Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải."

Transcript

1 Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH = FB.FC. 3. bốn điểm A, E, H, D cùng nằm trên một đường tròn, xác định tâm I của đường tròn này. 4. IE là tiếp tuyến của đường tròn (I). 1. AH vuông góc BC : DBC nt (O) đường kính BC (gt) DBC vuông tại D BD CD Giải. hay BD AC. Cmtt : CE AB Xét tam giác ABC có : CE BD AB (cmt) CE đường cao thứ nhất. AC (cmt) BD đường cao thứ hai. hai đường cao BD và CE cắt nhau tại H (gt) = > H là trực tâm của tam giác ABC = > AH là đường cao thứ ba. = > AH BC tại F. 2. FA.FH = FB.FC : Xét FAB và FCH, ta có : (cmt) ( FAB vuông tại F)

2 ( FAC vuông tại F) (1) FAB đồng dạng FCH FA.FH = FB.FC 3.A, E, H, D nằm trên đường tròn Xét ΔAEH vuông tại E (gt) = > ΔAEH nội tiếp đường tròn đường kính AH (1). Hay A, E, H nằm trên đường tròn đường kính AH(1). Xét ΔADH vuông tại D (gt) = > ΔADH nội tiếp đường tròn đường kính AH Hay A, D, H nằm trên đường tròn đường kính AH(2). Từ (1) và (2) : A, E, H, D nằm trên đường tròn đường kính AH. Suy ra : tâm I là trung điểm AH. 4. IE là tiếp tuyến của đường tròn (O). Xét Δ AEI, ta có : IA = IE (bán kính) Δ AEI cân tại I (2) Cmtt, ta được : (3) Từ (1), (2) và (3), ta được : Mà : : Hay : IE EO tại E Mà : E thuộc (O) IE là tiếp tuyến của đường tròn (O)

3 Vậy : IE là tiếp tuyến của đường tròn (O). Đường tròn : cung dây tiếp tuyến (V1) - BÀI 2 : Trên tiếp tuyến tại điểm A của đường tròn (O; R) lấy điểm M. gọi điểm B của đường tròn (O; R) sao cho MB = MA 1. Chứng minh : MB là tiếp tuyến của đường tròn (O; R). 2. Cho OM = 2R. chứng minh : tam giác ABC đều. tính độ dài và các cạnh và diện tích của tam giác AMB theo R. 3. Vẽ đường kính BE của (O). chứng minh : AE // OM. 1. MB là tiếp tuyến của đường tròn (O; R). Xét AOM và BOM, ta có : MA = MB (gt) OA = OB (bán kính) OM cạnh chung. AOM = BOM Giải. Mà : (MA tiếp tuyến của (O)) Hay : MB OB tại B Mà : điểm B của đường tròn (O; R) MB là tiếp tuyến của đường tròn (O) Vậy : MB là tiếp tuyến của đường tròn (O; R) 2. OM = 2R : Xét AOM vuông tại A, ta có : sin OMA = OA : OM = ½

4 Mặt khác : (tính chất hai tt cắt nhau) Xét ABM, ta có : MA = MB (gt) ABM cân tại M Mà : (cmt) ABM đều. Xét vuông tại A, theo định lí ta có : OM 2 = MA 2 + 0B 2 (2R) 2 = MA 2 + R 2 MA = Diện tích S AOM = MA 2. = (dvdt) 3. chứng minh : AE // OM : ta có : MA = MB (gt) OA = OB (bán kính) MO là đường trung trực AB OM AB (1) Xét ABE nội tiếp (O), có : BE là đường kính ABE vuông tại A AE AB (2) Từ (1) và (2) AE // OM. - Bài 3 : Cho nữa đường tròn (O; R) có đường kính AB. tiếp tuyến tại điểm M trên nữa đường tròn lần lượt cắt hai tiếp tuyến tại A và B ở C và D. 1. Chứng minh : AC + DB = CD. 2. Chứng minh : tam giác COD vuông và AC.BD = R OC cắt AM tại E và OD cắt BM tại F. chứng minh :

5 Ta có : Đường tròn : cung dây tiếp tuyến (V1) 1. Tứ giác OEMF là hình chữ nhật. 2. OE.OC = OF.OD = R EF BD. 4. Chứng minh : AB là tiếp tuyến của đường tròn có đường kính CD. 5. AD cắt BC tại N. chứng minh : MM // AC. 1. Chứng minh : AC + DB = CD. CA = CM (tính chất hai tt cắt nhau) DB = DM (tính chất hai tt cắt nhau) CD = CM + MD AC + DB = CD. 2. tam giác COD vuông và AC.BD = R 2. Ta có : Giải. OD là tia phân giác góc BOM (tính chất hai tt cắt nhau) OC là tia phân giác góc COM (tính chất hai tt cắt nhau) Mà : góc BOM và góc COM kề bù. OC OD tại O. Hay COD vuông tại O. Trong COD vuông tại O, có đường cao OM. hệ thức lượng : MC.MD = OM 2 = R 2 Hay : AC.BD= R 2 (CA = CM và DB = DM) 3.a Tứ giác OEMF là hình chữ nhật : Ta có : CA = CM (cmt)

6 OA = OM ( bán kính) CO là đường trung trực của AM CO $latex $ AM tại E, EA = EM Cmtt, ta được : Tứ giác OEMF, ta có : (cmt) Tứ giác OEMF là hình chữ nhật. Trong COM vuông tại M, có đường cao ME. hệ thức lượng : OC. OE = OM 2 = R 2 Cmtt : OD. OF = OM 2 = R 2 OE.OC = OF.OD = R 2. EF BD. Xét ABM, ta có : EA = EM (cmt) FB = FM (cmt) EF là đường trung bình. EF // AB Mà : AB BD (tính chất tt) EF BD. 4. AB là tiếp tuyến của đường tròn có đường kính CD. trong COD vuông tại O (cmt) COD nội tiếp đường tròn (I) đường kính CD

7 IC = ID. Mặt khác : CA // BD (cùng vuông góc AB) Tứ giác ABDC là hình thang. Xét hình thang ABDC, ta có : IC = ID (cmt) OA = OB (AB là đường kính (O)) IO là đường trung bình IO // CA Mà CA AB IO AB tại O Mà : điểm O thuộc (I) AB là tiếp tuyến của (I) đường kính CD 5. NM // AC Ta có : AC // BD (cmt) (định lí talet thuận) MÀ : CA = CM và DB = DM (cmt) NM // AC (định lí talet đảo)

8 Bài tập rèn luyện tư duy : Đường tròn : cung dây tiếp tuyến (V1) 1/ Cho tam giác ABC có 3 góc nhọn,nội tiếp đường tròn (O) hai đường cao BE và CD cắt nhau tại H a/ CM : 4 điểm B, D, E, C thuộc đường tròn b/ CM : HB. HE = HD.HC c/ Vẽ đường kính AK, CMinh : I là trung điểm HK d/ CM : tiếp tuyến tại D và E của đường tròn tâm I đường kính BC và AH đồng qui 2/ Cho đường tròn (O; R), điểm A nằm ngoài đường tròn sao cho OA = 2R. Vẽ tiếp tuyến AB của (O) (B là tiếp điểm). Vẽ dây cung BC của (O) vuông góc với OA tại H. a/ Chứng minh H là trung điểm BC b/ Chứng minh AC là tiếp tuyến của (O) c/ Chứng minh tam giác ABC đều d/ Trên tia đối của tia BC lấy Q. Từ Q vẽ hai tiếp tuyến QD, QE của (O) (D, E là hai tiếp điểm). Chứng minh A,E,D thẳng hàng 3/ Cho đường tròn (O; R) và M là một điểm ở ngoài đường tròn. Từ M vẽ tiếp tuyến MA của đường tròn (O) A là tiếp điểm. Vẽ AH vuông góc với OM tại H, tia AH cắt (O) tại B. a/ Chứng minh OM là tia phân giác của góc A ÔB b/ Chứng minh BM là tiếp tuyến tại B của đường tròn (O). 4 2R c/ Cho AB. Tính AH, OH, OM, AM theo R. 3 d/ Đoạn thẳng OM cắt (O) tại I. Chứng minh rằng điểm I cách đều ba cạnh ABM e/ Gọi S là diện tích của ABM; p là nửa chu vi ABM; r = IH. So sánh tỉ số r S với p. 4/ Cho đường tròn (O; R) và điểm A ở ngoài đường tròn. Từ điểm A vẽ hai tiếp tuyến AB, AC của (O) (B, C là tiếp điểm). Gọi H là giao điểm của OA và BC. a/ Chứng minh OH BC. Tính tích OH.OA theo R. b/ Qua A vẽ đường thẳng (không đi qua tâm O) cắt đường tròn (O) tại E và F (E nằm giữa A và F). Gọi K là trung điểm của EF. Tia OK cắt đường thẳng BC tại S. Chứng minh: OK. OS = R 2 c/ Chứng minh SF, SE là tiếp tuyến của (O).

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN HỘI NGHỊ NCKH KHOA SP TOÁN-TIN THÁNG 5/5 MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN ThS. Võ Xuân Mi Kho Sư phạm Toán-Tin, Trường Đại học Đồng Tháp Emil: vxmi@dthu.edu.vn

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

Ví dụ 2 Giải phương trình 3 " + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được

Ví dụ 2 Giải phương trình 3  + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được CHƯƠNG 6. PHƯƠNG TRÌNH VI PHÂN CẤP CAO Những ý tưởng cơ bản của phương trình vi phân đã được giải thích trong Chương 9, ở đó chúng ta đã tập trung vào phương trình cấp một. Trong chương này, chúng ta nghiên

Διαβάστε περισσότερα

Vn 1: NHC LI MT S KIN TH C LP 10

Vn 1: NHC LI MT S KIN TH C LP 10 Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà

Διαβάστε περισσότερα

1.3.2 L 2 đánh giá Nghiệm yếu Nghiệm tích phân, điều kiện Rankine-Hugoniot... 25

1.3.2 L 2 đánh giá Nghiệm yếu Nghiệm tích phân, điều kiện Rankine-Hugoniot... 25 Giáo trình Phương trình vi phân đạo hàm riêng Đặng Anh Tuấn Ngày 30 tháng 3 năm 2016 Mục lục 1 Phương trình đạo hàm riêng cấp 1 1 1.1 Siêu mặt không đặc trưng......................... 1 1.1.1 Một số ký

Διαβάστε περισσότερα

DONGPHD. DongPhD Problems Book Series. Vector Spaces. Inner Product Spaces. Hilbert Spaces. Banach Spaces. Normed Spaces.

DONGPHD. DongPhD Problems Book Series. Vector Spaces. Inner Product Spaces. Hilbert Spaces. Banach Spaces. Normed Spaces. DONGPHD Vector Spaces Inner Product Spaces Hilbert Spaces Banach Spaces Normed Spaces DongPhD c 2009 Bài tập Giải tích hàm DongPhD Problems Book Series υol.2 2009 Lời tựa To all the girls i love before.

Διαβάστε περισσότερα

KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT)

KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT) Chương 1 KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT) 1.1 Tính chất của êtông cốt thép : Bêtông cốt thép là vật liệu xây dựng phức hợp do hai loại vật liệu là êtông và thép có đặc trưng cơ học khác nhau cùng

Διαβάστε περισσότερα

HƯỚNG DẪN GIẢI MỘT SỐ CÂU KHÓ TRONG ĐỀ THI THỬ VẬT LÝ GV: LÊ VĂN LONG

HƯỚNG DẪN GIẢI MỘT SỐ CÂU KHÓ TRONG ĐỀ THI THỬ VẬT LÝ GV: LÊ VĂN LONG HƯỚNG DẪN GẢ ỘT SỐ Â KHÓ TONG ĐỀ TH THỬ VẬT Ý 3 GV: Ê VĂN ONG DAO ĐỘNG Ơ âu : ộ vậ dao động điều hoà với biên độ 4 cm, cứ sau mộ khoảng hời gian /4 giây hì động năng lại bằng hế năng Quãng đường lớn nhấ

Διαβάστε περισσότερα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα - Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει

Διαβάστε περισσότερα

Phụ thuộc hàm và chuẩn hóa

Phụ thuộc hàm và chuẩn hóa Phụ thuộc hàm và chuẩn hóa quan hệ Bởi: Ths. Phạm Hoàng Nhung Một số hướng dẫn khi thiết kế cơ sở dữ liệu quan hệ Việc quan trọng nhất khi thiết kế cơ sở dữ liệu quan hệ là ta phải chọn ra tập các lược

Διαβάστε περισσότερα

VẬT LÝ ĐẠI CƯƠNG (A1)

VẬT LÝ ĐẠI CƯƠNG (A1) HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ===== ===== SÁCH HƯỚNG DẪN HỌC TẬP VẬT LÝ ĐẠI CƯƠNG (A) (Dùng cho sinh viên hệ đào tạo đại học từ xa) Lưu hành nội bộ HÀ NỘI - 005 Giới thiệu môn học GIỚI THIỆU

Διαβάστε περισσότερα

1.1 Không gian hàm và toán tử Tập hút lùi (Pullback attractors)... 11

1.1 Không gian hàm và toán tử Tập hút lùi (Pullback attractors)... 11 Mục lục Danh mục các kí hiệu, chữ viết tắt 3 Lời cảm ơn 4 Lời mở đầu 5 1 Không gian hàm và các định nghĩa 9 1.1 Không gian hàm và toán tử.................. 9 1.2 Tập hút lùi (Pullback attractors)................

Διαβάστε περισσότερα

x % = % Số mol chất tan Số kilogam dung môi

x % = % Số mol chất tan Số kilogam dung môi A. Dung dịch. Hoá học là ột bộ ôn khoa học ang tính thực nghệ cao. Trong đó ta có thể co dung dịch là ột phần khó. Để có thể hểu được nó ngoà những kến thức lí thuyết là chưa đủ à uốn hểu được sâu sắc

Διαβάστε περισσότερα

LỜI NÓI ĐẦU. Mọi ý kiến đóng góp xin gửi về phòng Đào tạo trường đại học Nông nghiệp Hà Nội. Xin chân thành cảm ơn! T/m nhóm biên soạn

LỜI NÓI ĐẦU. Mọi ý kiến đóng góp xin gửi về phòng Đào tạo trường đại học Nông nghiệp Hà Nội. Xin chân thành cảm ơn! T/m nhóm biên soạn LỜI NÓI ĐẦU Để nhanh chóng phát triển công nghệ vũ trụ phục vụ cho phát triển kinh tế của đất nước, Nhà nước đã xây dựng đề án: Kế hoạch tổng thể về ứng dụng và phát triển công nghệ viễn thám ở Việt Nam

Διαβάστε περισσότερα

Đá quý saphia và ruby Thứ ba, 21 Tháng :37 - Lần cập nhật cuối Thứ ba, 05 Tháng :56

Đá quý saphia và ruby Thứ ba, 21 Tháng :37 - Lần cập nhật cuối Thứ ba, 05 Tháng :56 (H2N2)-Saphia và Ruby chiếm vị trí độc tôn trong các đá quý màu. Saphia và ruby cùng với kim cương, ngọc trai, ngọc lục bảo (Emerald) chiếm vị trí chủ yếu trong thế giới đồ trang sức. Ruby là một loại

Διαβάστε περισσότερα

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG) TÌ TỰ TÍ TOÁ TIẾT Ế BỘ TUYỀ BÁ ĂG TỤ (TẲG, GIÊG Thôg số đầu à: côg suất P, kw (hặc môme xắ T, mm; số òg quy, g/ph; tỷ số truyề u Chọ ật lệu chế tạ báh răg, phươg pháp hệt luyệ, tr cơ tíh ật lệu hư: gớ

Διαβάστε περισσότερα

Chuyên đề : HƯỚNG DẪN HỌC SINH NCKH-KT VÀ TỔ CHỨC CUỘC THI TẠI ĐƠN VỊ, CỤM ĐƠN VỊ

Chuyên đề : HƯỚNG DẪN HỌC SINH NCKH-KT VÀ TỔ CHỨC CUỘC THI TẠI ĐƠN VỊ, CỤM ĐƠN VỊ Chuyên đề : HƯỚNG DẪN HỌC SINH NCKH-KT VÀ TỔ CHỨC CUỘC THI TẠI ĐƠN VỊ, CỤM ĐƠN VỊ (Chiếu Slide1 theo thứ tự liên tiếp) CÁC NỘI DUNG CỦA CHUYÊN ĐỀ 1. HƯỚNG DẪN HỌC SINH NCKH-KT Bước 1: Tìm ý tưởng nghiên

Διαβάστε περισσότερα

Chương trình Hóa học III. ANKEN (ALCEN, OLEFIN, DỒNG ĐẲNG ETILEN, )

Chương trình Hóa học III. ANKEN (ALCEN, OLEFIN, DỒNG ĐẲNG ETILEN, ) 28 Chương trình Hóa học III. ANKEN (ALCEN, OLEFIN, DỒNG ĐẲNG ETILEN, ) III.1. Định nghĩa Anken là một loại hiđrocacbon mà trong phân tử có chứa một liên kết đôi C=C mạch hở. III.2. Công thức tổng quát

Διαβάστε περισσότερα

A A i j, i i. Ta kiểm chứng lại rằng giá trị này không phụ thuộc vào cách biểu diễn hàm f thành tổ hợp tuyền tính những hàm ñặc trưng. =, = j A B.

A A i j, i i. Ta kiểm chứng lại rằng giá trị này không phụ thuộc vào cách biểu diễn hàm f thành tổ hợp tuyền tính những hàm ñặc trưng. =, = j A B. Produced wth a Tral Verso o PDF otator - www.pdfotator.com Chươg 2. Tích phâ Lebesgue ê soạ: Nguyễ Trug Hếu CHƯƠNG 2. TÍCH PHÂN LEESGUE 2.. ðịh ghĩa tích phâ Lebesgue 2... Tích phâ cho hàm ñơ gả hôg âm

Διαβάστε περισσότερα

PHƯƠNG TRÌNH MẶT PHẲNG

PHƯƠNG TRÌNH MẶT PHẲNG CHƯƠNG 2 PHƯƠNG TRÌNH MẶT PHẲNG TÓM TẮT LÝ THUYẾT I. VECTƠ PHÁP TUYẾN (HAY PHÁP VECTƠ) CỦA MẶT PHẲNG Vectơ 0 gọi là vtpt của mặt phẳng a nếu giá của vuông góc mặt phẳng a. Vtpt của mp a thường ký hiệu

Διαβάστε περισσότερα

QUÁ TRÌNH TRAO ĐỔI CHẤT Ở VI SINH VẬT

QUÁ TRÌNH TRAO ĐỔI CHẤT Ở VI SINH VẬT QUÁ TRÌNH TRAO ĐỔI CHẤT Ở VI SINH VẬT KHÁI NIỆM CƠ BẢN - Trao đổi chất - Con đường trao đổi chất - Tiền tố - Quá trình trao đổi chất bao gồm: trao đổi năng lượng và trao đổi vật chất xây dựng tế bào Dị

Διαβάστε περισσότερα

CẬP NHẬT KHUYẾN CÁO CHẨN ĐOÁN VÀ ĐIỀU TRỊ TĂNG ÁP PHỔI ESC LONDON 2015

CẬP NHẬT KHUYẾN CÁO CHẨN ĐOÁN VÀ ĐIỀU TRỊ TĂNG ÁP PHỔI ESC LONDON 2015 ẬP NHẬT KHUYẾN ÁO HẨN ĐOÁN VÀ ĐỀU TRỊ TĂNG ÁP PHỔ ES LONDON 2015 PGS.TS Trương Thanh Hương Viện Tim mạch bệnh viện Bạch mai Bộ môn Tim mạch Đại học Y Hà Nội ác định nghĩa lâm sàng và sinh bệnh học quan

Διαβάστε περισσότερα

bab.la Cụm từ & mẫu câu: Giao tiếp cá nhân Chúc tụng Tiếng Anh-Tiếng Hy Lạp

bab.la Cụm từ & mẫu câu: Giao tiếp cá nhân Chúc tụng Tiếng Anh-Tiếng Hy Lạp Chúc tụng : Đám Congratulations. Wishing the both of you all the happiness in the world. Συγχαρητήρια. Σας ευχόμαστε όλη την ευτυχία του κόσμου. Chúc mừng một đôi vợ chồng mới Congratulations and warm

Διαβάστε περισσότερα

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ - Adresse Mr. J. Rhodes Rhodes & Rhodes Corp. 212 Silverback Drive California Springs CA 92926 Format adresse postale aux États-Unis : nom du destinataire numéro de la rue + nom de la rue nom de la ville

Διαβάστε περισσότερα

QCVN 4-10 : 2010/BYT

QCVN 4-10 : 2010/BYT CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 4-10 : 2010/BYT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ PHỤ GIA THỰC PHẨM - PHẨM MÀU National technical regulation on Food Additives - Colours HÀ NỘI - 2010 Lời nói đầu QCVN

Διαβάστε περισσότερα

Để biết thêm chi tiết, xin liên hệ: Cat. No: GEN-FLY Cảm biến hình ảnh ZFX. Bộ khử tĩnh điện Ionizer:

Để biết thêm chi tiết, xin liên hệ: Cat. No: GEN-FLY Cảm biến hình ảnh ZFX. Bộ khử tĩnh điện Ionizer: Cat. No: GEN-FLY-01-2010 Còn nhiều nhóm sản phẩm và mã hàng không liệt kê tại đây. Xin liên hệ văn phòng hoặc đại lý để được tư vấn thêm. Tài liệu tiếng Anh chi tiết có thể tải về từ www.omron-ap.com hoặc

Διαβάστε περισσότερα

BẢNG GIÁ DỊCH VỤ KHÁM BỆNH, CHỮA BỆNH BẢO HIỂM Y TẾ THEO QUY ĐỊNH CỦA THÔNG TƯ 37/2015/TTLT-BYT-BTC NGÀY 29/10/2015 (Áp dụng từ ngày 1/3/2016)

BẢNG GIÁ DỊCH VỤ KHÁM BỆNH, CHỮA BỆNH BẢO HIỂM Y TẾ THEO QUY ĐỊNH CỦA THÔNG TƯ 37/2015/TTLT-BYT-BTC NGÀY 29/10/2015 (Áp dụng từ ngày 1/3/2016) SỞ Y TẾ TP.HỒ CHÍ MINH BỆNH VIỆN TỪ DŨ BẢNG GIÁ DỊCH VỤ KHÁM BỆNH, CHỮA BỆNH BẢO HIỂM Y TẾ THEO QUY ĐỊNH CỦA THÔNG TƯ 37/2015/TTLT-BYT-BTC NGÀY 29/10/2015 (Áp dụng từ ngày 1/3/2016) STT TÊN DỊCH VỤ GIÁ

Διαβάστε περισσότερα

Chương 6: ENZYME. Khái niệm Phân loại. Zymogen (proenzyme) và sự hoạt hóa

Chương 6: ENZYME. Khái niệm Phân loại. Zymogen (proenzyme) và sự hoạt hóa Chương 6: EZYME Khái niệm Phân loại Cấu trúc Một số coenzyme phổ biến Cơ chế tác dụng Zymogen (proenzyme) và sự hoạt hóa Tính đặc hiệu của enzyme Các yếu tố ảnh hưởng đến tốc độ phản ứng Khái niệm về xúc

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Ông Nguyễn Văn A 219 Đội Cấn, Ba Đình Hà Nội, Việt Nam Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας, Πόλη. Mr. N. Summerbee 335 Main Street New York

Διαβάστε περισσότερα

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 4-21: 2011/BYT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ PHỤ GIA THỰC PHẨM - CHẤT LÀM DÀY

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 4-21: 2011/BYT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ PHỤ GIA THỰC PHẨM - CHẤT LÀM DÀY CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 4-21: 2011/BYT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ PHỤ GIA THỰC PHẨM - CHẤT LÀM DÀY National technical regulation on Food Additive Thickeners HÀ NỘI - 2011 Lời nói đầu

Διαβάστε περισσότερα

Ταξίδι Γενικά. Γενικά - Τα απαραίτητα. Γενικά - Συνομιλία. Phiền bạn giúp tôi một chút được không? Παράκληση για βοήθεια

Ταξίδι Γενικά. Γενικά - Τα απαραίτητα. Γενικά - Συνομιλία. Phiền bạn giúp tôi một chút được không? Παράκληση για βοήθεια - Τα απαραίτητα Phiền bạn giúp tôi một chút được không? Παράκληση για βοήθεια Bạn có nói được tiếng Anh không? Ερώτηση σε πρόσωπο αν μιλά αγγλικά Bạn có nói được _[ngôn ngữ]_ không? Ερώτηση σε πρόσωπο

Διαβάστε περισσότερα

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM BÁO CÁO HOẠT ĐỘNG NĂM 2013

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM BÁO CÁO HOẠT ĐỘNG NĂM 2013 VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM BÁO CÁO HOẠT ĐỘNG NĂM 2013 HÀ NỘI - 2014 LỜI MỞ ĐẦU Cuốn tài liệu này là báo cáo tổng hợp tình hình hoạt động năm 2013 của Viện Hàn lâm Khoa học và Công nghệ

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

BÀI GIẢNG MÔN PHƯƠNG PHÁP TÍNH

BÀI GIẢNG MÔN PHƯƠNG PHÁP TÍNH ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CÔNG NGHỆ THÔNG TIN Bê soạ: GV.Đỗ Thị Tuyết Hoa BÀI GIẢNG MÔN PHƯƠNG PHÁP TÍNH (Dàh cho sh vê khoa Côg ghệ thôg t) ( TÀI LIỆU LƯU HÀNH NỘI BỘ ) ĐÀ NẴNG, NĂM

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Personnel Lettre. Lettre - Adresse. Ông Nguyễn Văn A 219 Đội Cấn, Ba Đình Hà Nội, Việt Nam

Personnel Lettre. Lettre - Adresse. Ông Nguyễn Văn A 219 Đội Cấn, Ba Đình Hà Nội, Việt Nam - Adresse Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα Format adresse postale en France : Jeremy Rhodes 212 Silverback Drive California Springs CA 92926 Format adresse postale aux États-Unis : nom du

Διαβάστε περισσότερα

Mục tiêu 568 LIỆU PHÁP KHÁNG SINH 1. Trình bày được các loại kháng sinh thường sử dụng trên lâm sàng. 2. Mô tả được cơ chế tác dụng, dược động học của từng loại kháng sinh 3. Xác định được những chỉ định,

Διαβάστε περισσότερα

Báo cáo đánh giá ASC

Báo cáo đánh giá ASC Số báo cáo: 834070-ASCRPT-2015.01-LXQ Version 5 APR 2014 Báo cáo đánh giá ASC Cá rô phi Cá tra Tôm Đánh giá lần đầu Đánh giá giám sát Tái đánh giá Tên khách hàng Mã số Khách hàng 834070 Người liên hệ Địa

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

MỤC LỤC MỤC LỤC... 1 Trang bìa... 2 I. GIỚI THIỆU CHUNG Thư ngỏ Sứ mệnh - Tầm nhìn - Giá trị cốt lõi - Triết lý kinh doanh

MỤC LỤC MỤC LỤC... 1 Trang bìa... 2 I. GIỚI THIỆU CHUNG Thư ngỏ Sứ mệnh - Tầm nhìn - Giá trị cốt lõi - Triết lý kinh doanh MỤC LỤC MỤC LỤC... 1 Trang bìa... 2 I. GIỚI THIỆU CHUNG... 3 1. Thư ngỏ... 3 2. Sứ mệnh - Tầm nhìn - Giá trị cốt lõi - Triết lý kinh doanh... 3 3. Tổ chức công ty... 4 4. Tình hình sản xuất kinh doanh...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

WE WELCOME PEOPLE OF ALL AGES, CULTURES AND LANGUAGES TO OUR COMMUNITY HEALTH CENTRE

WE WELCOME PEOPLE OF ALL AGES, CULTURES AND LANGUAGES TO OUR COMMUNITY HEALTH CENTRE WE WELCOME PEOPLE OF ALL AGES, CULTURES AND LANGUAGES TO OUR COMMUNITY HEALTH CENTRE Audience at Last Year s AGM Trung Tâm Y Tế Cộng Đồng chúng tôi đón nhận tất cả mọi người không phân biệt tuổi tác, văn

Διαβάστε περισσότερα

CHƯƠNG 1: HÀM GIẢI TÍCH

CHƯƠNG 1: HÀM GIẢI TÍCH CHƯƠNG : HÀM GIẢI TÍCH. SỐ PHỨC VÀ CÁC PHÉP TÍNH. Dạg đại số của số phức: Ta gọi số phức là mộ biểu hức dạg ( j) rg đó và là các số hực và j là đơ vị ả. Các số và là phầ hực và phầ ả của số phức. Ta hườg

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

( 1, ; 1, ) Chương 1. MA TRẬN ðịnh THỨC HỆ PHƯƠNG TRÌNH TUYẾN TÍNH A = (gồm m dòng và n cột). ... amn = = = = = = A = B =

( 1, ; 1, ) Chương 1. MA TRẬN ðịnh THỨC HỆ PHƯƠNG TRÌNH TUYẾN TÍNH A = (gồm m dòng và n cột). ... amn = = = = = = A = B = hs ðoà Vươg Nguyê OÁN CAO CẤP A ðại HỌC à lệu thm khảo Gáo trìh oá co cấp A Nguyễ Phú Vh ðhcn P HCM Ngâ hàg câu hỏ oá co cấp ðhcn PHCM 3 oá co cấp A ðỗ Côg Khh NXBðHQG P HCM 4 oá co cấp A Nguyễ ðìh rí

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 Έλυσαν οι Δημήτρης Ιωάννου, Γιώργος Βισβίκης, Μπάμπης Στεργίου, Χρήστος Κάναβης, Γιώργης Καλαθάκης, Παναγιώτης Γκριμπαβιώτης,

Διαβάστε περισσότερα

bab.la Cụm từ & mẫu câu: Du lịch Đi nhà hàng Tiếng Ý-Tiếng Hy Lạp

bab.la Cụm từ & mẫu câu: Du lịch Đi nhà hàng Tiếng Ý-Tiếng Hy Lạp Đi nhà hàng : Đến nhà hàng Vorrei prenotare un tavolo per _[numero di persone]_ per le _[ora]_. Θα ήθελα να κρατήσω ένα τραπέζι για _[αριθμός ατόμων]_ στις _[ώρα]_. (Tha íthela na kratíso éna trapézi ya

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ ΚΕΦΛΙΟ ο ΙΝΥΣΜΤ Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Ορισμός του ιανύσματος Πότε ένα μέγεθος καλείται βαθμωτό ή μονόμετρο και πότε διανυσματικό ; Τα μεγέθη ( όπως πχ η μάζα, ο όγκος, η πυκνότητα, η θερμοκρασία κτλ) τα

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a . ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

x ax by c y a x b y c

x ax by c y a x b y c Γεωμετρία Affine - Εφαρμογές Δόρτσιος Κων/νος, Μαθηματικός mail:kdortsi@sch.gr Τσίντσιφας Γεώργιος, Μαθηματικός mail :gtsintsifas@yahoo.com Εισαγωγή Η Γραμμική Γεωμετρία περιέχει τρία είδη Μετασχηματισμών

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ===== ===== SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A2) (Dùng cho sinh viên hệ đào tạo đại học từ xa)

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ===== ===== SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A2) (Dùng cho sinh viên hệ đào tạo đại học từ xa) HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A) (Dùg cho sih viê hệ đào tạo đại học từ ) Lưu hàh ội bộ HÀ NỘI - Giới thiệu ô học GIỚI THIỆU MÔN HỌC GIỚI THIỆU CHUNG: Toá

Διαβάστε περισσότερα

È http://en.wikipedia.org/wiki/icosidodecahedron

È http://en.wikipedia.org/wiki/icosidodecahedron À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß

Διαβάστε περισσότερα

x y z d e f g h k = 0 a b c d e f g h k

x y z d e f g h k = 0 a b c d e f g h k Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν

Διαβάστε περισσότερα

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M Απαντήσεις 51 5. Εφαρµογές των παραλληλογράµµων α Εφαρµογές στα τρίγωνα α.1 Στο τρίγωνο AB Γ είναι Ε // (1) Επίσης Ζ, ΕΗ, άρα Ζ // ΕΗ () Από τις (1), () έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. α. Στο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Have Fun and Play it Safe

Have Fun and Play it Safe Have Fun and Play it Safe T20173_gamble_responsibly_brochure.indd 3 Our Commitment SA Lotteries is committed to the responsible promotion and conduct of South Australia s favourite lottery games to ensure

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr. http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.tsif Σελίδα 1 http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 Έλυσαν

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές

Διαβάστε περισσότερα

*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.

*+,'-'./%#0,1/#'2!./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!#/5.+!#$() $!#%&'#$() 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!. # #$%&'#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 :; #/5.+#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 #$% $ #%&'#$( 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-

Διαβάστε περισσότερα

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr. http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 Έλυσαν

Διαβάστε περισσότερα

Celia Jones 47 Herbert Street Floreat Perth WA 6018 Αυστραλέζικη γραφή διεύθυνσης: Αριθμός οδού + όνομα οδού Όνομα επαρχίας Όνομα πόλης + ταχυδρομικός

Celia Jones 47 Herbert Street Floreat Perth WA 6018 Αυστραλέζικη γραφή διεύθυνσης: Αριθμός οδού + όνομα οδού Όνομα επαρχίας Όνομα πόλης + ταχυδρομικός - Διεύθυνση Ông Nguyễn Văn A 219 Đội Cấn, Ba Đình Hà Nội, Việt Nam Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας, Πόλη. N. Summerbee 先生 Main 大街 335 号纽约, 纽约,92926

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Meren virsi Eino Leino

Meren virsi Eino Leino œ_ œ _ q = 72 Meren virsi Eino Leino Toivo Kuua o. 11/2 (1909) c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne rien nät, vie ri vä vir ta? Kun ne c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ Θέµατα από το βιβλίο µου: Οι ασκήσεις των εξετάσεων φυσικής γενικής παιδείας γ λυκείου (υπό έκδοση ) (Περιέχει 111 ασκήσεις πιθανά θέµατα εξετάσεων µε απαντήσεις) ΚΕΦΑΛΑΙΟ 1 ο ΘΕΜΑ 1 ο Πόση είναι η ενέργεια

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

Översatt av Hoa Trinh

Översatt av Hoa Trinh Översatt av Hoa Trinh 2004 SVENSKA VIETNAMESISKA EXEMPEL DIAGRAM BIỂU ĐỒ Cirkeldiagram Biểu đồ hình tròn 4:e kvart % :a kvart % 2:a kvart 7% :e kvart 57% 00 80 Linjediagram Biểu đồ đường thẳng 60 40 20

Διαβάστε περισσότερα

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436 ! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα