ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις της δεύτερης εργασίας αναφέρονται στην ακόλουθη ύλη: Διανυσματικοί χώροι, Χώροι με εσωτερικό γινόμενο Γραμμικοί μετασχηματισμοί Ιδιοτιμές-Ιδιοδιανύσματα-Διαγωνοποίηση πίνακα Τετραγωνικές μορφές Για την κατανόηση της ύλης αυτής μπορείτε να συμβουλευθείτε τα Κεφάλαιο (παράγραφοι 8-9) και Κεφάλαια, 4, 5 του συγγράμματος του ΕΑΠ «Γραμμική Άλγεβρα» των Γρ Καμβύσα και Μ Χατζηνικολάου Επίσης μπορείτε να συμβουλευθείτε από το βοηθητικό υλικό που υπάρχει στη τα ακόλουθα: Εναλλακτικό Διδακτικό Υλικό: Κεφάλαια 6- Συνοδευτικό Εκπαιδευτικό Υλικό: Γραμμικές Απεικονίσεις, Ιδιοτιμές και ιδιοδιανύσματα, Διαγωνοποίηση, Τετραγωνικές Μορφές Συμβολισμός: Στα παρακάτω, M n( ) συμβολίζει το σύνολο των n n πινάκων με στοιχεία από το

2 Άσκηση (0 μον) Δίνονται οι διανυσματικοί υπόχωροι W και W του ( ): x y W {, z w x, y, z, w : x y z w}, x y W {, z w x, y, z, w : x w y z 0} i) (8 μον) Βρείτε βάσεις για τους διανυσματικούς υποχώρους W και W W του M ( ) ii) (4 μον) Βρείτε τις διαστάσεις των διανυσματικών υποχώρων W και W W iii) (8 μον) Δικαιολογήστε γιατί ισχύει M( ) W W, ενώ ο M ( ) δεν είναι το ευθύ άθροισμα των W, W Δείξτε ότι για τον διανυσματικό υπόχωρο 0 W span{ } ισχύει M( ) W W 0 0 Λύση x y i) Επειδή ένα τυχαίο στοιχείο W, λόγω της ιδιότητας x y z w, z w γράφεται x y y z w y y y z 0 w y z w z w z w 0 0 z 0 0 w για κάθε y, z, w, από όπου συμπεραίνουμε ότι 0 0 W span{,, } Επειδή για,, ισχύει είναι φανερό ότι τα διανύσματα 0 0,, είναι γραμμικά ανεξάρτητα 0 0 Άρα μία βάση του W είναι B W {,, } με dim( W ) Τα στοιχεία του W W πρέπει να ικανοποιούν τις ιδιότητες των W και W επομένως είναι: x y W W {, z w x, y, z, w : x y z w και x w y z 0} Για να βρούμε μία βάση του W W πρέπει να λύσουμε το ομογενές σύστημα: x y z w 0 x w0 yz 0 Λύνοντας άμεσα το σύστημα ως προς τις δύο τελευταίες του εξισώσεις ή κάνοντας τις ακόλουθες γραμμοπράξεις:

3 r r r r r r r r καταλήγουμε στο σύστημα x y z w 0 x w y z w 0 y w, w, z w 0 z w από όπου μπορούμε να γράψουμε x y w w w, w z w w w Άρα W W span{ } Προφανώς είναι γραμμικά ανεξάρτητο στοιχείο του W W Άρα, μία βάση του W W είναι BW { } W, με dim( W W ) ii) Με όμοιο τρόπο όπως στο (i) βρίσκουμε μία βάση του W x y Ένα τυχαίο στοιχείο W, λόγω των ιδιοτήτων xw 0 και yz 0, z w γράφεται x y w z 0 z w z w, zw, z w z w z 0 0 w από όπου συμπεραίνουμε ότι W span{, } 0 0 Επειδή για, ισχύει , είναι φανερό ότι τα διανύσματα, είναι γραμμικά ανεξάρτητα Μία βάση του W είναι B W {, }, άρα dim( W ) 0 0 Επειδή dim( W ) και από το (i) έχουμε dim( W ) και dim( WW), αντικαθιστώντας στο Θεώρημα 5 (θεώρημα διαστάσεων, βλέπε βιβλίο Γραμμικής Άλγεβρας, σελ 00) έχουμε: dim( W W ) dim( W ) dim( W ) dim( W W ) 4 iii) Αφού dim(w + W ) = 4 και o W + W είναι υπόχωρος του Μ () ο οποίος έχει dim Μ () = 4, έχουμε W + W = Μ () (Πόρισμα 6, σελ 99,, βιβλίο Γραμμικής Άλγεβρας)

4 Επειδή WW {} 0, ο M ( ) δεν είναι το ευθύ άθροισμα των υποχώρων W, W, (βλέπε Θεώρημα 5, σελ 0, βιβλίο Γραμμικής Άλγεβρας) Επιπλέον ισχύει W W 0, () {} 0 εφόσον ο πίνακας 0 0 που παράγει τον χώρο W δεν ανήκει στον W μιας και τα x y 0 στοιχεία του δεν ικανοποιούν την ιδιότητα z w 0 0 x y z w Επίσης τα διανύσματα,,, είναι γραμμικά ανεξάρτητα, διότι για,,, 4 ισχύει από όπου είναι φανερό ότι, 4 0 Σύμφωνα με το Θεώρημα 47(α) τα διανύσματα αποτελούν βάση του M ( ), άρα 0 0 0,,, M( ) W W, () Οι () με () επαληθεύουν τις ικανές και αναγκαίες συνθήκες του Θεωρήματος 5, άρα M( ) W W Β τρόπος: Από τους ορισμούς των WW, έπεται άμεσα ότι ο υπόχωρος W δεν είναι υποσύνολο του W Από αυτήν την παρατήρηση έπονται τα ακόλουθα: i) dim( W W ) dimw Επειδή W W υπόχωρος του M ( ) και dim( M( )) 4, έχουμε dim( WW) 4, οπότε σύμφωνα με το Πόρισμα 6(β) είναι W W M ( ) ii) WW {} 0, αφού το W δεν είναι υποσύνολο του W Οι (i) και (ii) επαληθεύουν τις ικανές και αναγκαίες συνθήκες του Θεωρήματος 5, άρα M( ) W W Άσκηση (0 μον) i) (8 μον) Αποδείξτε ότι για τα διανύσματα x ( x, x, x) και y ( y, y, y) του η σχέση x y 4x y x y x y x y x y x y x y Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 99 Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 0 Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου,σελ 99 4

5 ορίζει ένα εσωτερικό γινόμενο στον ii) (6 μον) Δίνεται ο διανυσματικός υπόχωρος W x y z x y {(,, ) : 0} του Βρείτε μία ορθοκανονική βάση του W ως προς το σύνηθες εσωτερικό γινόμενο του iii) (6 μον) Βρείτε μία βάση του ορθογωνίου συμπληρώματος W εσωτερικό γινόμενο που ορίστηκε στο (i) 5 ως προς το Λύση i) Για να αποτελεί η δοθείσα σχέση εσωτερικό γινόμενο αρκεί να επαληθεύει τις ιδιότητες του Ορισμού 4 Πράγματι, για, και x ( x, x, x ), y ( y, y, y), z ( z, z, z) είναι x y ( x, x, x ) ( y, y, y ) x y, x y, x y ( a, a, a ) οπότε κάνοντας πράξεις έχουμε I ( x y) z 4a z a z a z a z a z a z a z 4( x y ) z ( x y ) z ( x y ) z ( x y ) z ( x y ) z ( x y ) z ( x y ) z (4x z x z x z x z x z x z x z ) (4y z y z y z y z y z y z y z ) ( x z) ( y z) η αντιμεταθετική ιδιότητα που ισχύει στην πρόσθεση και στον πολλαπλασιασμό των πραγματικών αριθμών δίνει I y x 4y x y x y x y x y x y x y x 4x y x y x y x y x y x y x y 4x y x y x y x y x y x y x y x Tέλος I x x 4x x x x x x x x x x x Ειδικά, όταν 4x 4x x x x x x ( x x ) ( x x ) x 0 x x 0 ( x x ) ( x x ) x 0 συμπεραίνουμε ότι xx 0, xx 0 και x 0, από όπου προκύπτει x x x 0, Άρα x 0 ii) Επειδή xy 0 το τυχαίο ( x, y, z) W γράφεται ( x, y, z) ( y, y, z) y(,,0) z(0,0,), για κάθε yz,, από όπου συμπεραίνουμε ότι W span{(,,0), (0,0,)} Εύκολα διαπιστώνουμε ότι τα διανύσματα (,,0), (0,0,) είναι γραμμικά ανεξάρτητα, άρα μία βάση του W είναι BW {(,,0), (0,0,)} με dim( W) Για να ορθοκανονικοποιήσουμε τα στοιχεία της βάσης B, u (,,0) και u (0,0,), εφαρμόζουμε τον αλγόριθμο των Gram-Schmidt 5, χρησιμοποιώντας το σύνηθες εσωτερικό γινόμενο 6 του Παρατηρούμε ότι 4 Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 44 y W

