Study of limit cycles for some non-smooth Liénard systems

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Study of limit cycles for some non-smooth Liénard systems"

Transcript

1 ( ) Journal of East China Normal University (Natural Science) No. 3 May 011 Article ID: (011) Study of limit cycles for some non-smooth Liénard systems YANG Lu, LIU Xia, XING Ye-peng (Department of Mathematics, Shanghai Normal University, Shanghai 0034, China) Abstract: Algebraic method was used to study the Hopf cyclicity of non-smooth Liénard systems on the plain. Some new formulas for computing focus values were presented. Based on the formulas, the number of limit cycles bifurcating from some non-smooth Liénard systems was obtained. The results improve the known results. Key words: Liénard systems; non-smooth; limit cycle; Hopf cyclicity CLC number: O19 Document code: A DOI: /j.issn Liénard,, (, 0034) : Liénard Hopf,, Liénard Hopf,. : Liénard ; ; ; Hopf 1 Introduction and preliminary Several papers have been concerned with the bifurcation problems of non-smooth systems, see [1-7] for example. In this paper, we consider a non-smooth Liénard system of the form ẋ = p(y) F(x, a), ẏ = g(x), (1) where a R n, F(x, a) = F (x, a), x 0, F (x, a), x 0, g(x) = g (x), x 0, g (x), x 0. : : ( ), (10YZ7) :,,,. :,,,. :,,,,.

2 3, : Liénard 45 Here, F ± and g ± are all C functions and satisfy F ± (0, a) = 0, p(0) = 0, g ± (0) = 0, (g ± ) (0) = g ± 1 > 0, p (0) = p 0 > 0, (F ± x (0, a 0 )) 4p 0 g ± 1 < 0, a 0 R n. () For s > 0 small, the Poincaré return maps h ± (s) were defined in a neighborhood of the origin of general non-smooth systems in [7] and a succession function d was introduced as follows Definition 1.1 [7] If there is a k 1 such that d(s) = h (h (s)) s = V k s k O(s k1 ), V k 0 for s > 0 close to the zero, then V k is called the kth Liapunov constant or focus value. The origin is called fine or weak focus of order k if k > 1. as follows In [1] the definition of succession function of non-smooth systems is presented for s 0 Definition 1. [1] Define h (h (s)) s, for s > 0, d(s) = 0, for s = 0, h (h (s)) s, for s < 0. The function d(s) is called a succession function or a displacement function. Let ( g ) x x 1 g (x), x > 0, G(x) = g(u)du = ( 0 g ) x 1 g (x), x 0, where g ± (0) = 0. Using the above definitions, for system (1), the authors obtained the following lemmas and theorems in [1] Lemma 1.1 [1] and only if Let (1) satisfy (). Then the origin is a fine or weak focus for a = a 0 if g1 F x (0, a 0) g 1 F x (0, a 0) = 0. (3) Lemma 1. [1] Let () and (3) hold. Suppose formally for 0 < x 1 F(α(x), a) F(x, a) = F (α(x), a) F (x, a) = i 1 B i (a)x i, (4) where α(x) = g 1 xo(x ) satisfies G(α(x)) G(x) for 0 < x 1. Then we have formally g 1 d(r 0, a) = i 1 d i (a)r i 0 for a a 0 small, where d 1 (a) = B 1 N 1 (a), d i(a) = B i N i (a) O( B 1, B 1,, B i 1 ),

3 46 ( ) 011 with N i C and N i (a 0) > 0 for i 1. Theorem 1.1 [1] Suppose () and (3) hold. If there exists k 1 such that B j (a 0 ) = 0, j = 1,, k, B k1 (a 0 ) < 0(> 0), then the origin is a stable (unstable) focus of order k 1 of system (1) for a = a 0 and there are at most k limit cycles near the origin for all a a 0 small and k limit cycles can appear if rank (B 1,, B k ) (a 1,, a n ) a=a 0 = k. Corollary 1.1 [1] Let () and (3) hold. If there exists k 1 such that F (α(x), a) F (x, a) when B j1 = 0, j = 0,, k (5) for all a R m, then the origin is a focus of order at most k 1 of system (1) unless it is a center. further Theorem 1. [1] Suppose () and (3) are satisfied. Let (5) hold for some k 1. If B j1 (a 0 ) = 0, j = 0,, k, rank (B 1,, B k1 ) a=a0 = k 1, (6) (a 1,, a n ) for some a 0 R m, then system (1) has Hopf cyclicity k at the origin for a a 0 small. Theorem 1.3 [1] Let () and (3) hold. Suppose there exists k 1 such that (5) holds for all a R m and (6) holds for some a 0 R m. If F is linear in a then for any constant N > a 0, system (1) has Hopf cyclicity k for all a N. For general system (1), let G G(x) = x G 3 x3 G 4 x4 G 5 x5, x > 0 G x G 3 x3 G 4 x4 G 5 x5, x 0, F(x, a) = F 1 x F x F 3 x3 F 4 x4 F 5 x5, x > 0 F 1 x F x F 3 x3 F 4 x4 F 5 x5, x 0. Suppose α(x) = α 1 x α x α 3 x 3 α 4 x 4 α 5 x 5 for 0 < x 1. By inserting α(x) into the equation G(α(x)) = G(x), it was obtained in [1] G α 1 =, α = G 3 α3 1G 3 G α 1 G, α 3 = G 4 G 4 α4 1 3G 3 α 1α G α α 1 G, α 4 = G 5 G 5 α5 1 4G 4 α3 1 α 3G 3 (α 1 α 3 α 1 α ) G α α 3 α 1 G, α 5 = G 6 G 6 α6 1 5G 5 α4 1 α G 4 (4α3 1 α 3 6α 1 α ) G 3 (3α 1 α 4 α 3 6α 1α α 3 ) α 1 G G (α α 4 α 3) α 1 G, (7)

4 3, : Liénard 47 α 6 = G 7 G 7 α7 1 6G 6 α5 1 α 5G 5 (α3 1 α α4 1 α 3) 4G 4 (3α 1 α α 3 α 1 α 3 α3 1 α 4) α 1 G 3G 3 (α 1α 5 α 1 α α 4 α 1 α 3 α α 3 ) G (α 3α 4 α α 5 ) α 1 G. Then by using (4), the following formulas were obtained in [1] B 1 (a) = α 1 F1 F 1, B (a) = α F1 α 1F F, B 3 (a) = α 3 F1 α 1α F α3 1F3 F 3, B 4 (a) = α 4 F1 (α 1α 3 α )F 3α 1 α F3 α4 1 F 4 F 4, B 5 (a) = α 5 F1 (α 1α 4 α α 3 )F 3(α 1 α 3 α 1 α )F 3 4α3 1 α F4 α5 1 F 5 F 5, B 6 (a) = α 6 F1 (α 1α 5 α α 4 α 3 )F (3α 1 α 4 6α 1 α α 3 α 3 )F 3 (6α 1α 4α 3 1α 3 )F4 5α4 1α F5 α6 1F6 F 6. (8) Applying Theorem 1.3 to the following system, ẋ = y F n (x, a), ẏ = g(x), (9) where F n (x, a) = n a i xi, x > 0, n a i xi, x 0, i=1 i=1 g(x) = x g x, x > 0, x g x, x 0, the authors in [1] proved that for n = 1, or 3 system (9) respectively has Hopf cyclicity 1, 3, 5 at the origin. In this paper we first give a formula for computing B i, i = 7, 8, 9, 10, and then apply Theorems to study the Hopf bifurcation of some non-smooth Liénard systems. In particular, we found the Hopf cyclicity for system (9) in the case of n = 3 can be 4, which improve the result in [1], see Theorem. below. Main results and proofs For general system (1) we have Theorem.1 Let (7) and (8) hold. We can further obtain α 7 = [G 8 G 8 α8 1 7G 7 α6 1α G 6 (6α5 1α 3 15α 4 1α ) 5G 5 (α4 1α 4 4α 3 1α α 3 α 1α 3 ) G 4 (1α 1α α 4 6α 1α 3 4α 3 1α 5 1α 1 α α 3 α 4 ) 3G 3 (α 1α α 5 α 1 α 3 α 4 α 1α 6 α α 3 α α 4 ) G (α α 6 α 3 α 5 α 4 )]/(α 1G ),

5 48 ( ) 011 α 8 = [G 9 G 9 α9 1 8G 8 α7 1α 7G 7 (α6 1α 3 3α 5 1α ) G 6 (6α5 1α 4 30α 4 1α α 3 0α 3 1α 3 ) 5G 5 (α4 1α 5 4α 3 1α α 4 α 3 1α 3 6α 1α α 3 α 1 α 4 ) 4G 4 (3α 1 α 3α 4 3α 1 α α 5 3α α 1 α 3 α3 1 α 6 α 3 α 3 3α α 1α 4 ) G 3 (3α 1 α 7 3 α 1 α 4 6 α 1α 3 α 5 6 α 1 α α 6 α α α 3 α 4 3 α α 5) G (α α 7 α 3 α 6 α 4 α 5 )]/(α 1 G ), α 9 = [ G 10 α10 1 G 10 9α8 1α G 9 4(7α6 1α α 7 1α 3 )G 8 7(α6 1α 4 5α 4 1α 3 6α 5 1α 3 α )G 7 (6α 5 1α 5 15α 4 1α 3 15α 4 α 1 30α 4 1α 4 α 60α 3 1α α 3 )G 6 (5α 6α α 1α α 3 0α 1 α 3 α 3 0α 3 1α α 5 0α 3 1α 3 α 4 30α 1α α 4 α 5 )G 5 (4α 3 α 4 4α 3 3α 1 4α 7 α 3 1 6α α 3 6α 1α 4 1α 1 α α 5 1α 1α 3 α 5 1α 6 α 1 α 4α 1 α α 4 α 3 )G 4 3(α 3 α 4 α α 6 α 1 α 8 α α 4 α 1α α 7 α 1 α 4 α 5 α 1 α 3 α 6 α α 3 α 5 )G 3 (α 3 α 7 α 4 α 6 α α 8 α 5 )G ]/( α 1G ), α 10 = [ G 11 α11 1 G 11 10α9 1α G 10 9(α8 1α 3 4α 7 1α )G 9 8(α7 1α 4 7α 5 1α 3 7α 6 1α α 3 )G 8 7(α 6 1α 5 5α 3 1α 4 3α 5 1α 3 15α 4 1α 3 α 6α 5 1α 4 α )G 7 6(α5 α 1 α 6 α 5 1 5α 4 1α 3 α 4 10α 1α 3 α 3 10α 3 1α 3α 10α 3 1α α 4 5α 4 1α 5 α )G 6 5(α4 α 3 α 7 α 4 1 α 3 3α 1 α 3 1 α 4 6α 1α α 3 6α 1 α α 5 4α 3 1 α 3α 5 4α 1 α 3 α 4 4α 6 α 3 1 α 1α 1 α α 4 α 3 )G 5 4(α3 3 α α 3 α 5 α 8 α 3 1 3α 7α 1 α 3α 6 α 1 α 3 3α 6 α 1 α 3α α 4α 3 3α 1 α α 4 3α 1α 3 α 4 3α 1 α 4α 5 6α 1 α α 3 α 5 )G 4 3(α 1α 5 α 3α 4 and α α 7 α 3α 5 α 1α 9 α α 4 α 5 α 1 α α 8 α 1 α 3 α 7 α 1 α 4 α 6 α α 3 α 6 )G 3 (α 4 α 7 α 5 α 6 α 3 α 8 α α 9 )G ]/( α 1G ) B 7 (a) = α 7 F 1 (α 1α 6 α α 5 α 3 α 4 )F 3(α 1 α 5 α 1 α α 4 α 1 α 3 α α 3)F 3 4(α 3 1α 4 3α 1α α 3 α 1 α 3 )F 4 5(α4 1α 3 α 3 1α )F 5 6α5 1α F 6 α7 1F 7 F 7, B 8 (a) = α 8 F 1 (α 1α 7 α α 6 α 3 α 5 α 4)F 3(α 1α 6 α 1 α α 5 α 1 α 3 α 4 α α 4 α α 3)F 3 (4α3 1α 5 1α 1α α 4 6α 1α 3 1α α 1 α 3 α 4 )F 4 5(α4 1α 4 4α 3 1 α α 3 α 1 α3 )F 5 3(α5 1 α 3 5α 4 1 α )F 6 7α6 1 α F 7 α8 1 F 8 F 8

6 3, : Liénard 49 B 9 (a) = α 9 F 1 (α α 7 α 4 α 5 α 1 α 8 α 3 α 6 )F (3α α 5 3α 1 α 4 3α 1α 7 6α 1 α α 6 6α 1 α 3 α 5 6α α 3 α 4 α 3 3)F 3 4(α3 α 3 α 6 α 3 1 3α 1α α 5 3α 1 α α 3 3α 1 α α 4 3α 1 α 3α 4 )F 4 5(α4 α 1 α 4 1 α 5 α 3 1 α 3 4α3 1 α α 4 6α 1 α α 3)F 5 (0α 3 1 α3 6α5 1 α 4 30α 4 1 α 3α )F 6 7(α6 1 α 3 3α 5 1 α )F 7 8α7 1 α F 8 α 9 1 F 9 F 9, B 10 (a) = α 10 F 1 (α 3α 7 α 1 α 9 α 4 α 6 α α 8 α 5 )F 3(α 1 α 8 α 3 α 4 α α 4 α α 6 α 1 α 4 α 5 α α 3 α 5 α 1 α α 7 α 1 α 3 α 6 )F 3 (4α 7α 3 1 4α3 α 4 6α α 3 4α 1α 3 3 6α 1 α 4 1α 1 α 3α 5 1α 6 α 1 α 1α 1 α α 5 4α 1 α α 3 α 4 )F 4 Then (5α 6 α 4 1 0α 3 1α 3 α 4 0α 1 α 3 α 3 30α 1α α 4 0α 3 1α α 5 30α 1α α 3 α 5 )F 5 3(5α 4 α 1 5α 4 1α 3 α 5 1α 5 10α 4 1α 4 α 0α 3 1α α 3 )F 6 [mm] 7(5α 4 1α 3 α 6 1α 4 6α 5 1α 3 α )F 7 (8α7 1α 3 8α 6 1α )F 8 9α8 1α F 9 α 10 1 F 10 F 10. Proof Let α(x) = α 1 x α x α 3 x 3 α 4 x 4 α 5 x 5, xα(x) < 0. G(α(x)) = G (α(x)) G 3 (α(x))3 G 4 (α(x))4 G 5 (α(x))5 G 6 (α(x))6 G 7 (α(x))7 G 8 (α(x))8, G(x) = G x G 3 x3 G 4 x4 G 5 x5 G 6 x6 G 7 x7 G 8 x8. Note that G(α(x)) = G(x). Comparing the coefficients of x 8 in the both sides, we obtain G 8 = G (α 1α 7 α α 6 α 3 α 5 α 4 ) G 3 (6α 1α α 5 6α 1 α 3 α 4 3α 1 α 6 3α α 3 3α α 4) G 4 (1α 1 α α 4 6α 1 α 3 4α3 1 α 5 1α 1 α α 3 α 4 ) G 5 (5α4 1 α 4 0α 3 1 α α 3 10α 1 α3 ) G 6 (6α5 1 α 3 15α 4 1 α ) 7G 7 α6 1 α G 8 α8 1. Then α 7 can be solved from the above. The coefficients α 8, α 9, α 10 can be obtained in the same way. By F (α(x), a) F (x, a) = F1 (α(x)) F (α(x)) F3 (α(x))3 F4 (α(x))4 F5 (α(x))5 F6 (α(x))6 F7 (α(x))7 F8 (α(x))8 (F 1 x F x F 3 x3 F 4 x4 F 5 x5 F 6 x6 F 7 x7 F 8 x8 ),

7 50 ( ) 011 and using (4), by combining the coefficients of x i, i = 7, 8, 9, 10 respectively, we can obtain the expressions of B i (a), i = 7, 8, 9, 10. The proof is completed. where Let Theorem. Consider the following system F n (x, a) = ẋ = y F n (x, a), ẏ = g(x), (10) n a i xi, x > 0, n a i xi, x 0, i=1 i=1 g(x) = x g x, x > 0, x g x, x 0. M 3 = 7 97 (g ) (g )5 g (g )4 (g ) (g )3 (g ) (g ) (g ) (g )(g )5, M 4 = (g )5 (g ) (g )3 (g ) (g )9 (g ) (g )10 g (g )7 (g ) (g ) (g ) (g ) (g )4 (g ) (g )(g ) (g )8 (g )3, M 5 = (g )9 (g ) (g )14 (g 3935 ) (g )4 (g ) (g )5 (g ) (g ) g (g ) (g )17 g (g )6 (g ) (g )7 (g ) (g )16 ( ) (g )11 (g 995 ) (g )16 (g ) (g )3 (g ) (g )1 (g 3935 ) (g )15 (g ) (g )13 (g ) (g )10 (g ) (g )8 (g )10. Then system (10) has Hopf cyclicity n at the origin if M n 0 for n = 3, 4 and 5 respectively. Proof In fact, for (10) we have G = G = 1, G 3 = g 3, G 3 = g 3, G± j By (7), (8) and Theorem.1, we can obtain = 0, j 4. α 1 = 1, α = g g, 3 α 3 = 9 g g 5 18 (g ) 1 18 (g ), α 4 = 5 18 (g ) g 8 7 (g ) (g )3, α 5 = (g ) (g )3 g (g ) (g ) (g )4,

8 3, : Liénard 51 α 6 = (g ) (g ) (g )4 g 3 43 (g )3 (g ) 5 97 (g ) (g )3, α 7 = (g ) (g ) (g )5 g (g )4 (g ) (g ) (g )4, α 8 = (g )5 (g ) (g )6 (g ) (g ) (g ) (g )4 (g ) (g ) (g )5, α 9 = (g )4 (g ) (g )6 (g ) (g ) (g ) (g )7 g (g )5 (g ) (g ) (g )8, and α 10 = (g )6 (g ) (g ) (g ) (g )4 (g ) (g )7 (g ) (g )8 g (g ) (g )9, B 1 (a) = a 1 a 1, B (a) = α a 1 a a, B 3 (a) = α 3 a 1 α a a 3 a 3, B 4 (a) = α 4 a 1 ( α 3 α )a 3α a 3 a 4 a 4, B 5 (a) = α 5 a 1 ( α 4 α α 3 )a 3(α 3 α )a 3 4α a 4 a 5 a 5, B 6 (a) = α 6 a 1 ( α 5 α α 4 α 3)a (3α 4 6α α 3 α 3 )a 3 (6α 4α 3 )a 4 5α a 5, B 7 (a) = α 7 a 1 ( α 6 α α 5 α 3 α 4 )a 3(α 5 α α 4 α 3 α α 3 )a 3 4( α 4 3α α 3 α 3 )a 4 5(α 3 α )a 5, B 8 (a) = α 8 a 1 ( α 7 α α 6 α 3 α 5 α 4)a 3(α 6 α α 5 α 3 α 4 α α 4 α α 3)a 3 ( 4α 5 1α α 4 6α 3 1α α 3 α 4 )a 4 5(α3 α 4 4α α 3 )a 5, B 9 (a) = α 9 a 1 (α 3α 6 α 4 α 5 α α 7 α 8 )a (α3 3 6 α α 3 α 4 3 α α 5 3 α 7 3 α 4 6 α α 6 6 α 3 α 5 )a 3 4(3 α α 5 α 3 α 3 3 α 3 α 4 3 α α 4 3 α α 3 α 6 )a 4 5( α 3 α 5 α 4 4 α α 4 6 α α 3 )a 5, B 10 (a) =α 10 a 1 ( α 4α 6 α 5 α α 8 α 3 α 7 α 9 )a 3( α α 7 α 4 α 5 α α 4 α α 3 α 5 α 3 α 6 α 3 α 4 α α 6 α 8 )a 3 (α3 α 4 α 7 1α α 3 α 4 3α α 3 3α 4 6α α 6 6α 3 α 5 α 3 3 6α α 5)a 4 (5α 6 0α α 5 30α α 4 0α 3 α 3 0α 3 α 4 30α α 3 α5 )a 5. We take g, g as constants. For n = 3, take a = (a 1, a 1, a, a, a 3, a 3 ) R6, we have det (B 1, B, B 3, B 4, B 5, B 6 ) (a 1, a 1, a, a, a 3, a 3 ) = 0, and det (B 1, B, B 3, B 4, B 5 ) (a 1, a 1, a, a, a 3 ) = M 3.

9 5 ( ) 011 Then by Solving the equations B i (a) = 0, i = 1,, 3, 4, 5, we have and (11), we have a 1 = 0, a 1 = 0, a = 3 a 3, a = 3 a 3, a 3 = g a 3. (11) G (α(x)) = G (x) 1 α (x) g 3 α3 (x) = 1 x g 3 x3, F (α(x)) F (x) = a 1 α(x) a α (x) a 3 α3 (x) a 1 x a x a 3 x3 = a 3 3 g ( 1 α (x) g 3 α3 (x) 1 x g 3 x3 ) = 0. Hence, for i = 1,, 3, 4, 5, B i (a) = 0 implies F(α(x)) = F(x). Taking a 0 = ( 0, 0, 3 g the conclusion for n = 3 follows from Theorem 1.3. For n = 4, we have ) a 3, 3 a 3, g a 3, a 3, det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8 ) (a 1, a 1, a, a, a 3, a 3, a 4, a 4 ) = 0, Solve B i (a) = 0, i = 1,,, 7, we obtain det (B 1, B, B 3, B 4, B 5, B 6, B 7 ) (a 1, a 1, a, a, a 3, a 4, a 4 ) = M 4. a 1 = a 1 = a 4 = a 4 = 0, a = a = 3 a 3, a 3 = g a 3, which follows F (α(x)) = F (x) from G (α(x)) = G (x) using the discussion for the case n = 3. Thus, when B i (a) = 0, i = 1,,, 7, one has F(α(x)) = F(x). The conclusion follows for n = 4 by taking For n = 5, we have a 0 = ( 0, 0, 3 g ) a 3, 3 a 3, g a 3, a 3, 0, 0. det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8, B 9, B 10 ) (a 1, a 1, a, a, a 3, a 3, a 4, a 4, a 5, a 5 ) = 0, det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8, B 9 ) (a 1, a 1, a, a, a 3, a 4, a 4, a 5, a 5 ) = M 5. Solve B i (a) = 0, i = 1,,, 9, we obtain a 1 = a 1 = a 4 = a 4 = a 5 = a 5 = 0, a = a = 3 a 3, a 3 = g a 3.

10 3, : Liénard 53 As before, when B i (a) = 0, i = 1,,, 9, one has F(α(x)) = F(x). The conclusion follows for n = 5 by taking This ends the proof. a 0 = ( 0, 0, 3 g a 3, 3 a 3, g a 3, a 3 )., 0, 0, 0, 0 [ References ] [ 1 ] HAN Mao-an, LIU Xia. Hopf bifurcation for non-smooth Liénard systems[j]. Int J Bifurcation and Chaos, 009, 19(7): [ ] COLL B, GASULL A, PROHENS R. Limit cycles for non smooth differential equations via schwarzian derivative [J]. J Diff Eqs, 1996, 13: [ 3 ] LEINE R I, VAN CAMPEN D H. Bifurcation phenomena in non-smooth dynamical systems[j]. European Journal of Mechanics, 006, 5: [ 4 ] LEINE R I. Bifurcation of equilibria in non-smooth continuous systems[j] Physica D, 006, 3: [ 5 ] ZOU Y, KÜPPER T, BEYN W J. Generalized Hopf bifurcation for palnar Filippov systems continuous at the origin[j]. J. Nonlinear Sci, 006, 16: [ 6 ] GASULL A, TORREGROSA J. Center-focus problem for discontinuous planar differ ential equations[j]. Int J Bifurcation and Chaos, 003, 13: [ 7 ] KUNZE M. Non-Smooth Dynamical Systems[M]. Berlin: Springer-Verlag, 000. ( 0 ) [ ] [ 1 ] MERTON R C. Option pricing when underlying stock returns are discontinuous[j]. Journal of Financial Economics, 1976(3): [ ] NAIK V, LEE M. General equilibrium prcing of options on the market portfolio with discontinuous returns[j]. Review of Financial Studies, 1990(3): [ 3 ] AHN C M, CHO D C, PARK K. The pricing of foreign currency options under jump-diffusion processes[j]. Journal of Futures Markets, 007, 7: [ 4 ] KOU S G. A jump diffusion model for option pricing[j]. Management Science, 00, 48: [ 5 ] KOU S G., WANG H. Option pricing under a double exponential jump diffusion model[j]. Management Science, 004, 50: [ 6 ] BIGER N, HULL J. The valuation of currency options[j]. Financial Manage, 1983(1): 4-8. [ 7 ] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[j]. Ecomometrica, 1985, 53: [ 8 ] AMIN K I, Jarrow R. Pricing foreign currency options under stochastic interest rates [J]. Journal of International Money and Finance, 1991(10): [ 9 ] HULL J. Options, Futures, and Other Derivatives[M] 5th ed. New York: Prentice Hall International Inc, 003. [10] BLENMAN L P, Clark S P. Power exchange options[j]. Finance Research Letters, 005 (): [11] JAIMUNGAL S, Wang T. Catastrophe options with stochastic interest rates and compound Poisson losses.[j]. Insurance: Mathematics and Economics, 006, 38: [1] SHREVE. Stochatic Calculus for Finance II: Continuous time models[m]. New York: Springer, 000.

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Arbitrage Analysis of Futures Market with Frictions

Arbitrage Analysis of Futures Market with Frictions 2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΣΕΦΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ: ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ ΕΡΓΑΣΗΡΙΟ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination?

Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Online Appendix to When o Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Andrzej Baniak Peter Grajzl epartment of Economics, Central European University,

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions

Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions www.ccsenet.org/jmr Journal of Mathematics Research Vol., No. 3; August 010 Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions Cesar Martínez-Garza (Corresponding author)

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡMΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ & ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Γεωργία Χ. Κιάκου ΑΜ : 718 Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής

Διαβάστε περισσότερα

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΒΑΣΙΛΕΙΟΥ ΛΕΜΕΣΟΣ 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

STAT200C: Hypothesis Testing

STAT200C: Hypothesis Testing STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών «Ολοκληρωμένη Ανάπτυξη & Διαχείριση Αγροτικού Χώρου» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ «Η συμβολή των Τοπικών Προϊόντων

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract AN APPLICATION OF THE SUBORDINATION CHAINS Georgia Irina Oros Abstract The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential

Διαβάστε περισσότερα

MATRIX INVERSE EIGENVALUE PROBLEM

MATRIX INVERSE EIGENVALUE PROBLEM English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Προοπτικές Εναρμόνισης της Ελληνικής Αγοράς Ηλεκτρικής Ενέργειας με τις Προδιαγραφές του Μοντέλου

Διαβάστε περισσότερα

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία "Η ΣΗΜΑΝΤΙΚΟΤΗΤΑ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΣΤΗ ΠΡΟΛΗΨΗ ΤΗΣ ΠΑΙΔΙΚΗΣ ΠΑΧΥΣΑΡΚΙΑΣ" Ειρήνη Σωτηρίου Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα