TUYỂN TẬP CÁC BÀI TOÁN THỂ TÍCH HÌNH KHÔNG GIAN

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TUYỂN TẬP CÁC BÀI TOÁN THỂ TÍCH HÌNH KHÔNG GIAN"

Transcript

1 Bài 01: xuaát tö ømoät ñænh laø. Bài 02: TUYỂN TẬP CÁC BÀI TOÁN THỂ TÍCH HÌNH KHÔNG GIAN Cho laêng truïtö ù giaùc ñeàu ABCD.A / B / C / D / coù chieàu cao baèng a vaøgoùc cuûa hai maët beân keànhau phaùt a) Tính dieän tích xung quanh vaøtheåtích laêng truï. b) Goïi M, N laøtrung ñieåm cuûa BB / vaødd /, tính goùc cuûa mp(amn) vaømaët ñaùy cuûa laêng truï. Cho laêng truïxieân ABC.A / B / C / coù ñaùy ABC laøtam giaùc ñeàu taâm O vaøhình chieáu cuûa C / treân ñaùy (ABC) truøng vôùi O. Cho khoaûng caùch tö øo ñeán CC / laøa vaøsoáño nhò dieän caïnh CC / laø Bài 03: a) Chö ùng minh maët beân ABB / A / laøhình chữ nhaät. b) Tính theåtích laêng truï. c) Tính goùc cuûa maët beân BCC / B / vaømaët ñaùy ABC. Cho hình hoäp ABCDA / B / C / D / coù caùc maët ñeàu laøhình thoi caïnh a. Ba caïnh xuaát phaùt tö øñænh A taïo vôùi nhau caùc goùc nhoïn baèng nhau vaøbaèng. Bài 04: Bài 05: Bài 06: a) Chö ùng minh hình chieáu H cuûa A / treân (ABCD) naèm treân ñö ôøng cheùo AC. b) Tính theåtích hình hoäp. c) Tính goùc cuûa ñö ôøng cheùo CA / vaømaët ñaùy cuûa hình hoäp. Cho hình laäp phö ông ABCD.A / B / C / D / a 2 coù ñoaïn noái hai taâm cuûa hai maët beân keànhau laø 2 a) Tính theåtích hình laäp phö ông. b) Laáy ñieåm M treân BC. Maët phaúng MB / D caét A / D / taïi N. Chö ùng minh MN C / D. c) Tính goùc cuûa hai maët phaúng (A / BD) vôùi maët phẳng (ABCD). Cho hình laäp phö ông ABCD.A / B / C / D / coù ñö ôøng cheùo baèng a a) Dö ïng vaøtính ñoaïn vuoâng goùc chung cuûa hai ñö ôøng thaúng AC vaødc /. b) Goïi G laøtroïng taâm cuûa tam giác A / C / D /. Maët phaúng (GCA) caét hình laäp phö ông theo hình gì. Tính dieän tích cuûa hình naøy. c) Ñieåm M lö u ñoäng treân BC. Tìm quỹ tích hình chieáu cuûa A / leân DM. Cho laäp phö ông ABCD.A / B / C / D / caïnh a. Goïi N laøñieåm giữa cuûa BC. a) Tính goùc vaøñoaïn vuoâng goùc chung giö õa hai ñö ôøng thaúng AN vaøbc /. b) Ñieåm M lö u ñoäng treân AA /. Xaùc ñònh giaù trò nhoû nhaát cuûa dieän tích thieát dieän giö õa maët phaúng MBD / vaø hình laäp phö ông. Bài 07: Cho hình choùp tö ù giaùc ñeàu S.ABCD coù chieàu cao SH = a vaøgoùc ôû ñaùy cuûa maët beân laø. a) Tính dieân tích xung quanh vaøtheåtích hình choùp naøy theo a vaø. b) Xaùc ñònh taâm vaøbaùn kính maët caàu ngoaïi tieáp hình choùp S.ABCD. c) Ñieåm M lö u ñoäng treân SC. Tìm quỹ tích hình chieáu cuûa S xuoáng maët phaúng MAB. Bài 08: Cho hình choùp tam giaùc ñeàu SABC caïnh ñaùy a vaøgoùc giö õa hai caïnh beân keànhau laø. Bài 09: a) Tính theåtích hình choùp. b) Tính dieän tích xung quanh cuûa hình noùn noäi tieáp trong hình choùp. c) Tính dieän tích cuûa thieát dieän giö õa hình choùp vaømaët phaúng qua AB vaøvuoâng goùc vôùi SC. Ñaùy cuûa hình choùp laømoät tam giaùc vuoâng coù caïnh huyeàn laøa vaømoät goùc nhoïn Maët beân qua caïnh huyeàn vuoâng goùc vôùi ñaùy, moãi maët coøn laïi hôïp vôùi ñaùy goùc. 1

2 Bài 10: a) Tính theåtích hình choùp naøy. b) Moät maët phaúng qua caïnh ñaùy vaøcaét caïnh beân ñoái dieän thaønh hai ñoaïn tæ leä vôùi 2 vaø3. Tìm tæ soátheåtích cuûa hai phaàn cuûa hình choùp do maët phaúng aáy taïo ra. Cho hình choùp SABC coù ñaùy laøtam giaùc ABC caân taïi A coù trung tuyeán AD = a vaøhai maët beân SAB vaøsac vuoâng goùc vôùi ñaùy. Caïnh beân SB hôïp vôùi ñaùy moät goùc vaøhôïp vôùi maët phaúng SAD goùc. Bài 11: a) Tính theåtích hình choùp. b) Tính khoaûng caùch tö øa ñeán maët (SBC). Cho hình choùp SABC coù ñaùy laøtam giaùc ABCvuoâng taïi A vaøgoùc C = 60 0, baùn kính ñö ôøng troøn noäi tieáp laøa. Ba maët beân cuûa hình choùp ñeàu hôïp vôùi ñaùy goùc. Bài 12: a) Tính theåtích vaødieän tích xung quanh cuûa hình choùp. b) Tính dieän tích thieát dieän qua caïnh beân SA vaøñö ôøng cao cuûa hình choùp. Cho hình choùp SABCD coù ñaùy laøhình thoi coù goùc nhoïn A =. Hai maët beân (SAB) vaø(sad) vuoâng goùc vôùi ñaùy, hai maët beân coøn laïi hôïp vôùi ñaùy goùc. Cho SA = a. Bài 13: a) Tính theåtích vaødieän tích xung quanh hình choùp. b) Tính goùc cuûa SB vaømaët phaúng (SAC). Cho tam giaùc ñeàu ABC caïnh a treân ñö ôøng thaúng vuoâng goùc vôùi maët phaúng cuûa tam giaùc taïi B vaøc laàn lö ôït laáy ñieåm D lö u ñoäng vaøe coáñònh sao cho CE = a 2. Ñaët BD = x. Bài 14: a) Tính x ñeåtam giaùc DAE vuoâng taïi D. Trong trö ôøng hôïp naøy tính goùc cuûa hai maët phaúng (DAE) vaø (ABC). b) Giaû sö û x = a 2 2. Tính theåtích hình choùp ABCED. c) Keû CH vuoâng goùc vôùi AD. Tìm quyõtích cuûa H khi x bieán thieân. hôïp vôùi ñaùy moät goùc. Bài 15: Cho hình choùp tö ù giaùc ñeàu SABCD coù caïnh ñaùy laøa. Maët phaúng qua AB vaøtrung ñieåm M cuûa SC a) Tính theåtích cuûa hình choùp. b) Goïi I vaøj laøñieåm giö õa cuûa AB vaøbc. Maët phaúng qua IJ vaøvuoâng goùc vôùi ñaùy chia hình choùp thaønh hai phaàn. Tính theåtích cuûa hai phaàn naøy. Laáy ñieåm C lö u ñoäng treân nö ûa ñö ôøng troøn ñö ôøng kính AB = 2R vaøh laøhình chieáu cuûa C leân AB. Goïi I laøtrung ñieåm cuûa CH. Treân nö ûa ñö ôøng thaúng vuoâng goùc vôùi maët phaúng cuûa nö ûa ñö ôøng troøn taïi I ta laáy ñieåm D sao cho goùc ADB baèng Ñaët AH = x. Bài 16: a) Tính theåtích cuûa tö ù dieän DABC theo R vaøx. Tính x ñeåtheåtích naøy lôùn nhaát. b) Xaùc ñònh taâm I vaøtính hình caàu ngoaïi tieáp tö ù dieän AIBD. c) Chö ùng minh khi C lö u ñoäng treân nö ûa ñö ôøng troøn thì taâm hình caàu ôû caâu b chaïy treân ñö ôøng thaúng coáñònh. Ñaùy cuûa hình choùp laømoät tam giaùc vuoâng caân coù caïnh goùc vuoâng baèng a. Maët beân qua caïnh huyeàn vuoâng goùc vôùi ñaùy, moãi maët beân coøn laïi taïo vôùi ñaùy goùc a) Chö ùng minh raèng chaân ñö ôøng cao hình choùp truøng vôùi trung ñieåm caïnh huyeàn. b) Tính theåtích vaødieän tích toaøn phaàn hình choùp. Bài 17: Cho hình laäp phö ông ABCD.A / B / C / D /. Goïi O laøgiao ñieåm caùc ñö ôøng cheùo cuûa ABCD. Bieát OA / = a. a) Tính theåtích hình choùp A /.ABD, tö øñoù suy ra khoaûng caùch tö øñænh A ñeán maët phaúng A / BD. 2

