Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 Viola adorata

2

3 X ± 2s

4

5

6

7

8

9

10

11

12

13

14 AT1 AT MO CV 15.0% 13.3% Std Error

15

16

17 Descriptive Statistics Dependent Variable: tem loc Total Mean Std. Deviation N Dependent Variable: tem Source Corrected Model Intercept loc Error Total Corrected Total Tests of Between-Subjects Effects Type III Sum of Squares df Mean Square F Sig a a. R Squared =.521 (Adjusted R Squared =.441) Multiple Comparisons Dependent Variable: tem LSD (I) loc (J) loc Mean Difference 95% Confidence Interval (I-J) Std. Error Sig. Lower Bound Upper Bound -3.00* * * * Based on observed means. *. The mean difference is significant at the.05 level.

18 / / 1 8,4 11 8,0 2 5,8 12 7,7 3 7,8 13 7,0 4 6,4 14 7,7 5 7,9 15 7,3 6 7,2 16 6,7 7 7,3 17 6,3 8 8,4 18 7,3 9 5,1 19 6,0 10 7,6 20 4,2

19

20 X = 7,005 s= 1,097

21 s s X ta / 2 µ X + ta / 2 n n 1,097 1,097 7,005 2,093 µ 7,005+ 2, ( 6, 492, 7,518) Το 95% δ.ε. Κρίσιµη τιµή τηςt-κατανοµής για 19 β.ε. και επίπεδο σηµαντικότηταςα/2=0,025

22 s s X ta / 2 µ X + ta / 2 n n 1,097 1,097 7,005 1,729 µ 7,005+ 1, ,581, 7, 429 ( ) Το 90% δ.ε. Κρίσιµη τιµή τηςt-κατανοµής για 19 β.ε. και επίπεδο σηµαντικότηταςα/2=0,05

23 n 1 s n 1 s ( ) ( ) X σ 2 2 a / 2 X1 a / 2 19.(1,097) 19.(1,097) σ 32,852 8,907 0,696, 2,567 ( ) Το 95% δ.ε. για την παραλλακτικότητα s = 1,097 s = 1,

24 s = 1,097 s = 1, 203 µε 19 βε n ta / 2s 4.(2,093).1, 203 n = 84, d 0,5 1 n Βρίσκουµε την κρίσιµη τιµή τηςt-κατανοµής γιαα=0,025 και 85-1=84 β.ε. και επαναλαµβάνουµε τον υπολογισµό ta / 2s 4.(1,989).1, 203 n = 76, d 0,5 2

25

26 / Με βάση τα παραπάνω δεδοµένα να βρείτε ένα 90% διάστηµα εµπιστοσύνης για την πραγµατική διαφορά µ 1 -µ 2 στον αριθµό των σπόρων του φυτούχχχr που προέρχεται από άνθη στο πάνω και στο κάτω µέρος του φυτού.

27

28 z ± s z n t n 1; a / 2 Οι διαφορές x i -y i z i

29 z = 0,900, s = 1,729 z sz 1,729 z ± tn 1; a / 2 0,900± 1,833 n 10 µε t = t = 1,833 n 1; a / 2 9;0,05 ( 0,102, 1,902) Το 90% δ.ε.

30

31

32 pˆ = = 0,36 pˆ = = 0, pˆ (1 pˆ ) pˆ (1 pˆ ) pˆ pˆ ± z + n m n= 588, m= 123, z = z = 1, ( 1 2 ) a / 2, 0,10/ 2 0,05 0,36 0,64 0, 211 0,789 (0,36 0, 211) ± 1,64 + = ,149± 0,069 (0,08, 0, 218) Το 90% δ.ε.