6 u u (,,0) (0,0,) , 0 5 u και 0 0 u Έτσι, η ορθοκανονική βάση είναι Bˆ ˆ ˆ W { u (,,0), u (0,0,)} 5 iii) Έστω W {( x, y, z) : ( x, y, z) w 0, για κάθε w W} Παρατηρήστε ότι μπορούμε να χρησιμοποιήσουμε τα στοιχεία της βάσης B W προκειμένου να υπολογίσουμε το ορθογώνιο συμπλήρωμα του W, οπότε επιλύοντας το αντίστοιχο σύστημα έχουμε: ( x, y, z) u 0 ( x, y, z) (,,0) 0 8x x 4y y z 0 0x 6y z 0 ( x, y, z) u 0 ( x, y, z) (0,0,) 0 y z 0 y z 0 7 από όπου συμπεραίνουμε x z, y z, z 0 Έτσι W span{(7, 0,0)}, άρα μία βάση του W είναι B {(7, 0,0)} W Άσκηση (0 μον) Α) Να εξετάσετε ποιες από τις ακόλουθες απεικονίσεις είναι γραμμικές : i) ( μον) f :, με f ( x, y) (x y, x y xy,4x 5 y) ii) ( μον) iii) ( μον) g :, με g( x, y, z) ( x y z,x z, x 4 5 z) h M, με h( ) ( x 4y z, z w) : ( ) x y z w Β) Έστω f : γραμμική απεικόνιση για την οποία ισχύουν: f (,0,0) (,,), f (0,,0) (,0,4) και f (0,0,) (,, 9) i) ( μον) Βρείτε τον τύπο της f και γράψτε τον πίνακα αναπαράστασης της f ως προς την κανονική βάση του ii) ( μον) Βρείτε μία βάση και τη διάσταση της εικόνας της f iii) ( μον) Βρείτε μία βάση και τη διάσταση του πυρήνα της f iv) ( μον) Βρείτε τις ιδιοτιμές της f v) ( μον) Να ορίσετε την απεικόνιση Λύση f, αν υπάρχει Α) i) H f δεν είναι γραμμική Για παράδειγμα, f (,0) (,, 4), f (0,) (,, 5), f (,) (5,4, ) 5 Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 67 6 Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 46 6

7 Αν ήταν γραμμική έπρεπε να ισχύει f (,0) f (0,) f (,) Όμως, f (,0) f (0,) (,, 4) (,, 5) (5,, ) f (,) Αξίζει να παρατηρήσουμε εδώ ότι η ποσότητα xy είναι αυτή που κάνει τη συνάρτηση μη γραμμική ii) H g δεν είναι γραμμική, διότι για κάθε γραμμική απεικόνιση ισχύει g(0,0,0) (0,0,0), ενώ η δοθείσα δίνει g(0,0,0) (0,0,4) iii) Η h είναι γραμμική, επειδή για κάθε k, και X, Y M( ) με X x y, Y x y επαληθεύεται η ισότητα () της Παρατήρησης του z w z w Ορισμού 4 7, διότι ισχύει: x y x y h( kx Y ) h( k ) z w z w kx ky x y h( ) kz kw z w kx x ky y h( ) kz z kw w ( kx x 4( ky y ) ( kz z ), ( kz z ) ( kw w )) ( kx 4ky kz, kz kw ) ( x 4 y z, z w ) k( x 4 y z, z w ) ( x 4 y z, z w ) x y x y kh ( ) h( ) z w z w kh( X ) h( Y ) Β)i) Θεωρούμε τα διανύσματα της κανονικής βάσης του e (,0,0), e (0,,0), e (0,0,) οπότε ένα τυχαίο διάνυσμα ( x, y, z) γράφεται : ( x, y, z) xe ye ze Επειδή η f είναι γραμμική απεικόνιση για κάθε x, y, z ισχύει: f ( x, y, z) f ( xe ye ze) xf ( e) yf ( e) zf ( e ) () Οπότε αντικαθιστώντας στην () τις δοθείσες εικόνες της f υπολογίζεται ο τύπος της f, που είναι f ( x, y, z) x(,,) y(,0,4) z(,, 9) ( x y z,x z, x 4y 9 z) Ο πίνακας αναπαράστασης της f ως προς την κανονική βάση του είναι ο πίνακας με στήλες τα διανύσματα f ( e ) (,,), f ( e ) (,0,4) και f ( e ) (,, 9), δηλαδή είναι: A Βλέπε βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 9 7