3 b) Chö ùng minh raèng AC / vuoâng goùc vôùi maët phaúng A / BD. Bài 18: Moät hình choùp tö ù giaùc ñeàu S.ABCD coù caïnh ñaùy baèng a vaøgoùc ASB =. a) Tính dieän tích xung quanh hình choùp. b) Chö ùng minh raèng ñö ôøng cao hình choùp baèng a 2 cot c) Goïi O laøgiao ñieåm caùc ñö ôøng cheùo cuûa ñaùy ABCD. Xaùc ñònh goùc ñeåmaët caàu taâm O ñi qua naêm ñieåm S, A, B, C, D. Bài 19: Cho hình choùp tö ù giaùc ñeàu coù caïnh beân taïo vôùi ñaùy goùc 60 0 vaøcaïnh ñaùy baèng a. Bài 20: a) Tính theåtích hình choùp. b) Tính goùc do maët beân taïo vôùi ñaùy. c) Xaùc ñònh taâm maët caàu ngoaïi tieáp hình choùp vaøtính baùn kính maët caàu ñoù. Moät laêng truïabc.a / B / C / coù ñaùy laøtam giaùc ñeàu caïnh a, caïnh beân BB / = a, chaân ñö ôøng vuoâng goùc haïtö øb / xuoáng ñaùy ABC truøng vôùi trung ñieåm I cuûa caïnh AC. Bài 21: a) Tính goùc giö õa caïnh beân vaøñaùy vaøtính theåtích cuûa laêng truï. b) Chö ùng minh raèng maët beân AA / C / C laøhình chö õnhaät. Cho hình nón có đường cao h. Một mặt phẳng ( α) đi qua đỉnh S của hình nón tạo với mặt đáy hình nón một góc 60 0, đi qua hai đường sinh SA, SB của hình nón và cắt mặt đáy của hình nón theo dây cung AB, cung AB có số đo bằng Tính diện tích thiết diện SAB. Bài 22: Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a. SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Tính thể tích của khối chóp A.BCNM. Bài 22: Cho hình chóp SABCD có đáy là hình chữ nhật với,, AB = a, AD = a 2, SA = a và SA vuông góc với mặt đáy (ABCD). Gọi M và N lần lượt là trung điểm của AD và SC; I là giao điểm của BM và AC. Chứng minh rằng mặt phẳng (SAC) vuông góc với mặt phẳng (SMB). Tính thể tích của khối tứ diện ANIB. Bài 23: Cho hình trụ có các đáy là hai hình tròn tâm O và O', bán kính đáy bằng chiều cao và bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O' lấy điểm B sao cho AB = 2a. Tính thể tích của khối tứ diện OO'AB. Bài 24: Cho hình chóp S.ABCD đáy hình thang, ABC = BAD, BA = BC = a, AD = 2a, SA = a 2, SA (ABCD). H là hình chiếu của A lên SB. Chứng minh tam giác SCD vuông và tính khoảng cách từ H đến mặt phẳng (SCD). Bài 25: Cho hình cóp tam giác đều S.ABC đỉnh S, có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là các trung điểm của các cạnh SB và SC. Tính theo a diện tích tam giác AMN, biết rằng mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Bài 26: Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABD); AC = AD = 4cm; AB = 3cm; BC = 5cm. Tính khoảng cách từ điểm A tới mặt phẳng (ACD). Bài 27: S.ABCD theo a và α. Bài 28: Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy AB = a, góc SAB = α. Tính thể tích hình chóp Hình chóp S.ABCcó SA là đường cao và đáy là tam giác ABC vuông tại B. Cho BSC = 45 0, gọi ASB = α; tìm α để góc nhị diện (SC) bằng Bài 29: khối tứ diện A 1 B 1 OD. Cho hình lập phương ABCD.A 1 B 1 C 1 D 1 cạnh a. Gọi O 1 là tâm của hình vuông A 1 B 1 C 1 D 1. Tính thể tích 3

4 Bài 30: Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 2a, cạnh bên AA ' = a 3. Gọi D, E lần lượt là trung điểm của AB và A'B'. a. Tính thể tích khối đa diện ABA'B'C'. b. Tính khoảng cách giữa đường thẳng AB và mặt phẳng (CEB'). Bài 31: Cho khối lăng trụ đứng ABC.A B C có đáy ABC là một tam giác vuông tại A, AC = b, góc C = Đường chéo BC của mặt bên BB C tạo với mặt phẳng (AA C C) một góc a. Tính độ dài đoạn AC. b. Tính thể tích của khối lăng trụ. Bài 32: Cho hình chóp S.ABC. Đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy, góc ACB = 60 0, BC = a, SA = a 3 Tính thể tích khối tứ diện MABC. Bài 33:. Gọi M là trung điểm cạnh SB. Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC). Cho hình chóp S.ABC đáy là tam giác ABC vuông tại A, góc ABC = 60 0, BC = a, SB vuông góc với mặt phẳng (ABC), SA tạo với đáy (ABC) một góc Gọi E, F lần lượt là hình chiếu của B trên SA, SC. Bài 34: a. Tính thể tích của hình chóp S.ABC b. Chứng minh rằng A, B, C, E, F cùng thuộc một mặt cầu, xác định tâm và bán kính của mặt cầu đó. Cho tứ diện ABCD. Một mặt phẳng ( α ) song song với AD và BC cắt các cạnh AB, AC, CD, DB tương ứng tại các điểm M, N, P, Q. a. Chứng minh rằng tứ giác MNPQ là hình bình hành. b. Xác định vị trí của để cho diện tích của tứ giác MNPQ đạt giá trị lớn nhất. Bài 35: Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a và SA = SB = SD = a. Bài 36: a. Tính diện tích toàn phần và thể tích hình chóp S.ABCD theo a. b. Tính cosin của góc nhị diện (SAB,SAD) SM SN cho: 2. BM DN Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Lấy M, N lần lượt trên các SB, SD sao a. Mặt phẳng (AMN) cắt cạnh SC tại P. Tính tỷ số SP CP. b. Tính thể tích hình chóp S.AMNP theo thể tích V của hình chóp S.ABCD. Bài 37: Cho hình chóp tam giác S.ABC, SA = x, BC = y, các cạnh còn lại đều bằng 1. Bài 38: a. Tính thể tích hình chóp theo x, y. b. Với x,y là giá trị nào thì thể tích hình chóp là lớn nhất? Cho 2 nửa đường thẳng Ax và By vuông góc với nhau và nhận AB = a, (a > 0) là đoạn vuông góc chung. Lấy điểm M trên Ax và điểm N trên By sao cho AM = BN = 2a. Xác định tâm I và tính theo a bán kính R của mặt cầu ngoại tiếp tứ diện ABMN. Tính khoảng cách giữa 2 đường thẳng AM và BI. Bài 39: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh SB vuông góc với đáy (ABC). Qua B kẻ BH vuông góc với SA, BK vuông góc với SC. Chứng minh SC vuông góc với (BHK) và tính diện tích tam giác BHK biết rằng AC = a, BC = a 3 và SB a 2. Bài 40: Cho tứ diện ABCD. Lấy M bất kỳ nằm trong mặt phẳng (ABD). Các mặt phẳng qua M lần lượt song song với các mặt phẳng (BCD); (CDA); (ABC) lần lượt cắt các cạnh CA, CB, CD tại A', B', C'. Xác định vị trí điểm M để biểu thức sau đạt giá trị lớn nhất: Bài 41: P V V V CMAB CMBD CMAD Cho hình chóp tam giác đều S.ABC có đường cao SO = 1 và đáy ABC có các cạnh bằng 2 6. Điểm M, N là trung điểm của cạnh AC, AB tương ứng. Tính thể tích và bán kính hình cầu nội tiếp hình chóp S.AMN. 4

5 Bài 42: Cho hình chóp S.ABC có đáy ABCD là hình chữ nhật với AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. a) Tính thể tích của hình chóp S.ABCD. b) Gọi M, N, E, F lần lượt là trung điểm của các cạnh AB, CD, SC, SD. Chứng minh rằng SN vuông góc với mặt phẳng (MEF). Bài 43: c) Tính khoảng cách từ A đến mặt phẳng (SCD). Cho tứ diện O.ABC có cạnh OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC = a. Kí hiệu K, M, N lần lượt là trung điểm của các cạnh AB, BC, CA. Gọi E là điểm đối xứng của O qua K và I là giao điểm của CE với mặt phẳng (OMN). Bài 44: a) Chứng minh rằng: CE vuông góc với mặt phẳng (OMN). b) Tính diện tích của tứ giác OMIN theo a. Cho tam giác đều ABC cạnh a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho SD = a 6 Bài 45: đạt giá trị nhỏ nhất. Bài 46:. Chứng minh mp(sab) vuông góc với mp(sac). Cho tứ diện ABCD với tâm diện vuông đỉnh A. Xác định vị trí điểm M để: P = MA + MB + MC + MD Cho hình lăng trụ đứng ABC.A 1 B 1 C 1 có đáy ABC là tam giác đều cạnh a, AA 1 = a. Tính cosin của góc giữa 2 mặt phẳng (ABC 1 ) và (BCA 1 ). Bài 47: Cho hình chóp SABC có đáy ABC là tam giác vuông cân với BA = BC = a, SA = a và vuông góc với đáy. Gọi M, N là trung điểm AB và AC. Bài 48: a) Tính cosin góc giữa 2 mặt phẳng (SAC) và (SBC). b) Tính cosin góc giữa 2 mặt phẳng (SMN) và (SBC). Cho hình thoi ABCD có tâm O, cạnh a và AC = a. Từ trung điểm H của cạnh AB dựng SH vuông góc với mặt phẳng (ABCD) với SH = a. Bài 49: a) Tính khoảng cách từ O đến mặt phẳng (SCD). b) Tính khoảng cách từ A đến mặt phẳng (SBC). Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D', có chiều cao a và cạnh đấy 2a. Với M là một điểm trên cạnh AB. Tìm giá trị lớn nhất của góc A'MC' Bài 50: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành với AB = a; AD = 2a. Tam giác SAB vuông cân tại A. M điểm trên cạnh AD (M khác A và B). Mặt phẳng (α) qua M và song song với mặt phẳng (SAB) cắt BC; SC; SD lần lượt tại N; P; Q. a) Chứng minh rằng MNPQ là hình thang vuông. b) Đặt AM = x. Tính diện tích hình thang MNPQ theo a ; x Bài 51: Cho tứ diện đều ABCD có cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp ΔBCD. a) Chứng minh rằng AO vuông góc với CD. b) Gọi M là trung điểm CD. Tính cosin góc giữa AC và BM. Bài 52: Cho hình lăng trụ đứng ABC.A 1 B 1 C 1, đáy là tam giác đều cạnh a. Cạnh AA 1 = a 2. Gọi M, N lần lượt là trung điểm AB và A 1 C 1. Bài 53: a) Xác định thiết diện của lăng trụ với mp (P) qua MN và vuông góc với mp(bcc 1 B 1 ). Thiết diện là hình gì. b) Tính diện tích thiết diện. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tâm O. Gọi M; N lần lượt là trung điểm SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) là a) Tính độ dài đoạn MN. b) Tính cosin của góc giữa MN và mặt phẳng (SBD). 5

6 Bài 54: Trong mặt phẳng (P), cho một hình vuông ABCD có cạnh bằng a. S là một điểm bất kì nằm trên đường thẳng At vuông góc với mặt phẳng (P) tại A. Tính theo a thể tích hình cầu ngoại tiếp chóp S.ABCD khi SA = 2a. Bài 55: Cho tứ diện ABCD có AC = 2, AB = BC = CD = DA = DB = 1. a. Chứng minh rằng các tam giác ABC và ADC là tam giác vuông. b. Tính diện tích toàn phần của tứ diện ABCD. Bài 56: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SC vuông góc với mặt phẳng (ABCD); SC = 2a. SM SN Hai điểm M, N lần lượt thuộc SB và SD sao cho = = 2. Mặt phẳng (AMN) cắt SC tại P.Tính thể tích SB SD hình chóp S.MANP theo a Bài 57: Cho lập phương ABCD.A'B'C'D'. Tính số đo của góc phẳng nhị diện [ B, A C, D] Bài 58: Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là một hình thoi cạnh a, góc BAD = Gọi M là trung điểm cạnh AA' và N là trung điểm cạnh CC'. Chứng minh rằng bốn điểm B', M, D, N cùng thuộc một mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN là hình vuông. Bài 59: Cho hình chóp S.ABCD có SA (ABC), tam giác ABC vuông tại B, SA = SB = a, BC = 2a. Gọi M và N lần lượt là hình chiếu vuông góc của A trên SB và SC. Tính diện tích của tam giác AMN theo a. Bài 60: Cho hình chóp S.ABC.Đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy, góc ACB = 60 0, BC = a, SA = a 3. Chứng minh mặt phẳng (SAB) vuông góc với mp (SBC). Tính thể tích khối tứ diện MABC. Bài 61: Cho hình hộp chữ nhật ABCD.A'B'C'D' với AB = a, BC = b, AA' = c. Bài 62: a. Tính diện tích của tam giác ACD' theo a, b, c. b. Giả sử M và N lần lượt là trung điểm của AB và BC. Hãy tính thể tích của tứ diện D'DMN theo a, b, c. Cho hình lập phương ABCD.A'B'C'D' với cạnh bằng a. Giả sử M, N, P, Q lần lượt là trung điểm của các cạnh A'D', D'C', C'C, AA'. a. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một mặt phẳng. Tính chu vi của tứ giác MNPQ theo a. b. Tính diện tích của tứ giác MNPQ theo a. Bài 63: Cho hình lập phương ABCD.A'B'C'D' với cạnh bằng a. Bài 64: a. Hãy tính khoảng cách giữa hai đường thẳng AA' và BD'. b. Chứng minh rằng đường chéo BD' vuông góc với mặt phẳng (DA'C'). ACB'D' theo a, b, c. Cho hình hộp chữ nhật ABCD.A'B'C'D'; với AA' = a, AB = b, AC = c. Tính thể tích của tứ diện Bài 65: Cho tam diện ba mặt vuông Oxyz. Trên Ox, Oy, Oz lần lượt lấy các điểm A, B, C. a. Tính diện tích tam giác ABC theo OA = a, OB = b, OC = c. b. Giả sử A, B, C thay đổi nhưng luôn có : OA + OB + OC + AB + BC + CA = k không đổi. Bài 66: Hãy xác định giá trị lớn nhất của thể tích tứ diện OABC. Bên trong hình trụ tròn xoay có một hình vuông ABCD cạnh a nội tiếp mà hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng hình vuông tạo với đáy của hình trụ một góc Tính diện tích xung quanh và thể tích của hình trụ đó. Bài 67: Cho hình lập phương ABCD.A'B'C'D' cạnh a và một điểm M trên cạnh AB, AM = x, 0 < x < a. Xét mặt phẳng (P) đi qua điểm M và chứa đường chéo A'C' của hình vuông A'B'C'D'. a. Tính diện tích thiết diện của hình lập phương cắt bởi mặt phẳng (P). b. Mặt phẳng (P) chia hình lập phương thành hai khối đa diện hãy tìm x để thể tích của một trong hai khối đa diện đó gấp đôi diện tích của khối đa diện kia. Bài 68: Cho hình chóp S.ABCD có đáy hình chữ nhật ABCD với AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. 6

7 a. Tính thể tích của hình chóp S.ABCD b. Gọi M, N, E, F lần lượt là trung điểm của các cạnh AB, CD, SC, SD. Chứng minh rằng SN vuông góc với mặt phẳng (MEF). c. Tính khoảng cách từ A đến mặt phẳng (SCD). Bài 69: Cho lăng trụ đứng ABCA 1 B 1 C 1 có đáy ABC là tam giác vuông AB AC a, AA 1 = a 2. Gọi M, N lần lượt là trung điểm của đoạn AA 1 và BC 1. Chứng minh MN là đường vuông góc chung của các đường thẳng AA 1 và BC 1. Tính V MA BC. 1 1 Bài 70: Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, góc nhọn BAD = Biết AB ' BD '. Tính thể tích lăng trụ trên theo a. Bài 71: Trong mặt phẳng (P), cho một hình vuông ABCD có cạnh bằng a. S là một điểm bất kì nằm trên đường thẳng At vuông góc với mặt phẳng (P) tại A. Gọi M, N lần lượt là hai điểm di động trên các cạnh CB, CD ( M CB, N CD ), và đặt CM = m, CN = n. Tìm một biểu thức liên hệ giữa m và n để các mặt phẳng (SMA) và (SAN) tạo với nhau một góc Bài 72: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AA' = a : Bài 73: a. Tính khoảng cách giữa 2 đường thẳng AD' và B'C'. b. Gọi M là điểm chia đoạn AD theo tỉ số AM:MD = 3. Hãy tính khoảng cách từ điểm M đến mp (AB'C). c. Tính thể tích tứ diện A.B'D'C'. Cho hình nón đỉnh S, đáy là đường tròn C bán kính a, chiều cao là một đa giác lồi ngoại tiếp C. 3 h = a ; và cho hình chóp đỉnh S, đáy 4 a. Tính bán kính mặt cầu nội tiếp hình chóp (mặt cầu ở bên trong hình chóp, tiếp xúc với đáy và với các mặt bên của hình chóp). Bài 74: cho b. Biết thể tích khối chóp bằng 4 lần thể tích khối nón, hãy tính diện tích toàn phần của hình chóp. Bài 75: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Lấy M, N lần lượt trên các cạnh SB, SD sao. a. Mặt phẳng (AMN) cắt cạnh SC tại P. Tính tỷ số SP CP. b. Tính thể tích hình chóp S.AMPN theo thể tích V của hình chóp S.ABCD. Cho tứ diện OABC có OA = OB = OC = a và góc AOB = góc AOC = 60 0, góc BOC = Tính độ dài các cạnh còn lại của tứ diện và chứng minh rằng tam giác ABC vuông. Bài 76: Cho hình chóp S.ABC. Đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy, góc ACB = 60 0, BC = a, SA = a 3 Tính thể tích khối tứ diện MABC. Bài 77:. Gọi M là trung điểm của SB. Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC). Cho hình chóp tam giác S.ABCD có đáy là tam giác cân với AB = AC = a, góc BAC = α và ba cạnh bên nghiêng đều trên đáy một góc nhọn β. Hãy tính thể tích hình chóp đã cho theo a, α, β. Bài 78: diện BDD'C'. Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình vuông ABCD cạnh bên AA' = h. Tính thể tích tứ Bài 79: Cho hình chóp S.ABC có SA (ABC), tam giác ABC vuông tại B, SA = AB = a, BC = 2a. Gọi M, N lần lượt là hình chiếu vuông góc của A trên SB và SC. Tính diện tích của tam giác AMN theo a. Bài 80: Cho tứ diện ABCD có AB = CD = a ; AC = BD = b và AD = BC =c ( a, b, c > 0). Xác định tâm và tính bán kính mặt cầu ngoại tiếp theo a, b, c. 7