33

34

35

36

37 Η 0 : µ 1 =µ 2 Η 1 : µ 1 µ 2 Σε ε.σ. α=0,05

38 n Y s = 10 = 1.185,0 = ,1 n Y s = 11 = 981,8 = , 4 F , 4 = = 4,17> F10,9;0,025 = 3, ,1 Οι δύο παραλλακτικότητες διαφέρουν στατιστικά σηµαντικά σε ε.σ. α=0,05

39 = { > } R t t ν ; a / 2 t Y Y Y Y = = 2 2 s s 1 s2 Y1 Y2 + n n Α ν n = n = n τ τε ν = 2( n 1) Αν n ν = 1 2 n ( 2 ) ( 2 s ) 1 / n1 s2 / n2 n s n τ τε s + n n 1 1 2

40 Τυπικό Σφάλµα ιαφοράς των δύο µέσων όρων s s s = + = + = 9.468,5 = 97,3 n m , , 4 s Y Y Y Y t ,0 981,8 = = 97,3 2,088 Βαθµοί Ελευθερίας 2 ( ,1/ , 4/11) ( ) + ( ) ν = = 14, ,1/10 / , 4/11 /10

41 t = 2,131 15;0,025

42

43

44

45 Η 0 Η 1 Υπολογίζουµε το στατιστικό: X X 2 2 ( ) 2 n 1 s = σ 2 0 ( 25 1) 750 = = ,8

46 { 2 2 } 1; R= X > X n a { 2 2 } { 2 36,42} 24;0,05 R= X > X = X > 2

47

48 A/A Μπορούµε να ισχυριστούµε ότι οι δύο µέθοδοι είναι ισοδύναµες σε ε.σ. α=0,05;

49

50 Η 0 : µ 1 =µ 2 Η 1 : µ 1 µ 2 Σε ε.σ. α=0,05

51 x i -y i A/A x i y i x i - y i

52 z = 4,6 s s 2 z z = 3,82 = 1,96 z n R= > tn 1; a / 2 sz 4,6 10 R= > t 1,96 9;0,025 4,6 10 1,96 = 7,42> t = 2,262 9;0,025

53

54 F

55

56

57 είγµατα F1 απογόνων * Κλάσεις Παραγ ωγής Γύρης Cros stabulation % w ithin είγµατα F1 απ ογόνων είγµατα F1 απ ογόνων Total συχν τητα κελιο 100 σ νολογραµµ ς Κλάσεις Παραγ ωγ ής Γύρης Total 27.5% 15.0% 22.5% 35.0% 100.0% 24.1% 20.7% 24.1% 31.0% 100.0% 37.8% 13.5% 18.9% 29.7% 100.0% 26.2% 9.5% 16.7% 47.6% 100.0% 42.3% 3.8% 23.1% 30.8% 100.0% 32.5% 11.5% 21.0% 35.0% 100.0% = =

58 σ νολογραµµ ς σ νολοστ λης αναµεν µενη είγµατα συχν F1 απογόνων τητα = * Κλάσεις Παραγ ωγής Γύρης γενικ σ νολο Expected Count είγµατα F1 απ ογόνων Total Κλάσεις Παραγ ωγ ής Γύρης Total = =

59 είγµατα F1 απογόνων * Κλ άσεις Παραγ ωγής Γύρης Cros stabulation είγµατα F1 απ ογόνων Total Count Expected Count Count Expected Count Count Expected Count Count Expected Count Count Expected Count Count Expected Count Κλάσεις Παραγ ωγ ής Γύρης Total Count: Συχνότητα Expected Count: Αναµενόµενη Συχνότητα

60 2 2 ( ) 2 2 παρατηρο µενη συχν τητα αναµεν µενη συχν τητα Χ = αναµεν µενη συχν τητα ( ) ( ) ( ) ,0 6 4, , 2 Χ = = 12,125 13,0 4,6 18, 2

61 2 2 2 Ανατρέχουµε στους Πίνακες της 2 Κατανοµής

62 2 (12) 0,05 =21,03 (12) 0,05 2 =12,125 2 =12,125<21,03= 21,03= 2 (12) (12) 0,05 2 < 2

63

64 Φυλλοφόρα µοσχεύµατα δύο ποικιλιών ελιάς που ριζοβόλησαν ή όχι µετά από 84 ηµέρες κάτω από υδρονέφωση

65

66 Η : p = Η p Στατιστικός Έλεγχος : ταδ οποσοστ διαφ ρουν ( p p ) 1 1 2

67 (1,1) 11= = 104,5 320 (2,1) 21= = 104,5 320 (1,2) 12= = 55,5 320 (2,2) 22= = 55,5 320

