cos(mλ) Επιφανειακές σφαιρικές αρμονικές m=0 m= m= m=3 P nm, n=5 m=0,,, 5 m=4 m=5 Ζώνης Τεσσεροειδείς Τομέα P n (m=0) P nm (m 0) P nm (m=n) P 50 P 53 P 55

13 λ P nm, n=5, m=0,,, 5 P nm, n=0, m=0 P nm, n=0, m=9 P nm, n=0, m=0 P nm, n=50, m=0

14 Ανάπτυγμα σε Σφαιρικές Αρμονικές Το τελικό ανάπτυγμα του δυναμικού έλξης σε σφαιρικές αρμονικές είναι της μορφής n V(,θ,λ) = R() [A nm Υ C nm (θ,λ) + B nm ΥS nm (θ,λ)] n=0 m=0 n = R() [A nm cosmλ + B nm sinmλ] P nm (cosθ) n=0 m=0 Άγνωστοι συντελεστές (εξαρτώνται από την πυκνότητα των γήινων μαζών) Συντελεστές του Stokes Οι συντελεστές Α nm και Β nm για το γήινο δυναμικό έλξης υπολογίζονται με ποικίλους τρόπους. Ένας βασικός τρόπος είναι δια μέσου του αναπτύγματος της συνάρτησης / σε σφαιρικές αρμονικές: Gρ V = dv = ' n P n (cosψ) n=0 n+ Ανάπτυγμα της / P n (cosψ) μπορεί να εκφραστεί ως άθροισμα πολυωνύμων και προσαρτημένων συναρτήσεων Legende ως προς θ',λ' και θ,λ Ανάπτυγμα σε Σφαιρικές Αρμονικές Συνήθως χρησιμοποιείται το ανάπτυγμα στην μορφή: V= GM n=0 a n n [C nm cos mλ + S nm sin mλ] P nm (cosθ) m=0 ή = ' n P n (cosψ) n=0 n+ Gρ V = dv dm ' ψ P GM V= + a n= n n [C nm cos mλ + S nm sin mλ] P nm (cosθ) m=0 GM = G(M E +M atm ) C nm = Α nm a Εn /GM και S nm =B nm a Εn /GM C nm και S nm είναι οι λεγόμενοι συντελεστές του Stokes και a E είναι ο μεγάλος ημιάξονας του χωροσταθμικού ελλειψοειδούς αναφοράς GM = G(M E +M atm ) Ανάπτυγμα σε Σφαιρικές Αρμονικές Επίσης χρησιμοποιείται το ανάπτυγμα στην μορφή: GM a n n V= - [J n= nm cos mλ + K nm sin mλ] P nm (cosθ) m=0 C nm = Α nm a Εn /GM και S nm =B nm a Εn /GM J n0 = J n = - C n0 = - C n, J nm = - C nm, K nm = - S nm Υπολογίζονται από δορυφορικές παρατηρήσεις και μετρήσεις βαρύτητας στην γήινη επιφάνεια Συντελεστές του Stokes Ηφυσικήσημασίατους Οι συντελεστές του Stokes είναι αποτέλεσμα τριπλής ολοκλήρωσης για όλο τον όγκο της Γης C 0 = C εκφράζει την επιπλάτυνση της Γης C,S εκφράζουν την ασυμμετρία της γήινης μάζας στον ισημερινό σε σχέση με τον άξονα περιστροφής

15 Polynomials: Degees -5; Ode 0 C εκφράζει το αχλαδοειδές 0.6 P 30 (t) της Γης 0.4 A 30 Legende Function o TextEnd P b, P3 g, P4, P5 m Παράδειγμα: η σημασίατουc 30 0 o Cos(theta) cos θ 39 o 0.5 A o C 33 Συντελεστές του Stokes Ησχέσητουςμεταγήινα μοντέλα Αν το δυναμικό της βαρύτητας αναπτυχθεί σε σφαιρικές αρμονικές, τότε το εκάστοτε γήινο μοντέλο υλοποιείται υιοθετώντας ένα σύστημα αναφοράς για το οποίο συγκεκριμένοι συντελεστές του Stokes λαμβάνουν συγκεκριμένες τιμές. Κανονικοποιημένοι αρμονικοί συντελεστές Συντελεστές του Stokes Ηφυσικήσημασίατους C 00 = αν η μάζα του γήινου μοντέλου είναι ίση με την πραγματική μάζα της Γης C 0, C, S = 0 αν το κέντρο του γήινου μοντέλου συμπίπτει με το κέντρο μάζας της Γης C,S = 0 αν ο άξονας Ζ συμπίπτει ( 3 ) κατά μήκος του κύριου άξονα αδράνειας Στη πράξη, το μέγεθος της τιμής των συντελεστών C nm, S nm είναι πολύ μικρό για μεγάλες τιμές των δεικτών n και m Πρόβλημα στους υπολογισμούς Χρησιμοποιούνται οι κανονικοποιημένοι συντελεστές C nm = Π nm C nm S nm = Π nm S nm όπου Π nm = [(n+m)!] / [k (n+) (n-m)! ], αν m=0 k=, αν m 0 k= Κανονικοποιημένa πολυώνυμα και συναρτήσεις Legende ΌΤΑΝ Χρησιμοποιούνται οι κανονικοποιημένοι συντελεστές είναι απαραίτητο να ομαλοποιούνται επίσης τα αντίστοιχα πολυώνυμα και οι συναρτήσεις του Legende έτσι ώστε: P nm C nm = P nm C nm _ P nm = P nm / Π nm P nm S nm = Π nm S nm Παγκόσμια μοντέλα του γήινου δυναμικού Αρμονικοί συντελεστές C nm (μοντέλο JGM-) σε μονάδες 0-6 n=0,,,, 9 και m =0,,,, 9 όπου Π nm = [(n+m)!] / [k (n+) (n-m)! ], αν m=0 k=, αν m 0 k=

16 Παγκόσμια γήινα μοντέλα Παγκόσμια γήινα μοντέλα Αρμονικοί συντελεστές S nm (μοντέλο JGM-) σε μονάδες 0-6 n=0,,,, 9 και m =0,,,, 9 Το σημαντικό πλεονέκτημα από την ανάπτυξη του δυναμικού έλξης σε σφαιρικές αρμονικές είναι ότι αν οι συντελεστές C nm και S nm είναι γνωστοί, κάθε ποσότητα που χαρακτηρίζει το γήινο πεδίο βαρύτητας, π.χ. Τ, Ν, Δg, δg, ξ, η μπορεί να εκφραστεί ως συνάρτηση των σφαιρικών αρμονικών Υψόμετρα του γεωειδούς Ν Γεωειδές (EGM96, n,m=360) EGM96 (n,m=360) Για Για παράδειγμα: δc nm =C nm -C nmn, S nm =S nm -S N nm Ανωμαλίες Βαρύτητας g Ανωμαλίες βαρύτητας (EGM96, n,m=360) δc nm =C nm -C nmn, δs nm =S nm -S N nm

Προηγούµενα είδαµε...

Προηγούµενα είδαµε... Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) Προηγούµενα είδαµε... Η επίλυση της διαφορικής εξίσωσης Laplace για το ελκτικό δυναµικό της βαρύτητας για τις µάζες έξω από τη γήινη επιφάνεια

Διαβάστε περισσότερα

Για κάθε συντηρητικό πεδίο

Για κάθε συντηρητικό πεδίο Τοµέας Τοπογραφίας, Εργ. Ανώτερης Γεωδαισίας Εισαγωγή στο γήινο πεδίο (Αρχές της Φυσικής Γεωδαισίας) ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης Σύνδεση µε τα προηγούµενα... Ένα

Διαβάστε περισσότερα

Σύνδεση µε τα προηγούµενα

Σύνδεση µε τα προηγούµενα . Τοµέας Τοπογραφίας, Εργ. Ανώτερης Γεωδαισίας Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης 7ο εξάµηνο, Ακαδ.

Διαβάστε περισσότερα

Αν µια µάζα m, υπό την. επίδραση µιας δύναµης F = Fx i + Fy j + Fz k, κινείται από ένα σηµείο P, σε ένα. και επειδή

Αν µια µάζα m, υπό την. επίδραση µιας δύναµης F = Fx i + Fy j + Fz k, κινείται από ένα σηµείο P, σε ένα. και επειδή Τοµέας Τοπογραφίας, Εργ. Ανώτερης Γεωδαισίας Σύνδεση µε τα προηγούµενα Εισαγωγή στο γήινο πεδίο βαρύτητας ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης 7ο εξάµηνο, Ακαδ. Έτος 2018-19

Διαβάστε περισσότερα

Η εξίσωση Laplace. ελκτικό δυναµικό στον άδειο χώρο έξω από τη συνοριακή επιφάνεια τουσώµατος, όπουεκείρ=0, ισχύει η εξίσωση του Laplace

Η εξίσωση Laplace. ελκτικό δυναµικό στον άδειο χώρο έξω από τη συνοριακή επιφάνεια τουσώµατος, όπουεκείρ=0, ισχύει η εξίσωση του Laplace Τοµέας Τοπογραφίας, Εργ. Ανώτερης Γεωδαισίας Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης 7ο εξάµηνο, Ακαδ. Έτος

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 6: Σφαιρικές Αρμονικές Συναρτήσεις & Αναπτύγματα Συνιστωσών του Πεδίου Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ.

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις 5. Φυσική Εισαγωγή στο πεδίο βαρύτητας

Διαβάστε περισσότερα

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 2

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 2 Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος 2018-19) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΞΑΜΗΝΟ Ηµεροµηνία Παράδοσης : 6/11/2018 ΑΣΚΗΣΗ 2 Σκοπός: Η παρούσα εργασία αποσκοπεί

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη

ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική

Διαβάστε περισσότερα

Το βαρυτικό πεδίο της Γης.

Το βαρυτικό πεδίο της Γης. Το βαρυτικό πεδίο της Γης. Θα μελετήσουμε το βαρυτικό πεδίο της Γης, τόσο στο εξωτερικό της όσο και στο εσωτερικό της, χρησιμοποιώντας τη λογική μελέτης του ηλεκτροστατικού πεδίου, με την βοήθεια της ροής.

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1. Στον άξονα βρίσκονται δύο σημειακά φορτία q A = 1 μ και q Β = 45 μ, καθώς και ένα τρίτο σωματίδιο με άγνωστο φορτίο

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ηλεκτρικό Δυναμικό Δομή Διάλεξης Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ιδιότητες ηλεκτρικού δυναμικού (χρησιμότητα σε υπολογισμούς, σημείο αναφοράς, αρχή υπέρθεσης) Διαφορικές

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί SECTION 7 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE 7. Ορισµοί Οι συναρτήσεις που ικανοποιούν τη διαφορική εξίσωση Legere ( )y'' y' + ( + )y καλούνται συναρτήσεις Legere τάξης. Η γενική λύση της διαφορικής εξίσωσης του Legere

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

(x,y. ,y,z. ,z ) συνάρτησης, της λεγόµενης συνάρτησης δυναµικού (gravitational potential)

(x,y. ,y,z. ,z ) συνάρτησης, της λεγόµενης συνάρτησης δυναµικού (gravitational potential) Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές Φυσικής Γεωδαισίας) Γεωδαισίας) ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης 7ο εξάµηνο, Ακαδ. Έτος 2016-17 (,,) Τα πεδία δυνάµεων διακρίνονται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου.

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου. ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΓΕΝΙΚΑ Δυο σημειακές μάζες που απέχουν απόσταση r έλκονται με δύναμη που είναι ανάλογη του γινομένου των μαζών και αντίστροφα ανάλογη του τετραγώνου της απόστασής τους. Όπου G η σταθερά

Διαβάστε περισσότερα

1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις

1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις . Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις Εξετάζοντας την αιώρα παρατηρούμε ότι στα ανώτατα σημεία η ενέργεια μοιάζει να έχει αποθηκευτεί υπό κάποια άλλη μορφή, που συνδέεται με το ύψος της πάνω από

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑ ΑΝΩΤΕΡΗΣ ΓΕΩ ΑΙΣΙΑΣ & ΚΕΝΤΡΟΥ ΟΡΥΦΟΡΩΝ ΙΟΝΥΣΟΥ ΓΕΩΦΥΣΙΚΕΣ ΔΙΑΣΚΟΠΗΣΕΙΣ ΒΑΡΥΤΗΜΕΤΡΙΑ Δημήτρης Δεληκαράογλου Επίκ. Καθ. Ε.Μ.Π.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα

Διαβάστε περισσότερα

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6. 1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Σακελλάριος 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

Ευθύγραμμη ομαλή κίνηση

Ευθύγραμμη ομαλή κίνηση Διάγραμμα s - Ευθύγραμμη Κίνηση (m) Μέση αριθμητική ταχύτητα (μονόμετρο) Μέση διανυσματική ταχύτητα Μέση επιτάχυνση 1 4 Διάγραμμα u - (sec) Απόσταση (x) ονομάζουμε την ευθεία που ενώνει την αρχική και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 11 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8)

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 76 7 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) Πέτρος Κατσαφάδος pkatsaf@hua.gr Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών

Διαβάστε περισσότερα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ Δυνάμεις Δυναμική Ανάλυση Δυνάμεις παράγονται από τον άνθρωπο για να ωθήσουν το σώμα ή ένα όργανο Η κατανόηση ενός αθλήματος ή μιας κίνησης απαιτεί την κατανόηση των δυνάμεων που ασκούνται Η αξιολόγηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από

Διαβάστε περισσότερα

Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει:

Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Να µπορεί να διατυπώσει τον Νόµο της παγκόσµιας έλξης. Να γνωρίζει την έννοια βαρυτικό πεδίο και τι ισχύει για αυτό.

Διαβάστε περισσότερα

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS 1 1. ΗΛΕΚΤΡΙΚΗ ΡΟΗ O νόμος του Gauss και o νόμος του Coulomb είναι δύο εναλλακτικές διατυπώσεις της ίδιας βασικής σχέσης μεταξύ μιας κατανομής φορτίου και του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z Οκτώβριος 2017 Ν. Τράκας ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΔΙΑΝΥΣΜΑΤΑ Διάνυσμα: κατεύθυνση (διεύθυνση και ϕορά) και μέτρο. Συμβολισμός: A ή A. Αναπαράσταση μέσω των συνιστωσών του: A = (A x, A y ) σε 2-διαστάσεις και

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»

Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος 018 19 «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ημερομηνία Παράδοσης : 6/11/018 ΑΣΚΗΣΗ 3 Σκοπός: Η παρούσα εργασία

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1 Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 1. Η έννοια του ηλεκτρικού πεδίου. 3. Πεδίο σημειακού φορτίου 4. Οι δυναμικές γραμμές 5. Η αρχή της υπέρθεσης

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β. ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Άσκηση ετοιμότητας για το Ενδιάμεσο Διαγώνισμα

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ - Διαλ.25 Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους, C, διανύσματα στο χώρο (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1 Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Το ηλεκτρικό πεδίο 1. Η έννοια του ηλεκτρικού πεδίου 2. 3. Πεδίο σημειακού φορτίου 4. Οι δυναμικές γραμμές

Διαβάστε περισσότερα