8 Bài 81: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Biết rằng góc nhọn tạo bởi hai đường chéo AC và BD là 60 0, các tam giác SAC và SBD đều có cạnh bằng a. Tính thể tích hình chóp theo a. Bài 82: Tính thể tích của khối nón xoay biết khoảng cách từ tâm của đáy đến đường sinh bằng 3 và thiết diện qua trục là một tam giác đều. Bài 83: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Biết rằng góc nhọn tạo bởi hai đường chéo AC và BD là 60 0, các tam giác SAC và SBD đều có cạnh bằng a. Tính thể tích hình chóp theo a. Bài 84: Bài 85: Cho khối chóp tứ giác đều SABCD có cạnh đáy a và đường cao bằng a/2. a/. Tính sin của góc hợp bởi cạnh bên SC và mặt bên (SAB ). b/. Tính diện tích xung quanh và thể tích của khối chóp đã cho. của hình chóp bằng Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC bằng Chiều cao SO a 3 2, trong đó O là giao điểm của hai đường chéo AC và BD. Gọi M là trung điểm của AD, ( ) là mặt phẳng đi qua BM, song song với SA, cắt SC tại K. Tính thể tích hình chóp K.BCDM. Bài 86: Cho hình chóp tam giác đều S.ABC có cạnh bên bằng a. Cho M, N lần lượt là trung điểm các cạnh SA và SC và mặt phẳng (BMN) vuông góc với mặt phẳng (SAC). a/. Tính thể tích hình chóp tam giác đều S.ABC. b/. Tính thể tích hình chóp SBMN. Bài 87: Cho hình chóp tam giác S.ABC có đáy là tam giác vuông cân tại B, BC = a, SA = a 2, AS mp(abc). Gọi (P) là mặt phẳng đi qua A và vuông góc với SC cắt SB, SC, SD lầ lượt tại B, C, D. Tính thể tích của khối chóp S.AB C D. Bài 88: Cho hình chóp S.ABC có mặt bên (SBC) vuông góc với đáy, hai mặt bên (SAB) và (SAC) cùng lập với đáy một góc 45 0 ; đáy ABC là tam giác vuông cân tại A có AB = a. Bài 89: a/. Chứng minh rằng hình chiếu của S trên mặt (ABC) là trung điểm của BC. b/. Tính thể tích của hình chóp S.ABC theo a? Cho hình chóp S.ABCD có đáy ABC là hình chữ nhật có AB = a, cạnh bên SA vuông góc với đáy; cạnh bên SC hợp với đáy góc và hợp với mặt bên (SAB) một góc. Bài 90: a/. Chứng minh SC c os 2 a sin b/. Tính thể tích hình chóp S.ABCD theo a, và.. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và đáy là. Gọi M là trung điểm của cạnh SC, mặt phẳng (MAB) cắt SD tại N. Tính theo a và thể tích hình chóp S.ABMN. Bài 91: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD và cạnh SA mp(abcd). Mặt phẳng ( ) qua AB cắt các cạnh SC, SD lần lượt tại M, N và chia hình chóp thành hai phần có thể tích bằng nhau. Tính tỉ số SM SC. Bài 92: Cho hình chóp S.ABCD có đáy là hình chữ nhật có AB = a; AD = b; SA = b là chiều cao của hình chóp. M là điểm trên cạnh SA với SA = x ( 0 < x < b); mặt phẳng (MBC) cắt SD tại N. Tính thể tích của khối đa diện ABCDMN theo a, b và x? Bài 93: Cho lăng trụ đứng ABC.A B C có đáy là tam giác AB vuông cân có AB = AC = a. Gọi E là trung điểm của AB, F là hình chiếu vuông góc của E trên BC. Mặt phẳng (C EF) chia lăng trụ thành hai phần.tính tỉ số thể tích của hai phần đó? 8

9 Bài 94: Cho hình chóp S.ABC. M là điểm trên SA, N là điểm trên SB sao cho 9 SM 1 MA 2 và SN NB 2. Mặt phẳng (P) qua MN và song song với SC chia khối chóp thành hai phần. Tìm tỉ số thể tích của hai phần đó. Bài 95: Khối chóp S.ABCD có đáy là hình bình hành. Gọi B', D lần lượt là trung điểm của SB, SD. Mặt phẳng (AB'D') cắt SC tại C'. Tìm tỉ số thể tích của hai khối chóp S.AB'C'D' và S.ABCD. Bài 96: Khối chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trưng điểm của AB, AD và SC. Chứng minh mặt phẳng (MNP) chia khối chóp thành hai phần có thể tích bằng nhau. Bài 97: Cho khối chóp tứ giác đều S.ABCD. Một mặt phẳng (P) đi qua A, B và trung điểm M của cạnh SC. Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó. Bài 98: Bài 99: Cho khối lập phương ABCD.A'B'C'D' cạnh a. Các điểm E và F lần lượt là trung điểm của C B và C'D'. a/. Dựng thiết diện của khối lập phương khi cắt bởi mp(aef). b/.tính tỉ số thể tích hai phần của khối lập phương bị chia bởi mặt phẳng (AEF). Trên nửa đường tròn đường kính AB = 2R, lấy một điểm C tuỳ ý (C khác A, B). Kẻ CH AB (H AB). gọi I là trung điểm của CH. Trên nửa đường thẳng It vuông góc với mp(abc), lấy điểm S sao cho 0 ASB 90. a/. Chứng minh rằng khi C chạy trên nửa đường tròn đã cho thì : + Mặt phẳng (SAB) cố định. + Điểm cách đều các điểm S, A, B, I chạy trên một đường thẳng cố định. b/. Cho AH = x. Tính thế tích khối chóp S.ABC theo R và x. Tìm vị trí của C để thể tích đó lớn nhất. Bài 100: Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy AB = a và góc SAB =. Tính thể tích hình chóp S.ABCD theo a và. Bài 101: Cho hình lăng trụ ABC.A B C có chiều cao bằng a hai đường thẳng AB và BC vuông góc với nhau. Tính thể tích hình lăng trụ đó theo a. Bài 102: Cho hình chóp đều S.ABCD cạnh đáy bằng a, góc giữa mặt phẳng (SAB) và (SBC) là. Tính thể tích khối chóp S.ABCD theo a và. Bài 103: Cho hình chop S.ABC có đáy là tam giác ABC vuông tại B, đường thẳng SA vuông góc với mp(abc), biết AB = a, BC = a 3 và SA = 3a. a) Tính thể tích khối chóp S.ABC theo a b) Gọi I là trung điểm của cạnh SC, tính độ dài đoạn BI theo a. Bài 104: Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I là trung điểm của BC. a) Chứng minh SA vuông góc với BC. b) Tính thể tích khối chóp S.ABI theo a. Bài 105: Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Biết SA = AB = BC = a. Tính thể tích khối chóp S.ABC. Bài 106: SA bằng a 3. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên a) Tính thể tích của khối chóp S.ABCD. b) Chứng minh trung điểm của cạnh SC là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Bài 107: Cho hình chóp S.ABC có SA, AB, BC vuông góc với nhau từng đôi một. Biết SA = a, AB = BC = a 3. Tính thể tích của khối chóp S.ABC. Bài 108: Cho khối chóp S.ABC có hai mặt ABC và SBC là hai tam giác đều nằm trong hai mặt phẳng vuông góc nhau. Biết BC =1, tính thể tích của khối chóp S.ABC. Bài 109: Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A và hình chiếu vuông góc của S lên (ABC) trùng với trọng tâm G của tam giác ABC. Biết SA hợp với đáy góc S.ABC Tính thể tích của khối chóp

10 Bài 110: Cho khối chóp S.ABCD, có đáy ABCD là hình thoi, ABC và SAC là hai tam giác đều cạnh a, SB =SD. Tính thể tích của khối chóp S.ABCD. Bài 111: Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật, cho SA (ABCD). Biết SA = 2a, AB = a, BC = 3a. Tính thể tích của khối chóp S.ABC. Bài 112: Cho khối chóp S. ABCD, có đáy ABCD là hình thang vuông ở A và B. Cho SA vuông góc với mặt đáy (ABCD), SA = AD = 2a và AB = BC = a. Tính thể tích của khối chóp S. ABCD. Bài 113: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy (ABCD), góc giữa SC và đáy (ABCD) là 45 0.Tính thể tích của khối chóp S.ABCD. Bài 114: Cho khối chóp S.ABC có đáy là tam giác vuông ở A, AB = a, AC = 2a. Đỉnh S cách đều A, B, C mặt bên (SAB) hợp với mặt đáy (ABC) góc Tính thể tích khối chóp S.ABC. Bài 115: Cho khối lăng trụ ABC.A B C có đáy là tam giác đều cạnh bằng a, cạnh bên bằng a 3 và hình chiếu (vuông góc) của A lên (ABC) trùng với trung điểm của BC. Tính thể tích khối lăng trụ,từ đó suy ra thể tích của khối chóp A.ABC Bài 116: Cho khối lăng trụ tam giác ABC.A B C có đáy là tam giác đều cạnh bằng a, cạnh bên hợp với đáy góc 60 0, A cách đều A, B, C. Chứng minh BB C C là hình chữ nhật và tính thể tích của khối lăng trụ ABC.A B C. Bài 117: Cho hình lăng trụ đứng ABC.A B C có đáy là một tam giác vuông tại A, AC = b, Đường chéo BC của mặt bên BB C C tạo với mặt phẳng (AA C C) một góc a) Chứng minh tam giác ABC ' vuông tại A b) Tính độ dài đoạn AC. c) Tính thể tích của khối lăng trụ ABC.A B C từ đó suy ra thể tích của khối chóp C.ABC Bài 118:. Cho khối lăng trụ ABC.A B C có thể tích bằng V. Gọi M, N lần lượt là trung điểm của hai cạnh AA và BB. Mặt phẳng (C MN) chia khối lăng trụ đã cho thành hai phần. a). Tính thể tích của khối chóp C.ABC theo V. b). Tính thể tích của khối chóp C. ABB A theo V. c) Tính thể tích khối chóp C. MNB A theo V. d) Tính tỉ lệ thể tích của hai khối chóp C. MNB A và ABC.MNC. Bài 119: Cho khối lăng trụ đứng ABC.A B C có đáy ABC vuông tại A, AB = a, góc B bằng 60 0, AA = a 3. a/ Tính thể tích khối lăng trụ tam giác ABC.A B C. b/ Tính thể tích tứ diện ABA C. Bài 120: Cho khối lăng trụ tam giác đều ABC.A B C có cạnh đáy bằng a, góc giữa B C và mặt đáy bằng a/ Tính khối lăng trụ tam giác đều ABC.A B C. b/ M là trung điểm A A. mp(b CM) chia khối lăng trụ đã cho thành 2 khối chóp. Hãy nêu tên 2 khối chóp đó và tính tỉ số thể tích của chúng? Bài 121: Cho khối hộp chữ nhật ABCD.A B C D với AB = a, AD = a 3. Góc A C và mặt đáy bằng a/ Tính thể tích khối hộp chữ nhật ABCD.A B C D. b/ Tính thể tích khối tứ diện ACB D. Bài 122: Cho khối lăng trụ tứ giác đều ABCD.A B C D có cạnh đáy bằng a, chiều cao bằng 2a. a/ Tính thể tích khối lăng trụ tứ giác đều ABCD.A B C D. b/ Gọi I là trung điểm A C. Tính thể tích khối chóp I.ABCD. Bài 123: Cho khối lăng trụ đứng tứ giác ABCD.A B C D có đáy hình thoi cạnh bằng a, góc A bằng 60 0, góc giữa đường thẳng AC và mặt đáy bằng a/ Tính thể tích khối lăng trụ ABCD.A B C D. b/ Tính thể tích khối chóp A.BCC B. 10

11 Bài 124: Cho khối lăng trụ tam giác ABC.A B C có đáy là tam giác đều cạnh bằng a, hình chiếu vuông góc của đỉnh A trên mặt đáy ABC là trung điểm của BC, góc giữa cạnh bên và mặt đáy bằng a/ Tính thể tích khối lăng trụ tam giác ABC.A B C. b/ M là hình chiếu vuông góc của B trên A A. Mặt phẳng (BCM) chia khối lăng trụ đã cho thành 2 khối đa diện, hãy tính tỉ số thể tích của chúng Bài 125: Cho khối lăng trụ tam giác ABC.A B C có đáy là tam giác đều cạnh bằng a, đỉnh A cách đều các điểm A, B, C. Cạnh A A tạo với mặt đáy một góc a/ Tính thể tích khối lăng trụ tam giác ABC.A B C b/ Chứng minh mặt bên BCC B là hình chữ nhật. Từ đó tính khoảng cách từ điểm A đến mặt bên BCC B Bài 126: Cho khối chóp tam giác S.ABC có đáy ABC vuông tại B, AB = a, BC = 2a, SC = 3a và cạnh bên SA vuông góc với mặt đáy. a/ Tính thể tích khối chóp tam giác S.ABC. b/ M là trung điểm SB và H là hình chiếu vuông góc A trên SC.Tính thể tích tứ diện SAMH. Bài 127: Cho khối chóp tam giác S.ABC có đáy ABC vuông tại A, AB = a, góc C bằng 30 0, cạnh bên SB vuông góc với mặt đáy và SC tạo với mặt đáy một góc a/ Tính thể tích khối chóp tam giác S.ABC. b/ Gọi A là hình chiếu vuông góc của B trên SA và C thuộc SC sao cho SC = 3SC. Tính thể tích tứ diện SBA C và khoảng cách từ điểm C đến mp(sab). Bài 128: Cho khối chóp tam giác S.ABC có đáy ABC đều cạnh bằng a, chân đường cao của khối chóp là trung điểm của cạnh BC còn các mặt bên SAB, SAC cùng tạo với đáy một góc a/ Tính thể tích khối chóp tam giác S.ABC. b/ Gọi O là tâm ABC và G là trọng tâm SBC. Tính thể tích tứ diện OGBC. Bài 129: Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng a, cạnh bên tạo với đáy một góc a/ Tính thể tích khối chóp tam giác đều S.ABC. b/ Mặt phẳng qua BC và vuông góc với SA tại D. Tính thể tích khối chóp S.BCD. Bài 130: Cho khối tứ diện đều cạnh bằng a. a/ Tính thể tích khối tứ diện đều trên. b/ M là điểm tùy ý thuộc miền trong của khối tứ diện. Chứng minh tổng các khoảng cách từ điểm M đến các mặt của tứ diện không phụ thuộc vị trí của điểm M. Bài 131: Cho khối chóp tứ giác S.ABCD đáy hình chữ nhật có AB = a, BC = 2a, cạnh bên SA (ABCD) và SA = 2a. a/ Tính thể tích khối chóp tứ giác S.ABCD. b/ Gọi B,D lần lượt là hình chiếu vuông góc của A trên SB, SD. Chứng minh mp(ab D ) vuông góc với SC. c/ Gọi C là giao điểm của SC với mp(ab D ). Tính thể tích khối chóp S.AB C D. Bài 132: Cho khối chóp tứ giác S.ABCD đáy hình vuông cạnh bằng a, cạnh bên SA (ABCD), góc giữa cạnh bên SC và mặt đáy bằng a/ Tính thể tích khối chóp tứ giác S.ABCD. b/ Mặt phẳng đi qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại B, C, D. Tính thể tích khối chóp S.AB C D. Bài 133: Cho khối chóp tứ giác đều S.ABCD cạnh đáy bằng a, cạnh bên bằng b. a/ Tính thể tích khối chóp tứ giác S.ABCD. b/ Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD cắt SB, SD lần lượt tại E, F. Tính thể tích khối chóp S.AEMF. 11

12 Bài 134: Tính thể tích khối bát diện đều cạnh bằng a. Bài 135: Cho khối chóp tam giác S.ABC có đáy ABC vuông tại A, AB = a, BC = 2a. Đỉnh S cách đều các điểm A, B, C và cạnh bên tạo với đáy một góc a/ Tính thể tích khối chóp tam giác S.ABC. b/ Gọi G là trọng tâm SBC. Mặt phẳng đi qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính thể tích khối chóp S.AMN. Bài 136: 2 6 Bài 137: SA h a. SB KHA b. c. h 2R 30 o Bài 138: a. b. c. Bài 139: a. b. Bài 140: a. b. Bài 141: a. b. Bài 142: 0 x a a. b. Bài 143: Bài 144: AB a AD a 2 SA a SAC SMB 12

13 Bài 145: AB AC a AA1 a 2 Bài 146: Khối lăng trụ tứ giác đều ABCD.A 1 B 1 C 1 D 1 có khoảng cách hai đường thẳng AB và A 1 D bằng 2 và độ dài đường chéo của mặt bên bằng 5. a) Hạ AK A 1 D (K A 1 D ).CMR: AK = 2. b) Tính thể tích khối lăng trụ ABCD.A 1 B 1 C 1 D 1. Bài 147: Bài 148: Cho hình hộp chữ nhật ABCDA 1 B 1 C 1 D 1 với AB = a; BC = b; AA 1 = c. a) Tính diện tích tam giác ACD 1 theo a, b, c. b) Giả sử M,N lần lượt là trung điểm của AB và AC. Tính thể tích của tứ diện D 1 DMN theo a, b, c. Bài 149: Cho hình chóp SABC đỉnh S, đáy là tam giác cân AB = AC = 3a, BC = 2a. biết rằng các mặt bên (SAB), (SBC), (SCA) đều hợp với mặt phẳng đáy (ABC) một góc 60 o. Kẻ đường cao SH của hình chóp. a) Chứng tỏ H là tâm đường tròn nội tiếp tam giác ABC và SA BC. b) Tính thể tích của khối chóp. Bài 150: Cho hình chóp đều SABCD, đáy ABCD là hình vuông có cạnh 2a. Cạnh bên SA = a 5. Một mặt phẳng (P) đi qua A, B và vuông góc với mp(scd), (P) lần lượt cắtt SC, SD tại C 1 và D 1. a) Tính diện tích của tứ giác ABC 1 D 1. b) Tính thể tích của khối đa diện ABCDD 1 C 1. Bài 151: Cho hình chóp tứ giác đều SABCD đỉnh S, độ dài cạnh đáy AB = a và góc SAB = 60 o. Tính thể tích hình chóp SABCD theo a. Bài 152: Cho tam giác đều ABC cạnh a. Trên đường thẳng d vuông góc với mf(abc) tại Alấy điểm M. Gọi H là trực tâm của tam giấcbc,k là trực tâm của tam giác BCM. a) CMR: MC (BHK); HK (BMC). b)khi M thay đổi trên d, tìm GTLN của thể tích tứ diện KABC. Bài 153: Bài 154: Bài 155: Bài 156: Bài 157: 13

14 Bài 158: 1 2 Bài 159: Bài 160: Bài 161: Bài 162: Bài 163: α Bài 164: Bài 165: Bài 166: a 2 a 3 a Bài 167: a a a a 4 Bài 168: Bài 169: Bài 170: Bài 171: 14

15 Bài 172: Bài 173: Bài 174: Bài 175: 3 Bài 176: Bài 177: Bài 178: Bài 179: Bài 180: 2 Bài 181: Cho lăng trụ tam giác ABCA 1 B 1 C 1 có đáy ABC là một tam giác đê Bài 182: Bài 184: Bài 185: Trong không gian cho đoạn OO 1 = H và hai nửa đường thẳng Od, O 1 d 1 cùng vuông góc với OO 1 và vuông góc với nhau. Điểm M chạy trên Od, điểm N chạy trên O 1 d 1 sao cho ta luôn có OM 2 +O 1 N 2 =k 2 (k cho trước) a) Chứng minh đoạn MN có độ dài không đổi. b) Xác định vị trí M trên Od và N trên O 1 d 1 sao cho tứ diện OO 1 MN có thể tích lớn nhất 15

16 Bài 186: Cho khối lăng trụ đứng ABC.A B C có đáy ABC là một tam giác vuông tại A, AC = b, Đường chéo BC của mặt bên (BB C ) tạo với mặt phẳng (AA C C) một góc Bài 187: a. Tính độ dài đoạn AC b. Tính thể tích của khối lăng trụ C ˆ Bài 188: Bài 189: Bài 190: Cho hình chóp S.ABC. Đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy, góc ACB =60 0, BC = a, Tính thể tích khối tứ diện MABC. Bài 191:. Gọi M là trung điểm cạnh SB. Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC). Bài 192: 3 1 Bài 193: AD 2 Bài 194: = a chóp OAHK Bài 195: Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O, SA vuông góc với hình chóp. Cho 2. Gọi H và K lần lượt là hình chiếu của A lên SB, SD. Chứng minh SC (AHK) và tính thể tích hình Bài 196: 3 Bài 197: 3 Bài 198: 2 Bài 199: 2 Bài 200: 16

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1- Độ dài đoạn thẳng Ax ( ; y; z ), Bx ( ; y ; z ) thì Nếu 1 1 1 1. Một Số Công Thức Cần Nhớ AB = ( x x ) + ( y y ) + ( z z ). 1 1 1 - Khoảng cách từ điểm đến mặt phẳng

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012. wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a) Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )

Διαβάστε περισσότερα

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56 TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng

Διαβάστε περισσότερα

O 2 I = 1 suy ra II 2 O 1 B.

O 2 I = 1 suy ra II 2 O 1 B. ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến

Διαβάστε περισσότερα

Bài 5. Cho chóp S.ABCD có đáy là hình bình

Bài 5. Cho chóp S.ABCD có đáy là hình bình THPT BÀI TẬP HÌNH HỌC KHÔNG GIAN 11 Trang 1 1 TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG Bài 1. Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. Tìm giao tuyến của: a) (SAC) và (SBD) b)

Διαβάστε περισσότερα

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C. Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không

Διαβάστε περισσότερα

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3 ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung

Διαβάστε περισσότερα

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác

Διαβάστε περισσότερα

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1 SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ

Διαβάστε περισσότερα

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu) SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)

Διαβάστε περισσότερα

Năm Chứng minh Y N

Năm Chứng minh Y N Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.

Διαβάστε περισσότερα

BIÊN SOẠN: THẦY ĐẶNG THÀNH NAM Website: 1

BIÊN SOẠN: THẦY ĐẶNG THÀNH NAM Website:  1 Website: wwwvtedvn ĐỀ THI ONLINE TỶ Ố THỂ TÍCH (ĐỀ Ố 0) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn ideo bài giảng và lời giải chi tiết chỉ có tại website: wwwvtedvn Câu Cho khối hộp ABCDA' B'C

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC). ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm

Διαβάστε περισσότερα

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ). ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng

Διαβάστε περισσότερα

Vectơ và các phép toán

Vectơ và các phép toán wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu

Διαβάστε περισσότερα

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết

Διαβάστε περισσότερα

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết

Διαβάστε περισσότερα

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

I 2 Z I 1 Y O 2 I A O 1 T Q Z N ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện

Διαβάστε περισσότερα

PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG KIẾN THỨC CẦN NHỚ : 1. Phép tịnh tiến : a. Định nghĩa :Cho cố định. Với mỗi điểm M, ta dựng điểm M sao cho MM ' = T (M) = M sao cho : MM ' = b. Biể thức

Διαβάστε περισσότερα

TỨ DIỆN VẤN ĐỀ I: CÁC BÀI TOÁN CHỌN LỌC VỀ CHÓP TAM GIÁC

TỨ DIỆN VẤN ĐỀ I: CÁC BÀI TOÁN CHỌN LỌC VỀ CHÓP TAM GIÁC TỨ DIỆN VẤN ĐỀ I: Á ÀI TOÁN HỌN LỌ VỀ HÓP TM GIÁ Ví dụ 1: ho tứ diện D có D (, D 4cm, cm, 5cm. Tính khoảng cách từ đến ( D. Giải: vuông tại họn hệ trục tọ độ so cho: ( ;;, ( ;;, ( ;4;, D( ;;4 Phương trình

Διαβάστε περισσότερα

Năm 2017 Q 1 Q 2 P 2 P P 1

Năm 2017 Q 1 Q 2 P 2 P P 1 Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động

Διαβάστε περισσότερα

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG hieuchuoi@ Tháng 7.006 GIỚI THIỆU Tuyển tập đề thi này gồm tất cả 0 đề thi tuyển sinh vào trường THPT chuyên Nguyễn Trãi Tỉnh Hải Dương (môn Toán chuyên) và

Διαβάστε περισσότερα

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH

Διαβάστε περισσότερα

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân

Διαβάστε περισσότερα

O C I O. I a. I b P P. 2 Chứng minh

O C I O. I a. I b P P. 2 Chứng minh ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường

Διαβάστε περισσότερα

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

Chứng minh. Cách 1. EO EB = EA. hay OC = AE ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các

Διαβάστε περισσότερα

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren). Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí

Διαβάστε περισσότερα

Đề số 1. Đề số ) : CÂU 2: (3đ) Tìm x CÂU 3: (2đ) Tìm các số a ; b ; c biết a b c và 2a + 3c = 18

Đề số 1. Đề số ) : CÂU 2: (3đ) Tìm x CÂU 3: (2đ) Tìm các số a ; b ; c biết a b c và 2a + 3c = 18 - 1 - CÂU 1: (, đ) Thực hiện phép tính ( hợp lí nếu có thể) 1 1) 7 1 1 7 11 1 7 1 11 ) 1 1 1 1 1 1 1 ) : 81. CÂU : (đ) Tìm x 7 1) :x 8 1 ) ) 7 1 x 1 11 : x 1 : ( ) 6 1 Đề số 1 CÂU : (đ) Tìm các số a ;

Διαβάστε περισσότερα

( ) 01. GÓC GIỮA HAI ĐƯỜNG THẲNG. Thầy Đặng Việt Hùng. Tài liệu tham khảo: LUYỆN THI ĐẠI HỌC MÔN TOÁN Thầy Hùng. Chuyên đề Hình học không gian

( ) 01. GÓC GIỮA HAI ĐƯỜNG THẲNG. Thầy Đặng Việt Hùng. Tài liệu tham khảo: LUYỆN THI ĐẠI HỌC MÔN TOÁN Thầy Hùng. Chuyên đề Hình học không gian Thầy Đặng Việt Hùng I. TÍCH VÔ HƯỚNG CỦA HAI VÉC TƠ TRONG KHÔNG GIAN 1) Góc giữa hai véc tơ AB = u Giả sử ta có ( ) ( ; = ; ) = u v AB AC BAC, với BAC 18. AC = v ) Tích vô hướng của hai véc tơ AB = u Giả

Διαβάστε περισσότερα

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn

Διαβάστε περισσότερα

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm) THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:

Διαβάστε περισσότερα

PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên

PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên huyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI Á ÀI TẬP HÌNH KHÔNG GIN TRONG KỲ THI TĐH iên soạn: Nguyễn Trung Kiên Hình không gin là bài toán không khó trong đề thi TĐH nhưng luôn làm cho rất nhiều học sinh

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

- Toán học Việt Nam

- Toán học Việt Nam - Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc

Διαβάστε περισσότερα

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB. Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)

Διαβάστε περισσότερα

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ: Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:

Διαβάστε περισσότερα

tâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G.

tâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G. Phần I. Véc tơ. hứng minh hệ thức véc tơ Véc tơ - Toạ độ hú ý + ho Với mọi điểm O, t có: = O O. + Tứ giác là hbh =. + Để cm = b. = b i) b ii) Nếu = ;b =. T cm là hbh. iii) Tính chất bắc cầu + Để cm = t

Διαβάστε περισσότερα

Chuyên đề7 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Trong không gian với hệ tọa độ Oxyz.

Chuyên đề7 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Trong không gian với hệ tọa độ Oxyz. Chuyên đề7 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I TỌA ĐỘ ĐIỂM VÀ VECTƠ A. CÁC KIẾN THỨC CƠ BẢN: I. Tọa độ điểm : Tong không gian với hệ tọa độ Oxyz: uuuu. M ( xm ; ym ; zm ) OM = xm i + ym j + zm k uuu.

Διαβάστε περισσότερα

x y y

x y y ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng

Διαβάστε περισσότερα

A 2 B 1 C 1 C 2 B B 2 A 1

A 2 B 1 C 1 C 2 B B 2 A 1 Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng

Διαβάστε περισσότερα

KIẾN THỨC CÓ LIÊN QUAN

KIẾN THỨC CÓ LIÊN QUAN KIẾN THỨC CÓ LIÊN QUAN ĐẠO HÀM CỦA HÀM SỐ A. TÓM TẮT GIÁO KHOA 1) Ñònh nghóa ñaïo haøm cuûa haøm soá taïi moät ñieåm: Cho haøm soá =f() aùc ñònh treân khoaûng (a;b) vaø (a; b). Ñaïo haøm cuûa haøm soá

Διαβάστε περισσότερα

Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10

Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10 ĐỀ THAM KHẢO THPT QUỐC GIA 8 MÔN TOÁN (ĐỀ SỐ ) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn Video bài giảng và lời giải chi tiết chỉ có tại wwwvtedvn Thời gian làm bài: 9 phút (không kể thời gian

Διαβάστε περισσότερα

H ng d n gi i m t s bài t p t a trong không gian nâng cao. là góc nhọn. Chọn. Câu 1: Tìm m để góc giữa hai vectơ: u phương án đúng và đầy đủ nhất.

H ng d n gi i m t s bài t p t a trong không gian nâng cao. là góc nhọn. Chọn. Câu 1: Tìm m để góc giữa hai vectơ: u phương án đúng và đầy đủ nhất. Hng dn gii mt s bài tp ta trong không gian nâng cao Câu : Tìm m để góc giữa hai vectơ: u ; ;log 5;log, v ;log ;4 phương án đúng và đầy đủ nhất. m 5 là góc nhọn. Chọn A. C. m, m B. m hoặc m D. m m Ta có

Διαβάστε περισσότερα

ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4.

ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4. ShaMO 30 A1. Cho các số thực a, b, c, d thỏa mãn a + b + c + d = 6 và a 2 + b 2 + c 2 + d 2 = 12. Chứng minh rằng 36 4 ( a 3 + b 3 + c 3 + d 3) ( a 4 + b 4 + c 4 + d 4) 48. A2. Cho tam giác ABC, với I

Διαβάστε περισσότερα

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD: . Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm

Διαβάστε περισσότερα

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN HỘI NGHỊ NCKH KHOA SP TOÁN-TIN THÁNG 5/5 MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN ThS. Võ Xuân Mi Kho Sư phạm Toán-Tin, Trường Đại học Đồng Tháp Emil: vxmi@dthu.edu.vn

Διαβάστε περισσότερα

PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: GV Nguyễn Trung Kiên

PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: GV Nguyễn Trung Kiên huyên ñề luyện thi ñại học PHƯƠNG PHÁP GIẢI Á ÀI TẬP HÌNH KHÔNG GIN TRONG KỲ THI TSĐH iên soạn: GV Nguyễn Trung Kiên 0988844088 Trong kỳ thi TSĐH bài toán hình không gin luôn là dạng bài tập gây khó khăn

Διαβάστε περισσότερα

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố

Διαβάστε περισσότερα

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN . ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ

Διαβάστε περισσότερα

Kinh tế học vĩ mô Bài đọc

Kinh tế học vĩ mô Bài đọc Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng

Διαβάστε περισσότερα

HÌNH HOÏC GIAÛI TÍCH TRONG MAËT PHAÚNG

HÌNH HOÏC GIAÛI TÍCH TRONG MAËT PHAÚNG Chueân ñeà: HÌNH HÏC GIÛI TÍCH TRNG ËT PHÚNG PHÖÔNG PHÙP TÏ ÑÄ TRNG ËT PHÚNG TÏ ÑÄ ÑIEÅ - TÏ ÑÄ VEÙC TÔ ' I. Heä truïc toaï ñoä ÑEÀ-CÙC trong maët phaúng : ' : truïc hoaønh ' : truïc tung : goác toaï ñoä

Διαβάστε περισσότερα

x + 1? A. x = 1. B. y = 1. C. y = 2. D. x = 1. x = 1.

x + 1? A. x = 1. B. y = 1. C. y = 2. D. x = 1. x = 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THỬ NGHIỆM Đề thi gồm có 6 trang) KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 7 Bài thi : TOÁN Thời gian làm ài : 9 phút, không kể thời gian phát đề HƯỚNG DẪN GIẢI CHI TIẾT Soạn ởi

Διαβάστε περισσότερα

DANH SÁCH NHÓM 8. Hình học sơ cấp : Phép quay

DANH SÁCH NHÓM 8. Hình học sơ cấp : Phép quay DANH SÁCH NHÓM 8. Phạm Nhơn Quý. Đỗ Công Sơn 3. Cửu Hiếu Thảo 4. Hoàng Thanh Thủy 5. Hoàng Thị Thu Thủy 6. Lê Thị Thủy Tiên 7. Nguyễn Sĩ Trung 8. Nguyễn Ngọc Mạnh Tuân 9. Nguyễn Thị Minh Yến. Võ Ngọc Thiệu

Διαβάστε περισσότερα

BÀI TẬP ÔN THI HOC KỲ 1

BÀI TẬP ÔN THI HOC KỲ 1 ÀI TẬP ÔN THI HOC KỲ 1 ài 1: Hai quả cầu nhỏ có điện tích q 1 =-4µC và q 2 =8µC đặt cách nhau 6mm trong môi trường có hằng số điện môi là 2. Tính độ lớn lực tương tác giữa 2 điện tích. ài 2: Hai điện tích

Διαβάστε περισσότερα

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.

Διαβάστε περισσότερα

Bài giảng PHƯƠNG PHÁP TRẢI HÌNH TRÊN MẶT PHẲNG Người soạn :Trần Thị Hiền Tổ toán trường THPT Chuyên Hạ Long

Bài giảng PHƯƠNG PHÁP TRẢI HÌNH TRÊN MẶT PHẲNG Người soạn :Trần Thị Hiền Tổ toán trường THPT Chuyên Hạ Long Bài giảng PHƯƠNG PHÁP TRẢI HÌNH TRÊN MẶT PHẲNG Người soạn :Trần Thị Hiền Tổ toán trường THPT Chuyên Hạ Long Khi giải một bài toán về tứ diện mà các dữ kiện của nó liên quan đến tổng các góc phẳng, hoặc

Διαβάστε περισσότερα

Trần Quang Hùng - THPT chuyên KHTN 4

Trần Quang Hùng - THPT chuyên KHTN 4 Trần Quang Hùng - THPT chuyên KHTN 4 Bài tập Lê Quý Đôn Bài 68. Cho tam giác ABC tâm nội tiếp I, trực tâm H. d là một đường thẳng bất kỳ. d a,d b,d c đối xứng với d qua IA,IB,IC. l a,l b,l c đối xứng HA,HB,HC

Διαβάστε περισσότερα

có nghiệm là:. Mệnh đề nào sau đây đúng?

có nghiệm là:. Mệnh đề nào sau đây đúng? SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương

Διαβάστε περισσότερα

3x-4y+27=0 Bài 2 Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x y 4x 2; 2 1 '

3x-4y+27=0 Bài 2 Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x y 4x 2; 2 1 ' Bài Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x y x 8y 8 0. Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. Hướng

Διαβάστε περισσότερα

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH ỨNG DỤNG PHƯƠNG TÍH, TRỤ ĐẲNG PHƯƠNG TRNG ÀI TÁN YẾU TỐ Ố ĐỊNH. PHẦN Ở ĐẦU I. Lý do chọn đề tài ác bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá

Διαβάστε περισσότερα

ĐỀ 1 Bài 1: Giải các phương trình sau:

ĐỀ 1 Bài 1: Giải các phương trình sau: ĐỀ 1 Bài 1: Giải các phương trình sau: a) 3 ( x ) 14x = 4 ( 7x) + 15 b) ( 5 15x)( x + 3)( 3x 4) 3 8 c) 3 x 1 x + + = + d) + = x x+ x 4 x x x( x ) Bài : Giải các bất phương trình sau: 4 a) 3x 5< 4x 5 b)

Διαβάστε περισσότερα

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác

Διαβάστε περισσότερα

1.6 Công thức tính theo t = tan x 2

1.6 Công thức tính theo t = tan x 2 TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos

Διαβάστε περισσότερα

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ TRƯỜNG THT HUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓ: 2011-2012 * * HUYÊN ĐỀ ỘT SỐ ÀI TOÁN HÌNH HỌ HẲNG LIÊN QUN ĐẾN TỨ GIÁ TOÀN HẦN Người thực hiện han Hồng Hạnh Trinh Nhóm chuyên toán lớp 111 Kon Tum, ngày 26

Διαβάστε περισσότερα

MATHSCOPE.ORG. Seeking the Unification of Math. Phan Đức Minh Trương Tấn Sang Nguyễn Thị Nguyên Khoa Lê Tuấn Linh Phạm Huy Hoàng Nguyễn Hiền Trang

MATHSCOPE.ORG. Seeking the Unification of Math. Phan Đức Minh Trương Tấn Sang Nguyễn Thị Nguyên Khoa Lê Tuấn Linh Phạm Huy Hoàng Nguyễn Hiền Trang MTHSOPE.ORG Seeking the Unification of Math Phan Đức Minh Trương Tấn Sang Nguyễn Thị Nguyên Khoa Lê Tuấn Linh Phạm Huy Hoàng Nguyễn Hiền Trang Tuyển tập các bài toán HÌNH HỌ PHẲNG ác bài toán ôn tập tuyển

Διαβάστε περισσότερα

Chương 12: Chu trình máy lạnh và bơm nhiệt

Chương 12: Chu trình máy lạnh và bơm nhiệt /009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng

Διαβάστε περισσότερα

TS. Nguyễn Văn Lợi (chủ biên)-ths. Hoàng Văn Tựu 108 BÀI TOÁN CHỌN LỌC LỚP 7 Draft

TS. Nguyễn Văn Lợi (chủ biên)-ths. Hoàng Văn Tựu 108 BÀI TOÁN CHỌN LỌC LỚP 7 Draft TS. Nguyễn Văn Lợi (chủ biên)-ths. Hoàng Văn Tựu 108 BÀI TOÁN CHỌN LỌC LỚP 7 Draft 1 Đôi lời với các bạn đọc Tài liệu này được biên soạn bao gồm những bài toán được sưu tầm và lựa chọn từ những tài liệu,

Διαβάστε περισσότερα

CÁC ĐỊNH LÝ HÌNH PHẲNG (tt)

CÁC ĐỊNH LÝ HÌNH PHẲNG (tt) CÁC ĐỊNH LÝ HÌNH PHẲNG (tt) 1.7 Định lý Ptolemy và Bất đẳng thức Ptolemy Định lý Ptolemy và bất đẳng thức Ptolemy là một trong những định lý hay và thú vị nhất của hình học phẳng sơ cấp. Có nhiều bài viết

Διαβάστε περισσότερα

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...

Διαβάστε περισσότερα

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn

Διαβάστε περισσότερα

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG IV

KỸ THUẬT ĐIỆN CHƯƠNG IV KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính

Διαβάστε περισσότερα

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó. HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau

Διαβάστε περισσότερα

5. Phương trình vi phân

5. Phương trình vi phân 5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài

Διαβάστε περισσότερα

HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG HÌNH HỌC 9 HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG Biên soạn: Email: Nguyễn Duy Phúc ndphuc910@gmail.com Mobile: 0169.668.9392 HÀ NỘI - 8/2015 Mục lục Chương 1. Hệ thức lượng trong tam giác vuông.................................

Διαβάστε περισσότερα

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là. Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.

Διαβάστε περισσότερα

+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)

+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7) Nhớm 3 Bài 1.3 1. (X,.) là nhóm => a X; ax= Xa= X Ta chứng minh ax=x Với mọi b thuộc ax thì b có dạng ak với k thuộc X nên b thuộc X => Với mọi k thuộc X thì k = a( a -1 k) nên k thuộc ax. Vậy ax=x Tương

Διαβάστε περισσότερα

x i x k = e = x j x k x i = x j (luật giản ước).

x i x k = e = x j x k x i = x j (luật giản ước). 1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG

Διαβάστε περισσότερα

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X. Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)

Διαβάστε περισσότερα

Câu 2 (1,0 điểm). Giải phương trình: 1 sin x sin cos x π x x = + +.

Câu 2 (1,0 điểm). Giải phương trình: 1 sin x sin cos x π x x = + +. SỞ GD&ĐT VĨNH PHÚC ĐỀ KTCL ÔN THI ĐẠI HỌC LẦN NĂM HỌC 0-0 Mô: TOÁN; Khối D Thời gia làm bài: 80 phút, khôg kể thời gia phát đề I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu (,0 điểm) Cho hàm số y

Διαβάστε περισσότερα

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình

Διαβάστε περισσότερα

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận. BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần. GVLê Văn Dũng - NC: Nguyễn Khuyến Bình Dương Dao Động Cơ 0946045410 (Nhắn tin) DAO ĐỘNG ĐIỀU HÒA rong thời gian t giây vật thực hiện được N dao động toàn phần Chu kì dao động của vật là = t N rong thời

Διαβάστε περισσότερα

LUẬN VĂN THẠC SĨ KHOA HỌC

LUẬN VĂN THẠC SĨ KHOA HỌC ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------- ----------- Lê Đình Trƣờng MỘT SỐ CHUYÊN ĐỀ VỀ ĐƢỜNG THẲNG VÀ ĐƢỜNG TRÒN TRONG HÌNH HỌC PHẲNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội 1/2015

Διαβάστε περισσότερα

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh. Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM

Διαβάστε περισσότερα

c) y = c) y = arctan(sin x) d) y = arctan(e x ).

c) y = c) y = arctan(sin x) d) y = arctan(e x ). Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết

Διαβάστε περισσότερα

CHUYÊN ĐỀ VỀ MẶT CẦU

CHUYÊN ĐỀ VỀ MẶT CẦU CHUYÊN ĐỀ VỀ MẶT CẦU A. TÓM TẮT LÝ THUYẾT 1. Định nghĩa : * Mặt cầu là tập hợp những điểm M cách một điểm I cố định một khoảng không đổi. * Điểm I cố định gọi là tâm của mặt cầu. * Khoảng cách không đổi

Διαβάστε περισσότερα

B. chiều dài dây treo C.vĩ độ địa lý

B. chiều dài dây treo C.vĩ độ địa lý ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG II

KỸ THUẬT ĐIỆN CHƯƠNG II KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở

Διαβάστε περισσότερα

CƠ HỌC LÝ THUYẾT: TĨNH HỌC

CƠ HỌC LÝ THUYẾT: TĨNH HỌC 2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại

Διαβάστε περισσότερα

Sử dụngụ Minitab trong thống kê môi trường

Sử dụngụ Minitab trong thống kê môi trường Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều

Διαβάστε περισσότερα

CHUYÊN ĐỀ 4: CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU

CHUYÊN ĐỀ 4: CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU CHUYÊN ĐỀ 4: CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU 1. Kiến thức cơ bản: Phương pháp 1: hai đoạn thẳng có cùng độ dài (theo cùng đơn vị đo chiều dài). Phương pháp 2: hai đoạn thẳng cùng bằng đoạn thẳng thứ

Διαβάστε περισσότερα