68 ιόρθωση Συνέχειας τουyates ( ) ( ) ( ) ( ) ,5 0, ,5 0, ,5 0, ,5 0,5 2 X = = 104,5 55,5 104,5 55,5 = 0,88 Γενική Σχέση X 2 = O E E Ο: Παρατηρούµενη Συχνότητα Ε: Αναµενόµενη-Θεωρητική Συχνότητα

69 2 (1) 0,05 =3,84 (1) 0,05 2 =0,88 2 =0,88<3,84= 2 (1) (1) 0,05 2 < 2

70 z z = pˆ pˆ pq ˆ ˆ( + ) n n 1 2 X 2 = ( pˆ pˆ ) pq ˆ ˆ( + ) n n 1 2

71

72 { } R= z > z a pˆ 1 pˆ z= 2 s /2 ˆ ˆ 1 1 s pq + n n 1 2 Σύµφωνα µε τη Μηδενική Υπόθεση τα δύο ποσοστά είναι ίσα και εποµένως µπορούµε να συγχωνεύσουµε τα δύο δείγµατα σε ένα και να υπολογίσουµε ένα κοινόp(καιq=1-p) 209 p= ˆ = 0, Τυπικό Σφάλµα της ιαφοράς των ύο Ποσοστών

73

74

75

76

77 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation % within Κλάσεις Ηλικιών Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 16.6% 2.8% 15.9% 56.6% 8.3% 100.0% 18.8%.9% 9.0% 65.5% 5.8% 100.0% 24.5% 5.5% 61.8% 8.2% 100.0% 22.6%.6% 3.4% 68.4% 5.1% 100.0% 28.9%.8% 5.5% 53.1% 11.7% 100.0% 19.6% 4.9% 2.9% 59.8% 12.7% 100.0% 21.8% 1.3% 7.1% 61.7% 8.0% 100.0%

78 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation % within Πρόβληµα Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 11.1% 30.8% 32.4% 13.4% 15.0% 14.6% 19.4% 15.4% 28.2% 23.8% 16.3% 22.4% 24.9% 16.9% 22.1% 22.5% 22.1% 18.4% 7.7% 8.5% 19.7% 11.3% 17.8% 17.1% 7.7% 9.9% 11.1% 18.8% 12.9% 9.2% 38.5% 4.2% 9.9% 16.3% 10.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

79 % of Total Κλάσεις Ηλικιών Total ετών Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 2.4%.4% 2.3% 8.2% 1.2% 14.6% 4.2%.2% 2.0% 14.7% 1.3% 22.4% 5.4% 1.2% 13.7% 1.8% 22.1% 4.0%.1%.6% 12.2%.9% 17.8% 3.7%.1%.7% 6.8% 1.5% 12.9% 2.0%.5%.3% 6.1% 1.3% 10.3% 21.8% 1.3% 7.1% 61.7% 8.0% 100.0%

80 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Expected Count Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total

81 Sig. p-value Chi-Square Tests Pearson Chi-Square Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases Asymp. Sig. 99% Confidence Interval Value df (2-sided) Sig. Lower Bound Upper Bound a b b b c b b Monte Carlo Sig. (2-sided) a. 6 cells (20.0%) have expected count less than 5. The minimum expected count is b. Based on sampled tables with starting seed c. The standardized statistic is Monte Carlo Sig. (1-sided) 99% Confidence Interval Sig. Lower Bound Upper Bound Αφούp<0,05 η Μηδενική Υπόθεση απορρίπτεται σε επίπεδο σηµαντικότηταςα=0,05

82

83 Symmetric Measures Nominal by Nominal N of Valid Cases Phi Cramer's V a. Not assuming the null hypothesis. Value Approx. Sig. Sig. Lower Bound Upper Bound c c b. Using the asymptotic standard error assuming the null hypothesis. c. Based on sampled tables with starting seed Monte Carlo Sig. 99% Confidence Interval Η τιµή του δείκτη συνάφειαςvτου Cramer µαρτυρά ασθενούς εντάσεως συσχέτιση µεταξύ των δύο χαρακτηριστικών που διασταυρώνονται

84 V X 2 p=min(k-1, l-1). V = Np k l Παίρνει τιµές στο διάστηµα [0, 1]

85 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Κλάσεις Ηλικιών Total ετών % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 16.6% 2.8% 15.9% 56.6% 8.3% 100.0% %.9% 9.0% 65.5% 5.8% 100.0% %.0% 5.5% 61.8% 8.2% 100.0% %.6% 3.4% 68.4% 5.1% 100.0% %.8% 5.5% 53.1% 11.7% 100.0% % 4.9% 2.9% 59.8% 12.7% 100.0% % 1.3% 7.1% 61.7% 8.0% 100.0% Adjusted Residual: ιορθωµένο Τυποποιηµένο Υπόλοιπο

86

87 <0,55 0 0,0154 2,59 0,55-1,05 5 0,0247 4,15 1,05-1,55 8 0,0500 8,40 1,55-2, , ,46 2,05-2, , ,05 2,55-3, , ,99 3,05-3, , ,17 3,55-4, , ,06 4,05-4, , ,06 4,55-5, , ,49 5,05-5,55 7 0,0368 6,18 5,55-6,05 7 0,0168 2,82 >6,05 0 0,0094 1, , ,00

88 X = 3,18 s= 1,22 Στην πράξη υπολογίζονται από το δείγµα

89

90 Y 3,18 0,55 3,18 P( Y 0,55) = P ( 2,16) 1,22 1,22 = P z = = 0,5000 0, 4846= 0,0154 0,55 3,18 Y 3,18 1,55 3,18 P(0,55 Y 1,55) = P 1,22 1,22 1,22 = = P( 2,16 z 1,75) = 0, , 4599= 0,0247

91

92 <0,55 0 0,0154 2,59 0,55-1,05 5 0,0247 4,15 1,05-1,55 8 0,0500 8,40 1,55-2, , ,46 2,05-2, , ,05 2,55-3, , ,99 3,05-3, , ,17 3,55-4, , ,06 4,05-4, , ,06 4,55-5, , ,49 5,05-5,55 7 0,0368 6,18 5,55-6,05 7 0,0168 2,82 >6,05 0 0,0094 1, , ,00

93 2 : X ( ) ( ) ( ) 2 0 2,59 5 4,15 0 1,58 = = 15,30 2,59 4,15 1,58 Συγκρίνουµε το στατιστικό 2 =15,30 µε την κρίσιµη της 2 Κατανοµής µε 10 β.ε. σε επίπεδο σηµαντικότητας α=0,05.

94 Απάντηση (συνέχεια) 2 (10) 0,05 =18,31 (θεωρητικό, κρίσιµη τιµή) 2 =15,30 (δειγµατικό) 2 =15,30<18,31= 18,31= 2 (10) (10) 0,05 ειγµατικό 2 < Θεωρητικό 2 Η µηδενική Υπόθεση παραµένει

95 Απάντηση (συνέχεια) Απόφαση-Συµπέρασµα Συµπέρασµα: Με βάση τα διαθέσιµα δεδοµένα η µηδενική υπόθεση δεν µπορεί να απορριφθεί σε ε.σ. α=0,05. εν ανιχνεύθηκαν στατιστικά σηµαντικές διαφορές µεταξύ θεωρητικών και δειγµατικών τιµών. εν έχουµε λόγους να αµφιβάλλουµε ότι η κατανοµή του χλωρού βάρους είναι η Κανονική (σε ε.σ. α=0,05).

96 Σκηνή 4η Λυµένες Ασκήσεις στον Πίνακα

97 1

98 2

99 3

100 3

101 3

102 3

103 3

104 4

105 5

106 6

107 7

108 8

109 8

110 8

111 Σκηνή Πέµπτη Bonus Θέµατα

112 Πρόβληµα Επιδηµιολογίας Από ανθρώπους, οι είναι γυναίκες και οι είναι άνδρες. Από τις γυναίκες έχουν το πρόβληµα υγείας «φ» και από τους άνδρες έχουν το ίδιο πρόβληµα. Έστω ότι επιλέγουµε ένα άτοµο τυχαία.

113 Πρόβληµα Επιδηµιολογίας (συνέχεια) Έχουµε Ω={ ={γφ, γµ, αφ, αµ} ως δειγµατικό χώρο µε το να σηµαίνει γυναίκα µε πρόβληµα υγείας, το γυναίκα χωρίς πρόβληµα, το άνδρας µε πρόβληµα υγείας και το άνδρας χωρίς πρόβληµα υγείας. Ρ = 0,090 Ρ = 0,425 Ρ = 0,302 Ρ = 0,183

114 Πρόβληµα Επιδηµιολογίας (συνέχεια) Έστω Α το ενδεχόµενο της επιλογής ενός ανθρώπου µε πρόβληµα υγείας και έστω Β το ενδεχόµενο επιλογής γυναίκας. το Α Β είναι το ενδεχόµενο επιλογής µιας γυναίκας µε πρόβληµα υγείας, το Α Β είναι το ενδεχόµενο επιλογής ενός ανθρώπου µε πρόβληµα υγείας ή γυναίκας, το Β-Α είναι το ενδεχόµενο επιλογής µια γυναίκας χωρίς πρόβληµα υγείας

115 Πρόβληµα Επιδηµιολογίας (συνέχεια) Ρ(A) = 0, ,302 = 0,392 Ρ(B) = 0, ,425 = 0,515 Ρ(Α Β) ) = 0,090 Ρ(Α Β) ) = 0, , ,302 = 0,817 Ρ(B-A) = 0,425

116 Πρόβληµα ιωνυµικής Κατανοµής Έστω ότι ρίχνουµε ένα ζάρι 5 φορές και ενδιαφερόµαστε αν το αποτέλεσµα κάθε ρίψης ήταν «1» ή «όχι 1». 1. Ποια η πιθανότητα να µην έρθει ούτε µια φορά στις 5 προσπάθειες το «1»? 2. Ποια η πιθανότητα να έρθει ακριβώς τρεις φορές στις 5 προσπάθειες το «1»? 3. Ποια η πιθανότητα να έρθει τουλάχιστο δύο φορές στις 5 προσπάθειες το «1»?

117 Απάντηση Ας θεωρήσουµε ως επιτυχία (Ε) το αποτέλεσµα της ρίψης να είναι το 1 και ως αποτυχία (Α) το αποτέλεσµα να είναι «όχι 1» (κοινώς το «όχι 1» σηµαίνει ότι το αποτέλεσµα µπορεί να είναι 2,3,4,5 ή 6). Η πιθανότητα να έρθει «1» όταν ρίχνουµε ένα ζάρι είναι 1/6. Άρα η πιθανότητα επιτυχίας είναι p=1/6 και εποµένως η πιθανότητα αποτυχίας θα είναι q=1-p=5/6. Αν µε X συµβολίσουµε το συνολικό αριθµό επιτυχιών στις 5 επαναλήψεις του πειράµατος, τότε X~B(5,1/6). Έχουµε λοιπόν:

118 Απάντηση (συνέχεια)

119 Πρόβληµα Poisson Κατανοµής Μια υπάλληλος η οποία εισάγει δεδοµένα στον Η/Υ κάνει κατά µέσο όρο τρία λάθη ανά σελίδα. Να υπολογιστεί η πιθανότητα σε τυχαία επιλεγµένη σελίδα να βρεθούν δύο λάθη. Εστω ο αριθµός των λαθών ανά σελίδα. Σύµφωνα µε τα δεδοµένα X~P( =3). Ζητάµε την πιθανότητα P(X=2)

120 Ασκήσεις Πιθανοτήτων 1. ίνονται Ρ(Α )=0,3, Ρ(Β)=0,4 και Ρ(ΑΒ )=0,5. Να υπολογίσετε τις πιθανότητες Ρ(Α), Ρ(ΑΒ), Ρ(Α Β). 2. Ένα παλιό τρακτέρ χαλάει 65% από βλάβη µηχανής, 20% από αµέλεια του οδηγού,, 5% από βλάβη µηχανής και αµέλεια οδηγού και από άλλες αιτίες. Ποια είναι η πιθανότητα να χαλάσει το τρακτέρ «µόνο από βλάβη µηχανής ή µόνο από αµέλεια οδηγού»; 3. Ρίχνουµε δύο ζάρια µια φορά. Ποιος είναι ο ειγµατοχώρος; Ποια είναι τα γεγονότα: α) Το άθροισµα των ενδείξεων είναι διαιρετό διά 4, β) Οι ενδείξεις των ζαριών είναι ίδιες, γ) οι ενδείξεις των ζαριών διαφέρουν το πολύ κατά 3. Ποιες είναι οι πιθανότητες των ενδεχοµένων που ορίστηκαν στα α), β) και γ)

121 Άσκηση Συµπλήρωσης (1)

122 Άσκηση Συµπλήρωσης (2)

123 ΤΕΛΟΣ

124 Viola adorata

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

«ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ»

«ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ» Π.Μ.Σ. ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Διπλωματική Εργασία με θέμα: «ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ» Επιβλέπων Καθηγητής: Πολίτης Κων/νος Φοιτήτρια: Κατσίπη

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 6 ο 6.1 Ερωτήσεις Πολλαπλών Απαντήσεων 6.2 Εντολή Case Summaries 6.3 Ο έλεγχος t : (correlate t-test) 6.3.1Σύγκριση

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes:

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes: ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 6 ΙΑΓΝΩΣΤΙΚΟΙ ΕΛΕΓΧΟΙ 1.β ιαγνωστικοί Έλεγχοι Πολύ σηµαντικό το θεώρηµα

Διαβάστε περισσότερα

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 Ι.Τ.Ε. ROEHAMPTON UNIVERSITY MA IN EDUCATION ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 ΕΚΚΙΝΗΣΗ ΤΟΥ SPSS Από την Έναρξη των Windows, επιλέγουµε: Προγράµµατα SPSS for Windows SPSS *.*

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας;

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 109-135, 2014 Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Χρήστος Θεοδώρου, christheodorou@sch.gr

Διαβάστε περισσότερα

ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ Εθνική Σχολή Δημόσιας Υγείας Τομέας Οικονομικών της Υγείας ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΥΓΕΙΑΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΜΕΡΟΣ 3 Ο ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΑΘΗΝΑ, ΣΕΠΤΕΜΒΡΙΟΣ 2006 1 ΣΥΝΟΠΤΙΚΑ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ MSM 8 Μεταπτυχιακό πρόγραμμα σπουδών στη Διοίκηση Υπηρεσιών Διπλωματική εργασία στη διαφήμιση και στην προώθηση πωλήσεων. Guerilla marketing εκστρατείες στις χώρες της Ευρώπης.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Διδάσκοντας Ιστορία μέσα από ιστοσελίδες κοινωνικής δικτύωσης (social network). Η διδακτική αξιοποίηση του facebook

Διδάσκοντας Ιστορία μέσα από ιστοσελίδες κοινωνικής δικτύωσης (social network). Η διδακτική αξιοποίηση του facebook Διδάσκοντας Ιστορία μέσα από ιστοσελίδες κοινωνικής δικτύωσης (social network). Η διδακτική αξιοποίηση του facebook Καλόγηρος Βασίλειος, εκπαιδευτικός, συγγραφέας-μεταπτυχιακός ΠΤΔΕ Π.Θ, Σμυρναίος Αντώνιος,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed Methods of analysis Summary Guide Assumptions Variables Quantitative Qualitative Normality Normal Non-normal distributed Groups Number (1, 2, >2) Pair or independent Normality Cases Cases >50

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Χρήστος Κατσάνος και Νικόλαος Αβούρης Πανεπιστήµιο Πατρών Σκοπός Το παρόν κεφάλαιο, συµπληρωµατικό του κυρίως υλικού του βιβλίου, περιλαµβάνει

Διαβάστε περισσότερα

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ» Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης. Ανδρουλακάκη Αικατερίνη

Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης. Ανδρουλακάκη Αικατερίνη Π.Μ.Σ. ΔΙΕΘΝΗΣ ΔΙΟΙΚΗΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης Ανδρουλακάκη Αικατερίνη

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ονοματεπώνυμο: ΜΟΙΡΑΣΓΕΤΗ ΦΩΤΕΙΝΗ Σειρά: 10 Επιβλέπων Καθηγητής: ΑΔΑΜ ΒΡΕΧΟΠΟΥΛΟΣ Δεκέμβριος 2013 ΕΙΣΑΓΩΓΗ Σκοπός της έρευνας

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Παράγοντες που Συμβάλλουν στην Ικανοποίηση του Τραπεζικού Πελάτη

Παράγοντες που Συμβάλλουν στην Ικανοποίηση του Τραπεζικού Πελάτη Παράγοντες που Συμβάλλουν στην Ικανοποίηση του Τραπεζικού Πελάτη Βερβερίδου Φανή, Βλασοπούλου Ασπασία, Ζιάκα Σταματία Πανεπιστήμιο Αιγαίου, Μεταπτυχιακό Διοίκησης Επιχειρήσεων(ΜΒΑ) mba09034@ba.aegean.gr,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Ονοματεπώνυμο: Βλαχάκη Παρασκευή- Ερασμία Σειρά: 9η Επιβλέπων Καθηγητής: Αδάμ Βρεχόπουλος Δεκέμβριος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

if code='1' then type='fixed'; else if code='2' then type='variable'; else type='unknown'; ΚΕΦΑΛΑΙΟ 2

if code='1' then type='fixed'; else if code='2' then type='variable'; else type='unknown'; ΚΕΦΑΛΑΙΟ 2 Πολλές φορές, αντί να χρησιμοποιούμε μια σειρά από IF-THEN εντολές, μπορούμε να χρησιμοποιήσουμε την εντολή ELSE, για να δηλώσουμε μια εναλλακτική ενέργεια όταν η συνθήκη στην IF-THEN εντολή δεν ικανοποιείται.

Διαβάστε περισσότερα

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΚΛΙΝΙΚΑ ΚΑΙ ΔΗΜΟΓΡΑΦΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΣΘΕΝΩΝ ΜΕ ΝΟΣΟ ΠΑΡΚΙΝΣΟΝ ΠΟΥ ΥΠΟΒΑΛΛΟΝΤΑΙ

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Χαράλαµπος Κ. Μαµουλάκης

Χαράλαµπος Κ. Μαµουλάκης Τα λάθη στο δείγµα και τη στατιστική ανάλυση Χαράλαµπος Κ. Μαµουλάκης Επικουρος Καθηγητής Ουρολογίας Ουρολογική Κλινική Πανεπιστηµιακό Γενικό Νοσοκοµείο Ηρακλείου Πανεπιστήµιο Κρήτης, Τµήµα Ιατρικής Σύγκρουση

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water-

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water- ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 11 ο 11.1 Παράθυρο εισαγωγής εντολών (SYNTAX) 11.2 Script γλώσσα προγραµµατισµού στο SPSS 11.3 Λήψη και εισαγωγή

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 12 ο 12.1 Λογιστική Παλινδρόµηση 12.2 Η εξίσωση της Λογιστικής Παλινδρόµησης. 12.3 Βήµατα δηµιουργίας του

Διαβάστε περισσότερα

ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ Εθνική Σχολή Δημόσιας Υγείας Τομέας Οικονομικών της Υγείας ΠΑΝΕΛΛΑΔΙΚΗ ΕΡΕΥΝΑ ΚΟΙΝΗΣ ΓΝΩΜΗΣ: ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΥΓΕΙΑΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΜΕΡΟΣ 2 Ο ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ (Α) Καταγραφή δεδοµένων και επιλογή κατάλληλων ρυθµίσεων των µεταβλητών Η βασική οθόνη του στατιστικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

Εισαγωγή στο SPSS, Ενότητα 1

Εισαγωγή στο SPSS, Ενότητα 1 Εισαγωγή στο SPSS, Ενότητα Βήματα για την Στατιστική ανάλυση δεδομένων.. Εισαγωγή δεδομένων στον data editor (Εισαγωγή από μία βάση δεδομένων ή από ένα spreadsheet ή από ένα αρχείο txt, ή απευθείας εισαγωγή

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ ΠΙΛΟΤΙΚΗ ΜΕΤΑΦΟΡΑ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥΣ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΟΜΑΔΑ ΤΩΝ ΕΞΙ ΕΤΩΝ ΕΩΣ ΕΞΙ ΕΤΩΝ ΚΑΙ 11 ΜΗΝΩΝ)

ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ ΠΙΛΟΤΙΚΗ ΜΕΤΑΦΟΡΑ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥΣ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΟΜΑΔΑ ΤΩΝ ΕΞΙ ΕΤΩΝ ΕΩΣ ΕΞΙ ΕΤΩΝ ΚΑΙ 11 ΜΗΝΩΝ) Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ ΔΟΚΙΜΑΣΙΑ ΚΑΤΑΝΟΗΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ΔΟΚΙΜΑΣΙΑ ΕΚΦΡΑΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ

Διαβάστε περισσότερα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οπτική και Όραση Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα Καρακώστα Άννα Επιβλέπουσα καθηγήτρια : Ιωάννα Μοσχανδρέα ΓΕΝΙΚΑ Εισαγωγή Σκοπός και στόχοι της έρευνας Ανασκόπηση δημοσιευμένων

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟ ΤΟ ΕΓΧΕΙΡΙ ΙΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ INFORMATION MANAGEMENT

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟ ΤΟ ΕΓΧΕΙΡΙ ΙΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ INFORMATION MANAGEMENT KINGSTON UNIVERSITY ICBS Business College ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟ ΤΟ ΕΓΧΕΙΡΙ ΙΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ INFORMATION MANAGEMENT ΕΙΣΗΓΗΤΗΣ : ΑΘΑΝΑΣΙΟΣ Ν. ΣΤΑΜΟΥΛΗΣ Ανάλυση δεδοµένων και βασικές έννοιες Για τον

Διαβάστε περισσότερα

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΣΩΤΗΡΙΟΥ ΣΤΥΛΙΑΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

ΑΝΑΖΗΤΗΣΗ ΛΟΓΩΝ ΚΑΙ ΑΙΤΙΩΝ ΥΙΟΘΕΤΗΣΗΣ ΠΡΑΚΤΙΚΩΝ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΓΙΑ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

ΑΝΑΖΗΤΗΣΗ ΛΟΓΩΝ ΚΑΙ ΑΙΤΙΩΝ ΥΙΟΘΕΤΗΣΗΣ ΠΡΑΚΤΙΚΩΝ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΓΙΑ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΙΟΙΚΗΣΗ ΑΝΑΖΗΤΗΣΗ ΛΟΓΩΝ ΚΑΙ ΑΙΤΙΩΝ ΥΙΟΘΕΤΗΣΗΣ ΠΡΑΚΤΙΚΩΝ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΓΙΑ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Το σύγχρονο σχολείο αποβλέπει στη δημιουργία πολιτών με ηθική συνείδηση και με

Το σύγχρονο σχολείο αποβλέπει στη δημιουργία πολιτών με ηθική συνείδηση και με ΔIOIKHTIKH ENHMEPΩΣH 83 Η EΠIMOPΦΩΣH ΩΣ BAΣIKOΣ ΠAPAΓONTAΣ ANAΠTYΞHΣ TOY ANΘPΩΠINOY ΔYNAMIKOY THΣ ΠPΩTOBAΘMIAΣ EKΠAIΔEYΣHΣ: EPEYNHTIKEΣ ΔIAΠIΣTΩΣEIΣ Tων: Δάρρα Μαρίας, Σαΐτη Χρίστου Eισαγωγή Το σύγχρονο

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή ΤΟ ΣΤΑΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ SPSS Το SPSS (Statistical Package for Social Sciences) είναι ένα στατιστικό πρόγραμμα με ευρύτατη χρήση σε όλους τους ερευνητικούς χώρους και ιδιαίτερα στο χώρο των κοινωνικών επιστημών.

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

Εντοπισµός θέσης Q 3 : = = = 22. 5 Άρα το Q 3 ανήκει στην 3 η τάξη (διάστηµα 80 - < 90)

Εντοπισµός θέσης Q 3 : = = = 22. 5 Άρα το Q 3 ανήκει στην 3 η τάξη (διάστηµα 80 - < 90) ΑΣΚΗΣΗ Ο Πίνακας. δίνει την κατανοµή συχνότητας των µισθών σε χρηµατικές µονάδες τριάντα υπαλλήλων µιας δηµόσιας υπηρεσίας. Πίνακας. Μισθός (χρ. µον.) Αριθµός Υπαλλήλων 60 70 7 70 80 4 80 90 5 90 00 3

Διαβάστε περισσότερα