8 Θα μπορούσαμε επίσης πρώτα να βρούμε τον πίνακα Α της αναπαράστασης της f ως προς την κανονική βάση του και στη συνέχεια να βρούμε τον τύπο της από τη σχέση x x y z T f ( x, y, z) A( x, y, z) 0 y x z 4 9 z x 4y 9z ii) Από την () είναι φανερό ότι Im f span{ f ( e), f ( e), f ( e )} Ακολουθώντας το δεύτερο αλγόριθμο 8 και επειδή r r r r r r 5r r r r r r r () είναι φανερό πως μόνο τα διανύσματα f( e), f( e ) είναι γραμμικά ανεξάρτητα, άρα αποτελούν μία βάση της εικόνας της f, δηλαδή BIm f { f ( e), f ( e)} με dim(im f ) iii) Επειδή η διάσταση του είναι, από την ισότητα dim dim(ker f ) dim(im f ) dim(ker f ) Αν θεωρήσουμε ότι ( x, y, z) ker f, για να βρούμε μία βάση του πρέπει να λύσουμε το ομογενές σύστημα: x y z 0 x z 0 x 4y 9z 0 Κάνοντας τις ίδιες γραμμοπράξεις όπως στη () καταλήγουμε ότι το σύστημα έχει άπειρες λύσεις που δίνονται: x y z 0 x z ( x, y, z) ( z, z, z) z(,,) : z y z 0 y z Άρα ker f span{(,,)}, προφανώς το (,,) είναι γραμμικά ανεξάρτητο, άρα μία βάση του πυρήνα της f είναι το Bker f {(,,)} με dim(ker f ) iv) Συνδυάζοντας τους Ορισμούς 5 και 5 9, είναι φανερό ότι οι ιδιοτιμές της f είναι οι ιδιοτιμές του πίνακα αναπαράστασης A, όπως αυτός υπολογίστηκε στο (i) Το χαρακτηριστικό πολυώνυμο του πίνακα A (αναπτύσσοντας την ορίζουσα ως προς την πρώτη γραμμή), δίνεται από τη σχέση: A( ) det( A I) ( ) ( )[ 9 8] ( 6) ( 8) ( ) ( 8) ( 8) ( 8)[ ( ) ] ( 8)( ) Οι ιδιοτιμές του πίνακα Α είναι οι ρίζες της εξίσωσης ( ) 0, δηλαδή είναι: A 8 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ, ος αλγόριθμος (στηλών) 9 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ 6, 65, αντίστοιχα 8

9 8, και 0 Συνεπώς οι ιδιοτιμές της f είναι 8, και 0 v) Σύμφωνα με τον Ορισμό 4 (βλ βιβλίο Γραμμικής Άλγεβρας, σελ 9) και το αποτέλεσμα του ερωτήματος (iii) συμπεραίνουμε ότι η απεικόνιση f είναι ιδιάζουσα, (δεν είναι αντιστρέψιμη), άρα δεν υπάρχει η απεικόνιση f Β τρόπος: Εφαρμόζοντας την ιδιότητα 0 που αναφέρεται στην σχέση ορίζουσας και ιδιοτιμών του πίνακα, έχουμε από το (iii) ότι : det A ( 8) ( ) 0 0, από όπου συμπεραίνουμε ότι ο πίνακας A δεν αντιστρέφεται, το ίδιο ισχύει και για τη γραμμική απεικόνιση f Άσκηση 4 (0 μον) Δίνεται ο τετραγωνικός πίνακας A i) (8 μον) Bρείτε το χαρακτηριστικό του πολυώνυμο Δεδομένου ότι μία ιδιοτιμή του πίνακα A είναι, βρείτε όλες τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματά του ii) (4 μον) Εξετάστε αν ο πίνακας A διαγωνοποιείται Εάν ναι, βρείτε έναν αντιστρέψιμο πίνακα P και ένα διαγώνιο πίνακα D έτσι ώστε να ισχύει A PDP iii) (8 μον) Χρησιμοποιώντας το προηγούμενο ερώτημα (ή αλλιώς) βρείτε τις ιδιοτιμές, και τα ιδιοδιανύσματα του πίνακα B A 6A Λύση i) Το χαρακτηριστικό πολυώνυμο του πίνακα A δίνεται από τη σχέση : A( ) det( A I) ( ) ( ) ( )[( )(6 ) 4] [ (6 ) 6] [( )( 4) ( 6)( )] ( )( 8 4) ( ) (4 6 ) ( )( 8 4) ( )( 4) 0 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ8 Η ορίζουσα αναπτύσσεται ως προς την πρώτη γραμμή, δεν κάνουμε όλες τις πράξεις προκειμένου να οδηγηθούμε σε πιο εύκολη παραγοντοποίηση 9

10 Εναλλακτικά, αν δεν παρατηρούσε κανείς ότι οι δύο τελευταίες παρενθέσεις απλοποιούνται, θα έβρισκε το 9 4 6, δοκιμάζοντας τους διαιρέτες του 6 ως πιθανές ρητές ρίζες θα έβρισκε ως μία ρίζα και στη συνέχεια διαιρώντας με θα προέκυπτε πηλίκο 8 6 ( 4) Οι ιδιοτιμές του πίνακα Α είναι οι ρίζες της εξίσωσης A ( ) 0, άρα οι ιδιοτιμές είναι:,, 4 (διπλή) Εναλλακτικά, αφού και γνωρίζουμε από τη θεωρία ότι ισχύουν οι σχέσεις: trace( A) det( A) Αφού υπολογίσουμε την 0 det( A) 0 0 (0 8) Οδηγούμαστε στο σύστημα (8 ) Για να βρούμε τα αντίστοιχα ιδιοδιανύσματα θα επιλύσουμε τα αντίστοιχα συστήματα: Ax x, i,, i Για την ιδιοτιμή τα αντίστοιχα ιδιοδιανύσματα προκύπτουν από τη λύση του συστήματος: x x x x x x x x 0 Ax x x x x x x x x x x x x 6x 4x 6x x 6x 4x 5x 0 από όπου μετά από γραμμοπράξεις καταλήγουμε x x x 0 x x, με x x x 0 x x Κατά συνέπεια το σύνολο των ιδιοδιανυσμάτων που αντιστοιχούν στην ιδιοτιμή x είναι το: V { x : x {0}} { : {0}} Θεωρούμε το x Βλέπε, ΣΕΥ «Σημειώσεις στους πραγματικούς και μιγαδικούς αριθμούς», Παράγραφος 7, Πρόταση 70, Παράδειγμα 7 0

11 διάνυσμα v από το σύνολο V ως αντίστοιχο ιδιοδιάνυσμα της ιδιοτιμής Άρα η ιδιοτιμή έχει γεωμετρική και αλγεβρική πολλαπλότητα ίση με Για την ιδιοτιμή, 4 τα αντίστοιχα ιδιοδιανύσματα προκύπτουν από τη λύση του παρακάτω συστήματος: x x x x x 4x Ax 4x x 4 x x x x 4x x x 6x 4x 6x 4x x x x 0 x x x 0 x x x 6x 4x x 0 Χρησιμοποιώντας τα x, x ως ελεύθερους αγνώστους, συμπεραίνουμε ότι το σύνολο των ιδιοδιανυσμάτων που αντιστοιχούν στην ιδιοτιμή, 4 είναι το: x V { x, : x, x }\ 0 { k 0 : k, }\ 0 x x Παρατηρούμε ότι τα διανύσματα v 0 και v είναι γραμμικά ανεξάρτητα ιδιοδιανύσματα για την ιδιοτιμή, 4 Συνεπώς, η ιδιοτιμή 4 έχει γεωμετρική και αλγεβρική πολλαπλότητα ίση με ii) Αφού η γεωμετρική και η αλγεβρική πολλαπλότητα σε κάθε ιδιοτιμή του Α συμπίπτουν συμπεραίνουμε ότι ο πίνακας Α διαγωνοποιείται με πίνακα ομοιότητας Ρ, ο οποίος προκύπτει αν βάλουμε τα αντίστοιχα γραμμικώς ανεξάρτητα 4 ιδιοδιανύσματα, που βρήκαμε ως στήλες του Έτσι έχουμε: 0 P ( v, v, v ) 0 και αντίστοιχο διαγώνιο πίνακα (προσέχοντας ώστε η σειρά με την οποία εμφανίζονται οι ιδιοτιμές στη διαγώνιο να αντιστοιχεί στην σειρά με την οποία τοποθετήσαμε τα ιδιοδιανύσματα ως στήλες στον Ρ), 0 0 D diag (,, ) Εύκολα επαληθεύεται η ισότητα A PDP Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, Ορισμός 5 6, σελ78 4 Σημειώνεται ότι ο πίνακας Ρ είναι αντιστρέψιμος γιατί έχει ως στήλες γραμμικά ανεξάρτητα διανύσματα, βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, Θεώρημα 6 6, σελ

12 Αν θέλουμε να υπολογίσουμε τον P για να κάνουμε την επαλήθευση, χρησιμοποιώντας τη μέθοδο των οριζουσών, έχουμε 0 0 det( P ) 0 Άρα P / / / / / / 0 0 iii) Αντικαθιστώντας τη σχέση B A 6A ( PDP ) 6( PDP ) PD P 6(( P ) D P ) PD P PD P 6( PD P ) 6PD P P( D 6 D ) P Όμως ο πίνακας A PDP βρίσκουμε D 6D είναι διαγώνιος και άρα από τη σχέση B P P συμπεραίνουμε ότι ο Β είναι διαγωνοποιήσιμος, οι ιδιοτιμές του είναι η 5 με αλγεβρική και γεωμετρική πολλαπλότητα, και η 6 με αλγεβρική και γεωμετρική πολλαπλότητα, και τα αντίστοιχα ιδιοδιανύσματα είναι οι στήλες του πίνακα Ρ, δηλαδή, για την ιδιοτιμή 5 το v (και τα μη μηδενικά πολλαπλάσιά του) και 0 για την ιδιοτιμή 6 τα v 0 και v (και οι μη μηδενικοί γραμμικοί συνδυασμοί τους)

13 Άσκηση 5 (0 μον) Δίνεται η τετραγωνική μορφή του q x 5x x x x 6x x 4x x i) (4 μον) Βρείτε τον αντίστοιχο συμμετρικό πίνακα A της q έτσι ώστε q T T x Ax, όπου x x x x ii) (8 μον) Βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A iii) (8 μον) Βρείτε έναν ορθογώνιο πίνακα Q και έναν διαγώνιο πίνακα D, έτσι ώστε να ισχύει T QDQ A Λύση i) Η τετραγωνική μορφή του q a x a x x a x x a x a x x a x αντιστοιχεί σε μοναδικό πραγματικό συμμετρικό πίνακα a a a A a a a a a a ο οποίος επαληθεύει την ισοδύναμη έκφραση q T T x Axμε x x x x Στη δοθείσα τετραγωνική μορφή αντιστοιχεί ο ακόλουθος συμμετρικός πίνακας: 6 A 6 5 ο οποίος προκύπτει με τον εξής απλό κανόνα: το στοιχείο a ii της διαγωνίου του A είναι ο συντελεστής του x i, ενώ το στοιχείο που βρίσκεται στην i -γραμμή και j- στήλη ( i j) είναι ίσο με το μισό του συντελεστή του γινομένου xx i j ii) Σε αυτό το σημείο υπενθυμίζουμε ότι οι ιδιοτιμές συμμετρικού πίνακα είναι πραγματικοί αριθμοί και ότι τα ιδιοδιανύσματα που αντιστοιχούν σε διακεκριμένες ιδιοτιμές είναι ορθογώνια (βλέπε η και η ιδιότητα στην 5 του βιβλίου Γραμμικής Άλγεβρας, σελ 89) Η εξίσωση από την οποία προκύπτουν οι ιδιοτιμές είναι η εξής: Το χαρακτηριστικό πολυώνυμο του πίνακα A είναι : 6 A A I ( ) det( ) ( )( )( ) Το πολυώνυμο 9 5 έχει πιθανές ακέραιες ρίζες τους διαιρέτες του

14 5 δηλαδή τους αριθμούς,,,, και δοκιμάζοντας με διαπιστώνουμε ότι είναι μία ρίζα του πολυωνύμου και στη συνέχεια διαιρώντας με προκύπτει το πηλίκο 8 ( )( ) Οι ιδιοτιμές του πίνακα Α είναι οι ρίζες της εξίσωσης A ( ) 0, άρα οι ιδιοτιμές είναι:, και Για να βρούμε τα αντίστοιχα ιδιοδιανύσματα θα επιλύσουμε τα αντίστοιχα συστήματα: Ax x, i,, i Για την ιδιοτιμή τα αντίστοιχα ιδιοδιανύσματα προκύπτουν από τη λύση του παρακάτω συστήματος: 5 6 x 0 5x 6x x 0 Ax x ( A I) x x 0 6x 8x x 0 5 x 0 x x 5x 0 από όπου μετά από γραμμοπράξεις καταλήγουμε 5x 6x x 0 x x 4x 8x 0 x x, με x Κατά συνέπεια το σύνολο των ιδιοδιανυσμάτων που αντιστοιχούν στην ιδιοτιμή x είναι το: V { x : x {0}} Θεωρούμε το διάνυσμα v από x το σύνολο V ως αντίστοιχο ιδιοδιάνυσμα της ιδιοτιμής Για την ιδιοτιμή τα αντίστοιχα ιδιοδιανύσματα προκύπτουν από τη λύση του παρακάτω συστήματος: 6 x 0 x 6x x 0 Ax x ( A I) x x 0 6x 4x x 0 x 0 x x x 0 από όπου μετά από γραμμοπράξεις καταλήγουμε x 6x x 0 x 0, με x x x 0 x x Κατά συνέπεια το σύνολο των ιδιοδιανυσμάτων που αντιστοιχούν στην ιδιοτιμή 0 0 είναι το: V { x : x {0}} Θεωρούμε το διάνυσμα v από x το σύνολο V ως αντίστοιχο ιδιοδιάνυσμα της ιδιοτιμής Για την ιδιοτιμή τα αντίστοιχα ιδιοδιανύσματα προκύπτουν από τη λύση του παρακάτω συστήματος: 5 Βλέπε, ΣΕΥ «Σημειώσεις στους πραγματικούς και μιγαδικούς αριθμούς» Πρόταση 70, Παράδειγμα 7 4

15 9 6 x 0 9x 6x x 0 Ax x ( A I) x x 0 6x 6x x 0 9 x 0 x x 9x 0 από όπου μετά από γραμμοπράξεις καταλήγουμε 5 x x x 0 x x x x 0 x x Κατά συνέπεια το σύνολο των ιδιοδιανυσμάτων που αντιστοιχούν στην ιδιοτιμή 5 x 5 είναι το: V { x : x {0}} Θεωρούμε το διάνυσμα v 6 από x το σύνολο V ως αντίστοιχο ιδιοδιάνυσμα της ιδιοτιμής 5, με x iii) Επειδή ο πίνακας A είναι συμμετρικός, σύμφωνα με το Θεώρημα 5 6 και τη «μεθοδολογία διαγωνοποίησης Ερμιτιανών πινάκων» 7 συμπεραίνουμε ότι ο πίνακας Α διαγωνοποιείται με πίνακα ομοιότητας Ρ, ο οποίος προκύπτει αν βάλουμε τα αντίστοιχα γραμμικώς ανεξάρτητα 8 ιδιοδιανύσματα, που βρήκαμε στο (ii) ως στήλες του Έτσι έχουμε: 0 5 P ( v, v, v ) 6 και αντίστοιχο διαγώνιο πίνακα (προσέχοντας ώστε η σειρά με την οποία εμφανίζονται οι ιδιοτιμές στη διαγώνιο να αντιστοιχεί στην σειρά με την οποία τοποθετήσαμε τα ιδιοδιανύσματα ως στήλες στον Ρ), 0 0 D diag(,, ) Όμως ο πίνακας P δεν είναι ορθογώνιος, χρειάζεται να ορθοκανονικοποιήσουμε τη βάση του χώρου στηλών του ως προς το σύνηθες εσωτερικό γινόμενο του, ακολουθώντας τη μέθοδο Gram-Schmidt (βλέπε βήμα στο σχετικό αλγόριθμο του βιβλίου, σελ 94) Εύκολα διαπιστώνουμε ότι v v v v v v 0, όπου σημειώνεται το σύνηθες εσωτερικό γινόμενο στον Επομένως τα ιδιοδιανύσματα-στήλες του P είναι ανά δύο ορθογώνια Το τελευταίο αποτέλεσμα ήταν γνωστό και από το Θεώρημα 5, διότι οι ιδιοτιμές του συμμετρικού πίνακα A είναι διακεκριμένες 9 Άρα, για να κατασκευάσουμε τον ορθογώνιο πίνακα Q από τον P χρειάζεται να διαιρέσουμε το κάθε ιδιοδιάνυσμα με το μέτρο του, τα οποία μέτρα των διανυσμάτων είναι: 6 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ9 7 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, σελ94 8 Σημειώνεται ότι ο πίνακας Ρ είναι αντιστρέψιμος διότι det P 5, άρα έχει ως στήλες γραμμικά ανεξάρτητα διανύσματα, βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, Θεώρημα 6 6, σελ 9 Βλέπε, βιβλίο Γραμμικής Άλγεβρας, ΓΚαμβύσα, ΜΧατζηνικολάου, Θεώρημα 5, σελ9

16 v ( ) 4 v 0 ( ) 5 v Έτσι καταλήγουμε ότι ένας ορθογώνιος πίνακας Q είναι: / 4 0 5/ 70 Q / 4 / 5 6 / 70 / 4 / 5 / 70 T Είναι γνωστό ότι για τον ορθογώνιο πίνακα Q ισχύει Q Q Τώρα εύκολα επαληθεύεται ότι ισχύει A T QDQ Για τον προγραμματισμό της μελέτης σας υπάρχει το Χρονοδιάγραμμα Μελέτης που περιέχεται στον Οδηγό Σπουδών της ΘΕ Ο ακόλουθος πίνακας δεν έχει σκοπό να υποκαταστήσει το Χρονοδιάγραμμα Μελέτης αλλά να υποδείξει ορισμένα σημεία του διδακτικού υλικού που σχετίζονται άμεσα με τις ασκήσεις της Εργασίας Άσκηση Θεωρία Συναφείς Ασκήσεις Άλλες Ασκήσεις Ο σκοπός της άσκησης είναι η εύρεση βάσεων σε διανυσματικούς χώρους Η σχετική θεωρία υπάρχει στο βιβλίο 5 και κυρίως 6 ΕΔΥ Κεφ 7 Άσκ,4,6, Εργασία 00, Ασκ Εργασία 008, Ασκ5(ii) ΕΔΥ Κεφ 7 Άσκ,4,7,8,9, ΣΕΥ Κεφ 6, Διανυσματικοί χώροι, ειδικά 65 Η άσκηση αναφέρεται σε διανυσματικούς χώρους με εσωτερικό γινόμενο Η θεωρία περιέχεται στο Κεφ του βιβλίου Η άσκηση αναφέρεται σε γραμμικούς μετασχηματισμούς Η σχετική θεωρία υπάρχει στο Κεφ 4 του βιβλίου ΣΕΥ Κεφ 8, Γραμμικές απεικονίσεις ΕΔΥ Κεφ 7 Άσκ,7 Εργασία 005, Ασκ, Εργασία 007, Ασκ, ΕΔΥ Κεφ 8 Άσκ,6 ΣΕΥ Παραδείγματα 8, 8 Εργασία 00, Ασκ4 Εργασία 006, Ασκ7 ΕΔΥ Κεφ 8 Άσκ4,5,9 ΣΕΥ Παραδείγματα 88, Παράδειγμα Εργασία 007, Ασκ5 6

17 4 Η άσκηση αναφέρεται στις έννοιες ιδιοτιμές, ιδιοδιανύσματα, και χαρακτηριστικές τους ιδιότητες Η θεωρία περιέχεται στο Κεφ 5 του βιβλίου, ειδικά 5-5 και 55 ΣΕΥ Κεφ 9, Ιδιοτιμές και ιδιοδιανύσματα και Κεφ 0, Διαγωνοποίηση Για τις πιθανές ακέραιες ρίζες μονικού πολυωνύμου δείτε: ΣΕΥ «Σημειώσεις στους πραγματικούς και μιγαδικούς αριθμούς», 7, Πόρισμα 7, Πρόταση 70, 5 Για τις πλέον βασικές έννοιες αναφορικά με τις τετραγωνικές μορφές παραπέμπουμε στο Βιβλίο 55 ΕΔΥ Κεφ ΣΕΥ Κεφ, Πραγματικές τετραγωνικές μορφές Παραδείγματα 9,0 σελ του βιβλίου ΕΔΥ Κεφ 9, Ασκ 4,7, ΕΔΥ Κεφ 0, Ασκ 8 ΣΕΥ Ιδιοτιμές και Ιδιοδιανύσματα Παραδείγματα 9, 94, 9, 9, 9 ΕΔΥ Κεφ Ασκ, ΣΕΥ Παράδειγμα,,, ΕΔΥ Κεφ 0, Ασκ 7,9, 0 ΣΕΥ Παράδειγμα 0, 06, ΣΕΥ 0 όλα τα παραδείγματα Εργασία 006, Ασκ4 Εργασία 006, Ασκ5Α Εργασία 009, Ασκ Εργασία 00, Ασκ5 Για τις πιθανές ακέραιες ρίζες μονικού πολυωνύμου δείτε: ΣΕΥ «Σημειώσεις στους πραγματικούς και μιγαδικούς αριθμούς», Παραδείγματα 76, 79, 7 ΕΔΥ Κεφ, Ασκ Εργασία 008, Ασκ5 ΣΕΥ Ασκήσεις ( & ), Ασκήσεις Σημείωση: Οι παραπάνω παραπομπές αναφέρονται στο βιβλίο «Γραμμική Άλγεβρα» των Γρ Καμβύσα και Μ Χατζηνικολάου (αναφέρεται ως Βιβλίο στον προηγούμενο πίνακα) και στο υλικό που υπάρχει αναρτημένο στην ιστοσελίδα Για παράδειγμα, η παραπομπή Εργασία 00 Ασκ5β αναφέρεται στην Άσκηση 5β της Εργασίας του ακαδημαϊκού έτους 00- Όλες οι παραπομπές σε Ασκήσεις του ΕΔΥ αναφέρονται στις Λυμένες Ασκήσεις 7

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ ΣΥΝΟΔΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά)

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ech and Math wwwtechandmathgr ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Νοεµβρίου 006 Ηµεροµηνία Παράδοσης της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ ΑΣΚΗΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ - Διανυσματικοί Χώροι Διδάσκουσα : Δρ Μ Αδάμ Λαμία, 6//05 Έστω = (,,), = (0,,)

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας,

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας, Παράδειγμα 3.2(Επίλυση συστήματος Jordan) Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις: Όπου,, πίνακας, Να λυθεί το σύστημα με είσοδο τη συνάρτηση Επίλυση

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός

Διαβάστε περισσότερα

Θέμα 1. που. . Δηλαδή ο υπόχωρος V είναι το. Απάντηση 1α) ii)παρατηρούμε οτι

Θέμα 1. που. . Δηλαδή ο υπόχωρος V είναι το. Απάντηση 1α) ii)παρατηρούμε οτι Θέμα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουνίου (οποιεσδήποτε άλλες ορθές απαντήσεις είναι αποδεκτές)

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ 1) Έστω A, Β Μ n (R) τέτοιοι, ώστε A + Β = Ι n. Να δείξετε ότι : A = A 2 κκκ Β = Β 2 ΑΑ = Ο 2) Έστω A, Β Μ n (R), με A = A 2 και ΑΑ + ΒΒ = Ο. Να δειχθεί ότι ΑΑ = ΒΒ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Παραγοντοποιήσεις πίνακα

Παραγοντοποιήσεις πίνακα ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΪΑΤΡΙΚΗ Παραγοντοποιήσεις πίνακα Θεωρία Perro-Frobeus Μαρία Αδάμ ΛΑΜΙΑ, 08 KΕΦΑΛΑΙΟ Παραγοντοποίηση πίνακα Άλγεβρα πινάκων

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 009-0 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα Έστω η γραμμική απεικόνιση T : με (α) Βρείτε τον πίνακα της T, I Ως προς την κανονική βάση

Διαβάστε περισσότερα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 009 Όνομα συνοπτικές ενδεικτικές λύσεις ΑΜ Ημ/ία Αίθουσα 1 Σύνολο Η εξέταση αποτελείται από θέματα. Κάθε θέμα αξίζει 4 μονάδες. Το άριστα είναι μονάδες και η βάση

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου Θέμα Δίδονται οι πίνακες K= 5, L=, M=. 9 7 A) (8 μονάδες) Για κάθε ένα

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.tua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Βασικές Έννοιες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10) Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα