ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ *

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ *"

Transcript

1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ Φ. Μηλιένος, Μ. Κούτρας Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιώς Σ. Τσιτμηδέλης Γενικό Τμήμα Θετικών Επιστημών, ΤΕΙ Χαλκίδας ΠΕΡΙΛΗΨΗ Η ανάγκη για την εύρεση των βέλτιστων τιμών, μιας συγκεκριμένης κλάσης φραγμάτων αξιοπιστίας (Fu and Koutras (1995)), οδήγησε τους Koutras et al. (2003) στη μελέτη και την εφαρμογή μεθόδων της θεωρίας των προβλημάτων κάλυψης συνόλων (Set Coverng Problems, SCP). Oι ίδιοι επισήμαναν ότι ο υπολογισμός των προαναφερθέντων φραγμάτων βασίζεται στην επιλογή μιας οικογένειας συνόλων, η οποία δεν ορίζεται μονοσήμαντα, και επιπλέον, επηρεάζεται από τη συγκεκριμένη μετάθεση των ελάχιστων συνόλων διακοπής (ε.σ.δ.) και των ελάχιστων συνόλων λειτουργίας (ε.σ.λ.), που χρησιμοποιούνται κάθε φορά. Οι Κούτρας κ.α. (2005) πρότειναν μια μέθοδο, με την οποία μπορούμε να προσδιορίσουμε διατάξεις των ε.σ.δ. και ε.σ.λ., οι οποίες μας προσφέρουν βέλτιστες τιμές για τη συγκεκριμένη κλάση φραγμάτων. Επειδή όμως η επίλυση ενός SCP, απαιτεί ένα μεγάλο πλήθος πράξεων (το συγκεκριμένο πρόβλημα ανήκει στην κατηγορία των NP-complete προβλημάτων και παρουσιάζει έντονο ερευνητικό ενδιαφέρον), θεωρείται αναγκαίο να επινοηθεί ένας τρόπος με τον οποίο να σαρώνουμε όλες τις διατάξεις των ε.σ.δ. (ή ε.σ.λ.), με τις μικρότερες δυνατές αλλαγές στις συνθήκες του SCP, ενώ παράλληλα να υπάρχει μια σύνδεση μεταξύ των διαδοχικών λύσεων, ώστε να μην απαιτείται λύση ενός νέου SCP σε κάθε βήμα. Τα κύρια αποτελέσματα της εργασίας αυτής, αποτελούν μια συμβολή στην τελευταία κατεύθυνση και μπορούν να χρησιμοποιηθούν, σε συνδυασμό με κάποιες αριθμητικές μεθόδους, για την εύρεση της βέλτιστης τιμής των γενικών φραγμάτων αξιοπιστίας, που αναφέρθηκαν παραπάνω. 1. ΕΙΣΑΓΩΓΗ Έστω ένα σύστημα αξιοπιστίας με σύνολο μονάδων I = { 1, 2,..., n}, όπου κάθε μονάδα του μπορεί να βρίσκεται σε κατάσταση λειτουργίας (με πιθανότητα p, I ), ή σε κατάσταση αποτυχίας (με πιθανότητα 1 p ). Επίσης, υποθέτουμε ότι τα ε.σ.δ. του συστήματος είναι τα, C = { C 1,, C N }(θα ασχοληθούμε μόνο με τα ε.σ.δ. και κατ επέκταση μόνο με το άνω φράγμα, της κλάσης των φραγμάτων αξιο- Η εργασία συγχρηματοδοτήθηκε από την ΕΕ (75%) και την Ελληνική Κυβέρνηση (25%), μέσω του ΕΠΕΑΕΚ ΙΙ, "Αρχιμήδης", του ΤΕΙ Χαλκίδας, και το υποπρόγραμμα "Χρήση σύγχρονων εργαλείων πληροφορικής για τη μελέτη συστημάτων αξιοπιστίας και συναφών εφαρμογών"

2 πιστίας που θα μελετήσουμε, διότι η γενίκευση για το κάτω φράγμα, είναι ακριβώς (π) ανάλογη). Ας ορίσουμε τα σύνολα (Κούτρας κ.α.(2005)), = { r : π( r) < π( ) και C C, r {1, 2,, N}}, = 1, 2,, N r (π), εισά- όπου π είναι μια συγκεκριμένη διάταξη των ε.σ.δ.. Χρησιμοποιώντας τα γουμε τα σύνολα, τα οποία ικανοποιούν τις σχέσεις, C για κάθε και C = (εάν = = ). Στην περίπτωση που οι μονάδες λειτουργούν ανεξάρτητα η μια από την άλλη, το παρακάτω θεώρημα μας δίνει την κλάση των (άνω) φραγμάτων, με την οποία θα ασχοληθούμε (Fu & Koutras (1995)). Θεώρημα 1 Για κάθε μονότονο σύστημα με ανεξάρτητες μονάδες και ε.σ.δ. C = C,, C } ισχύει, { 1 N R N 1 = 1 C p (1 p ( x n C 1 όπου R είναι η αξιοπιστία του συστήματος (η πιθανότητα το σύστημα να λειτουργεί). Είναι γνωστό ότι το κάτω φράγμα των Esary & Proschan (Barlow & Proschan (1981)), δίδεται από τη σχέση, N = EP = 1 (1 p ). 1 C Επομένως, ως βέλτιστη επιλογή των, μπορούμε να θεωρήσουμε εκείνη που θα προκύπτει από το διάνυσμα x = x,..., ) (με x {0, 1} ), το οποίο θα ελαχιστοποιεί τη συνάρτηση (Koutras et al. (2003)), f ( x ) = ( lnp ) x k C ικανοποιώντας ταυτόχρονα τις συνθήκες, α k C 1, εάν η k μονάδα ανήκει στο C α k =, 0, διαφορετικά και { k C : x = 1} (με και με = k k x k k k ) 1, για κάθε ( π ), όπου = 1,..., N και k = 1,, n C συμβολίζουμε το συμπληρωματικό σύνολο του C, τον πληθάριθμό του). Τα προβλήματα αυτής της μορφής, όπου προσπαθούμε να ελαχιστοποιήσουμε μια γραμμική συνάρτηση, κάτω από συγκεκριμένες (γραμμικές) ανισότητες, ονομάζονται προβλήματα κάλυψης συνόλων ( SCP ). Είναι φανερό από τα προηγούμενα ότι, αλλάζοντας τη διάταξη των ε.σ.δ., αλλάζει εν γένει και η βέλτιστη επιλογή των. Οι Κούτρας κ.α.(2005) πρότειναν μια μέ- C

3 θοδο, με την οποία μπορούμε να βρούμε τη διάταξη εκείνη, που μας δίνει την καλύτερη επιλογή για τα (τη «βέλτιστη» διάταξη). Μέσω της τελευταίας μεθόδου, καλούμαστε να λύσουμε ένα πλήθος από SCP και παράλληλα, με τη χρήση κατάλληλων πινάκων, να οδηγηθούμε στο επιθυμητό αποτέλεσμα. Έτσι δημιουργήθηκε η ανάγκη να βρεθεί ένας τρόπος με τον οποίο να σαρώνουμε όλες τις διατάξεις των ε.σ.δ., με τις μικρότερες δυνατές αλλαγές στις συνθήκες του SCP. Αυτό θα δώσει τη δυνατότητα να γίνει μια σύνδεση μεταξύ των διαδοχικών λύσεων, ελαχιστοποιώντας με αυτό τον τρόπο τους απαιτούμενους αριθμητικούς υπολογισμούς. 2. ΚΥΡΙΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Αρχικά θα επικεντρωθούμε στο πώς μπορούμε να σαρώνουμε όλες τις δυνατές μεταθέσεις των N ε.σ.δ., αλλάζοντας κατά τω ελάχιστο δυνατό τις συνθήκες των SCP. Ας θεωρήσουμε το σύνολο M = { 1, 2,, N} και ας συμβολίσουμε με S N, το σύνολο των μεταθέσεων των στοιχείων του ( S N = N!). Για την αναπαράσταση κάθε μετάθεσης π S N, χρησιμοποιούμε το συμβολισμό (Ανδρεαδάκης (1993)), 1 2 N π =, π(1) π(2) π( N) ενώ ως γινόμενο δυο μεταθέσεων π, σ S N, ορίζουμε την πράξη 1 2 N π σ =. σ( π(1)) σ( π(2)) σ( π( N)) Μια μετάθεση π ονομάζεται κύκλος μήκους k, εάν υπάρχουν διακεκριμένα S N a1, a,, ak} M, για τα οποία ισχύει, π( a ) a, = 1,, k 1, { 2 = + 1 π( ak ) = a1, π( b) = b, b M \{ a1,, ak }, (ο κύκλος μήκους k συμβολίζεται με π = ( a1 a2 ak )). Να σημειώσουμε ότι ένας κύκλος μήκους 1, είναι η ταυτοτική μετάθεση ( π( ) =, M ), ενώ ένας κύκλος μήκους 2, καλείται αντιμετάθεση. Η παρακάτω πρόταση, αποδεικνύεται σημαντική για τη συνέχεια (Ανδρεαδάκης (1993)). Πρόταση 1 Κάθε μετάθεση π SN, μπορεί να γραφεί σαν γινόμενο αντιμεταθέσεων. Ας ορίσουμε τον κύκλο μήκους N, π = ( 1 2 N), ως μετάθεση Τύπου Ι, και τον κύκλο μήκους 2, π = ( N 1 N), ως μετάθεση Τύπου ΙΙ. Πρόταση 2 Κάθε μετάθεση π Ι και Τύπου ΙΙ. S N, μπορεί να γραφεί σαν γινόμενο μεταθέσεων Τύπου Απόδειξη Θα αποδείξουμε αρχικά ότι κάθε αντιμετάθεση, μπορεί να γραφεί σαν γινόμενο μεταθέσεων Τύπου Ι και Τύπου ΙΙ. Έπειτα κάνοντας χρήση της Προτάσεως

4 1, θα καταλήξουμε στο ζητούμενο. Αρχικά, ας θεωρήσουμε την αντιμετάθεση, ( a + 1) όπου, + 1 { M} (δυο γειτονικών στοιχείων). Τότε ισχύουν τα παρακάτω, ( a a ) = (1 2 N) (1 2 N)( N N 1 1 N)(1 2 N) (1 2 N + 1 ) επομένως, η αντιμετάθεση δυο γειτονικών στοιχείων, γράφεται ως γινόμενο των μεταθέσεων Τύπου Ι και ΙΙ. Για την αντιμετάθεση ( a a + ) όπου > 0, εύκολα μπορούμε να διαπιστώσουμε το παρακάτω, ( a + ) = ( + ) ( ) ( ) ( ) ( ) ( + 1 οπότε, η a + ) γράφεται ως γινόμενο γειτονικών αντιμεταθέσεων. ( a Ουσιαστικά αυτό που έχουμε αποδείξει στην Πρόταση 2, είναι ότι μπορούμε να κατασκευάσουμε όλες τις μεταθέσεις των N στοιχείων, είτε αλλάζοντας αμοιβαία τη θέση του τελευταίου και του προτελευταίου στοιχείου, είτε πηγαίνοντας το τελευταίο, στην πρώτη θέση. Αυτό έχει ως αποτέλεσμα να σαρώνουμε όλες τις μεταθέσεις των N ε.σ.δ., με τέτοιο τρόπο ώστε στα SCP, που καλούμαστε να επιλύσουμε, να προσθέτουμε ή να αφαιρούμε, το πολύ μια συνθήκη, σε κάθε βήμα (δηλαδή, με την ελάχιστη δυνατή αλλαγή). Η χρησιμότητα του προηγούμενου αποτελέσματος, θα γίνει περισσότερο ευδιάκριτη με τις παρακάτω προτάσεις, όπου αποδεικνύεται πώς συνδέονται οι λύσεις από δυο SCP, τα οποία διαφέρουν το πολύ κατά μια συνθήκη. Αρχικά, θεωρούμε ότι ο χώρος των λύσεων του SCP (για τυχαίο C ), f ( x ) = ( lnpk ) xk, α k C k C k x 1, για κάθε, αποτελείται από όλα τα διανύσματα x {0, 1} (που ουσιαστικά πρόκειται για σύνολα μονάδων, του συστήματος αξιοπιστίας), που ικανοποιούν τις συνθήκες του SCP, άλλα ταυτόχρονα, κανένα στοιχείο (δηλαδή, καμία μονάδα) δε θα μπορεί να αφαιρεθεί από τη λύση (αφαιρώντας μια μονάδα από τη λύση, μια τουλάχιστον συνθήκη θα παύει να ικανοποιείται). Η πρώτη περίπτωση με την οποία θα ασχοληθούμε, είναι όταν σ ένα SCP, το οποίο έχουμε ήδη λύσει (έχουμε βρει τη λύση που ελαχιστοποιεί την f (x) ), προσθέσουμε μια επιπλέον συνθήκη. Θα συμβολίσουμε με x τη βέλτιστη λύση ενός SCP, με συνθήκες ( SCP ),και με x + 1 τη βέλτιστη λύση του ίδιου SCP, αλλά με μια συνθήκη παραπάνω ( SCP ). Με βάση τα + 1 προηγούμενα, μπορούμε να αποδείξουμε τις επόμενες δυο προτάσεις. x ικανοποιεί και το Πρόταση 3 Εάν η συνθήκη), τότε f x ) f ( x ). ( = + 1 SCP k C + 1 a ) (δηλαδή, ικανοποιεί και την επιπλέον

5 Απόδειξη Επειδή η x + 1 ικανοποιεί και το SCP, ισχύει f ( x ) ( ) f x+ 1 (έχουμε παραλείψει τον δείκτη από τη συνάρτηση f, διότι αναφερόμαστε σε τυχαίο ε.σ.δ.). Επιπλέον, επειδή η καθώς η x + 1 Πρόταση 4 Εάν η x ικανοποιεί και τη νέα συνθήκη, παίρνουμε f x ) f ( x ),, είναι η βέλτιστη λύση του όπου x είναι η πιθανότητα λειτουργίας και ( + 1 SCP. + 1 x δεν ικανοποιεί το SCP + 1 f ( x ) = mn{ f ( x, τότε + 1 ), f ( x x μαζί με τη μονάδα της νέας συνθήκης, που έχει τη μεγαλύτερη x είναι η μέγιστη λύση του x δεν υπάρχει, τότε νέα βέλτιστη λύση είναι η SCP +1. Εάν η Απόδειξη Ας υποθέσουμε ότι από την + 1 )} SCP, που ικανοποιεί και το x. x μπορούμε να αφαιρέσουμε μια μονάδα και να παραμείνει λύση του SCP. Συμβολίζοντας με x 1, την x+ 1 από την οποία έχει αφαιρεθεί μια μονάδα (παραμένοντας λύση του SCP ), έχουμε f ( x 1 ) f ( x ) (1) και ταυτόχρονα, f ( x ) f ( x+ 1). (2) Εάν προσθέσουμε και στα δυο μέλη της (1), την τιμή lnpm, όπου p m είναι η πιθανότητα λειτουργίας της μονάδας που αφαιρέθηκε (σίγουρα θα είναι η πιο αξιόπιστη της νέας συνθήκης), παίρνουμε f ( x1) lnpm f ( x ) lnpm f ( x+ 1) f ( x ) (3) και από τις (2) και (3), έχουμε, f ( x ) = f ( x+ 1). Ας υποθέσουμε ότι από την x + 1 δεν μπορούμε να αφαιρέσουμε μια μονάδα και να παραμείνει λύση του SCP. Τότε, Επειδή όμως η x + 1 x είναι η μέγιστη λύση του f ( + 1 x ) f ( x )., ικανοποιεί και το SCP, έχουμε f x ) f ( x ), καθώς η SCP, που ικανοποιεί και το ( = + 1 τελευταίες σχέσεις, προκύπτει ότι f x ) f ( x ), δηλαδή, + 1 ), f ( x )}. f ( x ) = mn{ f ( x ( + 1 SCP + 1. Από τις δυο Στις επόμενες δυο προτάσεις, διερευνούμε τη σχέση που συνδέει τη λύση ενός SCP, με τη λύση του SCP 1.Πιο συγκεκριμένα, γνωρίζοντας τη βέλτιστη λύση ενός SCP, με συνθήκες ( SCP ), εξετάζουμε τι πληροφορίες μπορούμε να πάρουμε για

6 τη βέλτιστη λύση του SCP, το οποίο προκύπτει από το προηγούμενο, αφαιρώντας μια συνθήκη ( SCP 1 ). Πρόταση 5 Αν από την x μπορούμε να αφαιρέσουμε μια μονάδα (συμβ. x ), και εξακολουθεί να ικανοποιεί το SCP 1, τότε f ( x 1) = f ( x ). Απόδειξη Εύκολα διαπιστώνουμε ότι ισχύει, f ( x ) f ( x 1). (4) Εάν συμβολίσουμε με p R την αξιοπιστία της μονάδας που αφαιρέθηκε από την x, παίρνουμε το παρακάτω, f ( x ) f ( x 1) lnpr, αφού η x 1 μαζί με τη μονάδα που αφαιρέθηκε, ικανοποιεί το SCP. Έτσι, f ( x ) f ( x 1) lnpr f ( x ) + lnpr f ( x 1 ) f ( x ) f ( x 1) (5) και από τις (4), (5), έχουμε f ( x 1) f ( x ). = Πρόταση 6 Αν από την x δεν μπορούμε να αφαιρέσουμε μια μονάδα, έτσι ώστε αυτό που προκύπτει να εξακολουθεί να ικανοποιεί το SCP 1, τότε όπου με 1 ), f ( x f ( x ) = mn{ f ( x x συμβολίζουμε τη μέγιστη λύση του μια μονάδα, ικανοποιώντας ταυτοχρόνως και το SCP 1. Εάν η νέα βέλτιστη λύση είναι η x. )} SCP, από την οποία έχουμε αφαιρέσει x δεν υπάρχει, τότε Απόδειξη Εάν η x 1 ικανοποιεί και τη συνθήκη που έχει αφαιρεθεί, τότε από την Πρόταση 1, παίρνουμε f ( x 1) = f ( x ). Εάν όμως η x 1 δεν ικανοποιεί και τη συνθήκη που αφαιρείται, τότε, f ( x 1) f ( x ). (6) Επιπλέον, f ( x 1) lnpr f ( x ) lnpr, όπου p R, η πιθανότητα λειτουργίας της μονάδας που αφαιρέθηκε. Από την τελευταία ανισότητα, προκύπτει, f ( x 1) f ( x ) και από την (6), βρίσκουμε f ( x 1) = f ( x ). Έτσι, f ( x ) = mn{ f ( x ), f ( x )} 1. Παράδειγμα Θεωρούμε το σύστημα αξιοπιστίας, συνεχομενο-4-από-τα-7: F, του οποίου τα ε.σ.δ. είναι, C 1 = {1, 2, 3, 4}, C 2 = {2, 3, 4, 5}, C3 = {3, 4, 5, 6} και C 4 = {4, 5, 6, 7}. Σκοπός μας είναι να δούμε πώς αλλάζουν οι συνθήκες των SCP (συνεπώς και η βέλτιστη λύση των SCP ), πηγαίνοντας από μια μετάθεση σε μια άλλη. Ας ξεκινήσουμε μελετώντας τη μετάθεση C 1C4C3C2, όπου εύκολα μπορούμε να διαπιστώ

7 σουμε ότι, 1 =, 2 = {1}, 3 = {1, 2}, 4 = {1, 2, 3}. Επομένως, τα τρία SCP που πρέπει να επιλυθούν, έχουν τις παρακάτω συνθήκες, x 1 x1 1 7 x 1 + x2 + x3 1, και x1 + x2 1 x 1, 6 x 6 + x7 1 (για τα C 4, C3, C2, αντιστοίχως). Άρα, το σύνολο των λύσεων για κάθε SCP, είναι S 4 = {{1},{2},{3}}, S 3 = {{1, 7},{2, 7}}, S 2 = {{1, 6}}, ενώ εάν υποθέσουμε ότι, p1 p2 p7, τότε οι βέλτιστες λύσεις είναι οι, 4 = { 1}, 3 = {1,7}, 2 = {1,6}. Έστω τώρα ότι επιθυμούμε να μελετήσουμε τη μετάθεση C 1C4C2C3. Τότε, οι συνθήκες των SCP γίνονται, x 1 x x 1 + x2 + x3 1, και x6 + x7 1 x 1, 7 x1 + x 2 1 (για τα C 4,C 2,C 3 αντιστοίχως). Έτσι, από το SCP που αντιστοιχεί στο C 2, αφαιρέθηκε μια συνθήκη, ενώ στο SCP που αντιστοιχεί στο C 3, προστέθηκε μια συνθήκη. Στην προηγούμενη μετάθεση, η βέλτιστη λύση του SCP που αντιστοιχεί στο C 2, ήταν η 2 ={1,6}, από την οποία δεν μπορούμε να αφαιρέσουμε μια μονάδα, και να εξακολουθεί να ικανοποιεί το νέο SCP. Επιπλέον, επειδή το σύνολο S 2, δεν έχει άλλες λύσεις, καταλήγουμε στο συμπέρασμα, ότι η νέα βέλτιστη λύση, ταυτίζεται με την παλιά (Πρόταση 6). Παράλληλα, η νέα συνθήκη ( x 2 1), που προστέθηκε στο SCP που αντιστοιχεί στο C 3, δεν ικανοποιείται από τη βέλτιστη λύση του προηγούμενου SCP (την {1,7}). Οπότε, η βέλτιστη λύση του νέου SCP, είναι η {1,7,2} ή η μέγιστη λύση του S 3, που ικανοποιεί και τη νέα συνθήκη. Άρα, η βέλτιστη λύση είναι μια από τις, {1,7,2} και {2,7}, δηλαδή, η {2,7} (Πρόταση 4). Τα παραπάνω αποτελέσματα μπορούν να χρησιμοποιηθούν σε αλγοριθμικές μεθόδους επίλυσης SCP, ακριβείς ή προσεγγιστικές, βελτιώνοντας τόσο τους απαιτούμενους χρόνους, όσο και τις τελικές προσεγγίσεις (στη δεύτερη περίπτωση). Συγκεκριμένα, οι Κούτρας κ.α (2003) είχαν προτείνει την επίλυση των SCP, μέσω γενετικού αλγόριθμου (ΓΑ), ενώ σ αυτή την εργασία, θα χρησιμοποιήσουμε τον προσεγγιστικό αλγόριθμο επίλυσης, που προτάθηκε από τον Chvatal (1979) (επιτυγχάνεται μεγάλη βελτίωση, σε υπολογιστικό χρόνο), ο οποίος σε ορισμένες περιπτώσεις δίνει την ακριβή λύση - όπως στην περίπτωση d μονάδων. Στον Πίνακα 1, συμπεριλαμβάνουμε τους χρόνους εύρεσης του βέλτιστου άνω φράγματος (με τον αλγόριθμο Chvatal), ανάμεσα στις N διατάξεις που προκύπτουν από τη συνεχόμενη εφαρμογή της μετάθεσης Τύπου Ι. Ενώ, στον Πίνακα 2 υπάρχουν οι χρόνοι εύρεσης του βέλτιστου άνω φράγματος ανάμεσα στις Ν 2 διατάξεις που προκύπτουν από την εναλλάξ εφαρμογή των μεταθέσεων Τύπου Ι και Τύπου ΙΙ. Παρατηρούμε ότι τα αποτελέσματα των προτάσεων, βελτιώνουν σημαντικά τους χρόνους εύρεσης, σε όλες σχεδόν τις περιπτώσεις

8 Πίνακας 1 Σύστημα Πλήθος ε.σ.δ. Αξιοπιστία μονάδων (d) Χρόνος χωρίς τη χρήση των Προτάσεων 3-6 (sec) Χρόνος με χρήση των Προτάσεων 3-6 (sec) ,30 0, ,56 427, ,50 3, , ,47 Πίνακας 2 Βελτίωση 65% 68% 67% 63% Σύστημα Πλήθος ε.σ.δ. Αξιοπιστία μονάδων (d) Χρόνος χωρίς τη χρήση των Προτάσεων 3-6 (sec) Χρόνος με χρήση των Προτάσεων (sec) ,79 11, ,61 207, ,88 68, ,59 319,06 ABSTRACT Βελτίωση 38% The study of a specfc class of relablty bounds (Fu & Koutras (1995)), lead Koutras et al. (2003) to an approach usng the theory of set coverng problems. They ponted out that the evaluaton of these relablty bounds s based on the arrangement of the mnmal cut sets (m.c.s) and mnmal path sets (m.p.s - Barlow & Proschan (1981)) and the choce of a famly of sets (whch s not unquely determned). Furthermore, they ntroduced an algorthmc approach for determnng the optmal famly of sets (gven a specfc arrangement of m.c.s. and m.p.s.), by transformng the problem to an equvalent set coverng problem. Koutras et al. (2005) presented a method that can be used for the determnaton of the arrangement of m.c.s. and m.p.s. that produces the optmal relablty bounds. Snce, a set coverng problem s generally computatonally demandng, t would be very useful to fnd an effectve algorthm to span all the permutatons of m.c.s. (or m.p.s.) as well as a connecton between successve solutons.the present artcle s a contrbuton n the last drecton. ΑΝΑΦΟΡΕΣ Barlow, R.E. and Proschan, F. (1981). Statstcal Theory of Relablty and fe Testng, Holt, Renhart and Wnston, NY. Chvatal, V. (1979). A greedy heurstc for the set-coverng problem, Mathematcs of Operatons Research, 4(3), Fu, J.C. and Koutras, M.V. (1995). Relablty bounds for coherent structures wth ndependent components, Statstcs & Probablty etters, 22, Koutras, Μ.V., Tstmdels, S. and Zssmopoulos, V. (2003). Evaluaton of relablty bounds by set coverng models, Statstcs & Probablty etters, 61, Ανδρεαδάκης, Σ. (1993). Εισαγωγή στην Άλγεβρα, Εκδόσεις Συμμετρία, Αθήνα. Κούτρας Μ., Μηλιένος, Φ., Τσιτμηδέλης, Σ. και Ζησιμόπουλος, Β. (2005). Μελέτη μιας κλάσης φραγμάτων αξιοπιστίας, Πρακτικά 18 ου Παν. Συν. Στατ., % 68% 68%

ΦΡΑΓΜΑΤΑ ΑΞΙΟΠΙΣΤΙΑΣ

ΦΡΑΓΜΑΤΑ ΑΞΙΟΠΙΣΤΙΑΣ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΦΡΑΓΜΑΤΑ ΑΞΙΟΠΙΣΤΙΑΣ Φώτιος Σ. Μηλιένος Διπλωματική Εργασία

Διαβάστε περισσότερα

ΧΡΟΝΟΙ ΑΝΑΜΟΝΗΣ ΜΕΧΡΙ ΤΗΝ ΠΡΩΤΗ ΕΜΦΑΝΙΣΗ ΣΧΗΜΑΤΙΣΜΩΝ ΣΕ ΜΙΑ ΔΙΔΙΑΣΤΑΤΗ ΑΚΟΛΟΥΘΙΑ ΤΡΙΤΙΜΩΝ ΔΟΚΙΜΩΝ

ΧΡΟΝΟΙ ΑΝΑΜΟΝΗΣ ΜΕΧΡΙ ΤΗΝ ΠΡΩΤΗ ΕΜΦΑΝΙΣΗ ΣΧΗΜΑΤΙΣΜΩΝ ΣΕ ΜΙΑ ΔΙΔΙΑΣΤΑΤΗ ΑΚΟΛΟΥΘΙΑ ΤΡΙΤΙΜΩΝ ΔΟΚΙΜΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (5) σελ.97-33 ΧΡΟΝΟΙ ΑΝΑΜΟΝΗΣ ΜΕΧΡΙ ΤΗΝ ΠΡΩΤΗ ΕΜΦΑΝΙΣΗ ΣΧΗΜΑΤΙΣΜΩΝ ΣΕ ΜΙΑ ΔΙΔΙΑΣΤΑΤΗ ΑΚΟΛΟΥΘΙΑ ΤΡΙΤΙΜΩΝ ΔΟΚΙΜΩΝ Σ. Μπερσίμης

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΙΔΙΟΤΗΤΑΣ IFR ΣΕ ΜΑΡΚΟΒΙΑΝΑ ΕΜΦΥΤΕΥΣΙΜΑ ΣΥΣΤΗΜΑΤΑ

Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΙΔΙΟΤΗΤΑΣ IFR ΣΕ ΜΑΡΚΟΒΙΑΝΑ ΕΜΦΥΤΕΥΣΙΜΑ ΣΥΣΤΗΜΑΤΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ217-224 Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΙΔΙΟΤΗΤΑΣ IFR ΣΕ ΜΑΡΚΟΒΙΑΝΑ ΕΜΦΥΤΕΥΣΙΜΑ ΣΥΣΤΗΜΑΤΑ MΒ Κούτρας και ΠE Μαραβελάκης Πανεπιστήμιο

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (00) σελ.373-38 Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Γιάννης Σ. Τριανταφύλλου, Μάρκος Β. Κούτρας Πανεπιστήμιο Πειραιώς,, Τμήμα

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n! Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΓΙΑΝΝΗΣ ΠΑΤΕΡΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΑΚΟΛΟΥΘΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ακολουθία ονομάζουμε

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι Μηχανική ΙΙ Πέτρος Ιωάννου & Θεοχάρης Αποστολάτος 25 Μαϊου 2001 Αγγύλες Poisson Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών Οι θέσεις και οι ορμές εξελίσσονται χρονικά σύμφωνα με τις εξισώσεις

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΒΕΛΤΙΣΤΗΣ ΔΡΟΜΟΛΟΓΗΣΗΣ ΕΝΟΣ ΟΧΗΜΑΤΟΣ ΠΟΥ ΔΙΑΝΕΜΕΙ ΕΝΑ ΠΡΟ

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΒΕΛΤΙΣΤΗΣ ΔΡΟΜΟΛΟΓΗΣΗΣ ΕΝΟΣ ΟΧΗΜΑΤΟΣ ΠΟΥ ΔΙΑΝΕΜΕΙ ΕΝΑ ΠΡΟ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 8, σελ 4-48 ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΒΕΛΤΙΣΤΗΣ ΔΡΟΜΟΛΟΓΗΣΗΣ ΕΝΟΣ ΟΧΗΜΑΤΟΣ ΠΟΥ ΔΙΑΝΕΜΕΙ ΕΝΑ ΠΡΟΪΟΝ ΣΕ ΠΕΛΑΤΕΣ ΜΕ ΜΙΑ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗ ΣΕΙΡΑ

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μέρος ΙΙ. Τυχαίες Μεταβλητές Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ 1. Έστω συνάρτηση ζήτησης με τύπο Q = 200 4P. Να βρείτε: α) Την ελαστικότητα ως προς την τιμή όταν η τιμή αυξάνεται από 10 σε 12. 1ος τρόπος Αν P 0 10 τότε Q 0 200 410

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης

Διαβάστε περισσότερα

ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, 3 s 2 ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ

ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, 3 s 2 ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (005) σελ.7-8 ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, s ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ Βασίλης

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Approximation Algorithms for the k-median problem

Approximation Algorithms for the k-median problem Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ), που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες:. P ( Ω ). 2. Η πιθανότητα της αριθμήσιμης

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πίνακες και Γραμμικά Συστήματα: Ο Αλγόριθμος Guss Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

q(g \ S ) = q(g \ S) S + d = S.

q(g \ S ) = q(g \ S) S + d = S. Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος & Σ. Κ. Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1 ΚΕΦΑΛΑΙΟ 1 : ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 11 ΕΙΣΑΓΩΓΗ Σε ότι ακολουθεί συμβολίζουμε με το σύνολο των φυσικών αριθμών και με και R τα σύνολα των ακεραίων των ρητών και των πραγματικών αριθμών

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΑΡΩΣΗΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΑΡΩΣΗΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα