ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι"

Transcript

1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σχεζιακό Μονηέλο ΙΙΙ (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C. Faloutsos)

2 Δπηζθπόπεζε Ιζηνξηθά ζηνηρεία Έλλνηεο Σππηθέο γιώζζεο εξσηεκάησλ ρεζηαθή άιγεβξα ρεζηαθόο ινγηζκόο πιεηάδσλ ρεζηαθόο ινγηζκόο πεδίσλ

3 Δπηζθόπεζε ζρεζηαθό κνληέιν Ιζηνξηθά ζηνηρεία Έλλνηεο Σππηθέο γιώζζεο εξσηεκάησλ ρεζηαθή άιγεβξα ρεζηαθόο ινγηζκόο πιεηάδσλ ρεζηαθόο ινγηζκόο πεδίσλ

4 Δπηζθόπεζε- αλαιπηηθά ρεζηαθόο Λνγηζκόο Πιεηάδσλ Γηαηί καο ρξεηάδεηαη; Λεπηνκέξεηεο Παξαδείγκαηα Ιζνδπλακία κε ζρεζηαθή άιγεβξα Πεξηζζόηεξα παξαδείγκαηα, αζθάιεηα εθθξάζεσλ ρεζηαθόο Λνγηζκόο Πεδίσλ + QBE

5 Αζθάιεηα Δθθξάζεσλ ΜΗ ΔΠΙΣΡΔΠΣΗ: { t t } Σα δεδνκέλα εμόδνπ είλαη κε πεπεξαζκέλα!! Αληί απηήο ρξεζηκνπνηείηαη { t... t }

6 Αζθάιεηα Δθθξάζεσλ Δίλαη πηζαλό λα γξάςνπκε εθθξάζεηο ινγηζκνύ πιεηάδσλ πνπ δεκηνπξγνύλ κε πεπεξαζκέλεο ζρέζεηο, πρ. ε {t t r } δίλεη ζαλ απνηέιεζκα κηα κε πεπεξαζκέλε ζρέζε αλ ην πεδίν νπνηνπδήπνηε γλσξίζκαηνο ηεο ζρέζεο r είλαη κε πεπεξαζκέλν Γηα λα δηαζθαιίζνπκε πσο δελ ζα πξνθύςεη ηέηνην πξόβιεκα πεξηνξίδνπκε ην ζύλνιν ησλ επηηξεπόκελσλ εθθξάζεσλ ζε αζθαιείο εθθξάζεηο Μηα έθθξαζε {t P (t) } ζην ζρεζηαθό ινγηζκό πιεηάδσλ είλαη αζθαιήο αλ θάζε ζπζηαηηθό ηνπ t εκθαλίδεηαη ζε κία από ηηο ζρέζεηο, πιεηάδεο ή ηηο ζηαζεξέο πνπ εκθαλίδνληαη ζην P

7 Πεξηζζόηεξα παξαδείγκαηα: ε Σξάπεδα Τπνθαηάζηεκα (όλνκα-ππνθαηαζηήκαηνο, πόιεππνθαηαζηήκαηνο, κεηνρέο) Πειάηεο (όλνκα-πειάηε, νδόο-πειάηε, πόιε-πειάηε) Λνγαξηαζκόο (αξηζκόο-ινγαξηαζκνύ, όλνκαππνθαηαζηήκαηνο, ππόινηπν) Γάλεην (αξηζκόο-δαλείνπ, όλνκα-ππνθαηαζηήκαηνο, πνζό) Καηαζέηεο (όλνκα-πειάηε, αξηζκόο-ινγαξηαζκνύ) Γαλεηδόκελνο (όλνκα-πειάηε, αξηζκόο-δαλείνπ)

8 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηνλ αξηζκό-δαλείνπ, ην όλνκα-ππνθαηαζηήκαηνο θαη ην πνζό γηα δάλεηα κεγαιύηεξα από 1200 Δπξώ {t t δάλεην t [πνζό] 1200} Βξεο ηνλ αξηζκό δαλείνπ γηα θάζε δάλεην κε πνζό κεγαιύηεξν από 1200 Δπξώ {t s δάλεην (t [αξηζκόο-δαλείνπ] = s [αξηζκόο-δαλείνπ] s [πνζό] 1200} εκεηώζηε όηη ε ζρέζε ζην ζρήκα [αξηζκόο-δαλείνπ] νξίδεηαη έκκεζα από ηελ επεξώηεζε

9 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην, πνπ έρνπλ θαηαζέζεηο ή θαη ηα δύν {t s δαλεηδόκελνο(t[όλνκα-πειάηε] = s[όλνκα-πειάηε]) u θαηαζέηεο(t[όλνκα-πειάηε] = u[όλνκα-πειάηε]) Βξεο ηα νλόκαηα όισλ ησλ πειάησλ πνπ έρνπλ πάξεη δάλεην θαη έρνπλ θαη θαηαζέζεηο ζηελ ηξάπεδα {t s δαλεηδόκελνο(t[όλνκα-πειάηε] = s[όλνκα-πειάηε]) u θαηαζέηεο(t[όλνκα-πειάηε] = u[όλνκα-πειάηε])

10 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην από ην ππνθαηάζηεκα ηεο Πάηξαο {t s δαλεηδόκελνο(t [όλνκα-πειάηε] = s[όλνκα-πειάηε] u δάλεην(u[όλνκα-ππνθαηαζηήκαηνο] = Πάηξα u[αξηζκόο-δαλείνπ] = s[αξηζκόο-δαλείνπ]))} Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην από ην ππνθαηάζηεκα ηεο Πάηξαο αιιά δελ έρνπλ ινγαξηαζκό ζε θαλέλα ππνθαηάζηεκα ηεο ηξάπεδαο {t s δαλεηδόκελνοt[όλνκα-πειάηε] = s[όλνκα-πειάηε] u δάλεην(u[όλνκα-ππνθαηαζηήκαηνο] = Πάηξα u[αξηζκόο-δαλείνπ] = s[αξηζκόο-δαλείνπ])) not v θαηαζέηεο (v[όλνκα-πειάηε] = t[όλνκα-πειάηε]) }

11 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηα νλόκαηα θαη ηηο πόιεηο δηακνλήο όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην από ην ππνθαηάζηεκα ηεο Πάηξαο {t s δάλεην(s[όλνκα-ππνθαηαζηήκαηνο] = Πάηξα u δαλεηδόκελνο (u[αξηζκόο-δαλείνπ] = s[αξηζκόο-δαλείνπ] t [όλνκα-πειάηε] = u[όλνκα-πειάηε]) v πειάηεο (u[όλνκα-πειάηε] = v[όλνκα-πειάηε] t[πόιε-πειάηε] = v[πόιε-πειάηε])))}

12 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ ινγαξηαζκό ζε όια ηα ππνθαηαζηήκαηα πνπ βξίζθνληαη ζην Βόιν: {t c πειάηεο (t[όλνκα.πειάηε] = c[όλνκα-πειάηε]) s ππνθαηάζηεκα(s[πόιε-ππνθαηαζηήκαηνο] = Βόινο u ινγαξηαζκόο ( s[όλκα-ππνθαηαζηήκαηνο] = u[όλνκα-ππνθαηαζηήκαηνο] s θαηαζέηεο ( t[όλνκα-πειάηε] = s[όλνκα-πειάηε] s[αξηζκόο-ινγαξηαζκνύ] = u[αξηζκόο-ινγαξηαζκνύ] )) )}

13 Δπηζθπόπεζε Ιζηνξηθά ζηνηρεία Έλλνηεο Σππηθέο γιώζζεο εξσηεκάησλ ρεζηαθή άιγεβξα ρεζηαθόο ινγηζκόο πιεηάδσλ ρεζηαθόο ινγηζκόο πεδίσλ

14 Δπηζθόπεζε- αλαιπηηθά ρεζηαθόο Λνγηζκόο Πιεηάδσλ Οξηζκόο Λεπηνκέξεηεο Παξαδείγκαηα Ιζνδπλακία κε ζρεζηαθή άιγεβξα ρεζηαθόο Λνγηζκόο Πεδίσλ + QBE

15 ρεζηαθόο Λνγηζκόο Πεδίσλ Δξ: γηαηί; Aπ: ειαθξώο επθνιόηεξνο από ην ζρεζηαθό ινγηζκό πιεηάδσλ αλ θαη ηζνδύλακνη βάζε γηα ηελ QBE Βαζηθή ηδέα: κεηαβιεηέο πεδίνπ (κε Πξνηαζηαθή Λνγηθή Πξώηεο Σάμεο (First Order Logic)) Π.ρ. βξεο αξρείν ΦΟΙΣΗΣΗ κε ΑΜ=123

16 ρεζηαθόο Λνγηζκόο Πεδίσλ βξεο αξρείν ΦΟΙΣΗΣΗ κε ΑΜ=123 {,,,, 123}

17 Λεπηνκέξεηεο Όπσο θαη ζην ζρεζηαθό ινγηζκό πιεηάδσλ ηα επηηξεπόκελα ζύκβνια:,,,,,,,,, (, ), Πνζνδείθηεο:,

18 Λεπηνκέξεηεο όκσο: κεηαβιεηέο πεδίνπ (= ζηήιε), ζε αληίζεζε κε ηηο κεηαβιεηέο πιεηάδσλ, πρ.,, ΑΜ όνομα διεύθσνζη

19 ρεζηαθόο Λνγηζκόο Πεδίσλ Μηα κε-δηαδηθαζηηθή γιώζζα επεξσηήζεσλ ηζνδύλακε κε ην ζρεζηαθό ινγηζκό πιεηάδσλ Κάζε επεξώηεζε είλαη κηα έθθξαζε ηεο κνξθήο: { x 1, x 2,, x n P (x 1, x 2,, x n )} x 1, x 2,, x n αλαπαξηζηνύλ κεηαβιεηέο πεδίσλ P αλαπαξηζηά έλαλ ηύπν παξόκνην κε απηόλ ηνπ θαηεγνξηθνύ ινγηζκνύ

20 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ην όλνκα-ππνθαηαζηήκαηνο, ηνλ αξηζκό-δαλείνπ, θαη ην πνζό γηα ηα δάλεηα πνπ είλαη πάλσ από 1200 Δπξώ { δάλεην, ππνθ, πνζό δάλεην, ππνθ, πνζό δάλεην πνζό > 1200} Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην πάλσ από 1200 { πει δάλεην, ππνθ, πνζό ( πει, δάλεην δαλεηδόκελνο δάλεην, ππνθ, πνζό δάλεην πνζό > 1200)} Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην από ην ππνθαηάζηεκα Πάηξαο θαη ην ύςνο ηνπ δαλείνπ: { πει, πνζό l ( πει, δάλεην δαλεηδόκελνο ππνθ( δάλεην, ππνθ, πνζό δάλεην ππνθ = Πάηξα ))} or { πει, πνζό l ( πει, δάλεην δαλεηδόκελνο δάλεην Πάηξα, πνζό δάλεην)}

21 Παξάδεηγκα Δπεξσηήζεσλ Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ πάξεη δάλεην, πνπ έρνπλ θαηαζέζεηο ή θαη ηα δύν ζην ππνθαηάζηεκα Πάηξαο: { πει l ({ πει, δάλεην δαλεηδόκελνο ππνθ,πνζό ( δάλεην, ππνθ, πνζό δάλεην ππνθ = Πάηξα )) ινγ ( πει, ινγ θαηαζέηεο ππνθ,όλνκα ( ινγ, ππνθ, όλνκα ινγαξηαζκόο ππνθ = Πάηξα ))} Βξεο ηα νλόκαηα όισλ ησλ πειαηώλ πνπ έρνπλ ινγαξηαζκό ζε όια ηα ππνθαηαζηήκαηα ηνπ Βόινπ: { πει όλνκα ( πει, νδ, όλνκα πειάηεο) x,y,z ( x, y, z ππνθαηάζηεκα y = Βόινο ) ινγ,ππνθ ( x, y, z ινγαξηαζκνο πει,ινγ θαηαζέηεο)}

22 Θπκεζείηε ηε κηθξή καο ΒΓ ΦΟΙΣΗΣΗ ΑΜ Όνομα Γιεύθσνζη 123 ηαύροσ Αιόλοσ 234 Ανηωνίοσ Κιλκίς ΜΑΘΗΜΑ Κωδ Όνομα ΓΜ cis331 ΓΒ 2 cis321 C 2 ΠΑΙΡΝΔΙ ΑΜ Κωδ βαθμόρ 123 cis331 A 234 cis331 B

23 Παξαδείγκαηα Βξεο όια ηα αξρεία θνηηεηώλ {,,,, } Στεζιακός λογιαζμός πλειάδων { t t }

24 Παξαδείγκαηα (επηινγή) βξεο όια ηα αξρεία θνηηεηώλ κε ΑΜ=123

25 Παξαδείγκαηα (επηινγή) βξεο όια ηα αξρεία θνηηεηώλ κε ΑΜ=123 { 123,, 123,, } ή {,,,, 123} Σχεζιακός λογιζμός πλειάδων { t t t[ ] 123}

26 Παξαδείγκαηα (πξνβνιή) βξεο ην όλνκα ηνπ θνηηεηή κε ΑΜ=123 { ό 123, ό, ύ }

27 Παξαδείγκαηα (πξνβνιή) βξεο ην όλνκα ηνπ θνηηεηή κε ΑΜ=123 { ό ( 123,, ) } πρέπει να δεζμεύζουμε ηο δι Σχεζιακός λογιζμός πλειάδων { t s ( s[ ] 123 t[ ό ] s[ ό ])}

28 Παξαδείγκαηα ζπλέρεηα (έλσζε) θέξε ηα αξρεία ησλ full-time (FT) θαη part-time (PT) θνηηεηώλ Σχεζιακός λογιζμός πλειάδων { t t FT _ t PT _ }

29 Παξαδείγκαηα ζπλέρεηα (έλσζε) θέξε ηα αξρεία ησλ full-time (FT) θαη part-time (PT) θνηηεηώλ {,,,, FT _,, PT _ }

30 Παξαδείγκαηα δηαθνξά: βξεο ηνπο θνηηεηέο πνπ δελ είλαη κέιε ηνπ πξνζσπηθνύ Σχεζιακός λογιζμός πλειάδων { t t t }

31 Παξαδείγκαηα δηαθνξά: βξεο ηνπο θνηηεηέο πνπ δελ είλαη κέιε ηνπ πξνζσπηθνύ {,,,,,, }

32 Καξηεζηαλό Γηλόκελν Πρ. Dog breeding: ΑΡΔΝΙΚΑ x ΘΤΛΗΚΑ Γίλεη όια ηα πηζαλά δεύγε ΑΡΔΝΙΚΑ όνομα Τζακ Φλοξ ΘΤΛΗΚΑ x όνομα Ίπμα = Λίντα A.όνομα Τζακ Τζακ Φλοξ Φλοξ Θ.όνομα Λίντα Ίπμα Λίντα Ίπμα

33 Καξηεζηαλό Γηλόκελν Βξεο όια ηα δεπγάξηα (αξζεληθά, ζπιεθά) ρεζηαθόο Λνγηζκόο Πιεηάδσλ { t t[ ό ] [ ό ] t[ ό ] [ ό ]}

34 Καξηεζηαλό Γηλόκελν Βξεο όια ηα δεπγάξηα (αξζεληθά, ζπιεθά) ρεζηαθόο Λνγηζκόο Πεδίσλ: {, }

35 Απόδεημε ηζνδπλακίαο ρεζηαθή άιγεβξα <-> ζρεζηαθόο ινγηζκόο πεδίσλ <-> ζρεζηαθόο ινγηζκόο πιεηάδσλ

36 Δπηζθόπεζε -αλαιπηηθά ρεζηαθόο Λνγηζκόο Πεδίσλ Γηαηί Λεπηνκέξεηεο Παξαδείγκαηα Ιζνδπλακία κε ζρεζηαθή άιγεβξα Περιζζόηερα παραδείγμαηα, αζθαιείο εθθξάζεηο

37 Πεξηζζόηεξα παξαδείγκαηα πλέλσζε: βξεο ηνπο θνηηεηέο ηνπ καζήκαηνο cis351

38 Θπκεζείηε ηε κηθξή καο ΒΓ ΦΟΙΣΗΣΗ ΑΜ Όνομα Γιεύθσνζη 123 ηαύροσ Αιόλοσ 234 Ανηωνίοσ Κιλκίς ΜΑΘΗΜΑ Κωδ Όνομα ΓΜ cis331 ΓΒ 2 cis321 C 2 ΠΑΙΡΝΔΙ ΑΜ Κωδ βαθμόρ 123 cis331 A 234 cis331 B

39 Πεξηζζόηεξα παξαδείγκαηα πλέλσζε: βξεο ηνπο θνηηεηέο ηνπ καζήκαηνο cis351 ζε ζρεζηαθό ινγηζκό πιεηάδσλ { t s e ( s[ ] e[ ] t[ ό ] s[ ό ] e[ ] cis351)}

40 Πεξηζζόηεξα παξαδείγκαηα πλέλσζε: βξεο ηνπο θνηηεηέο ηνπ καζήκαηνο cis351 ζε ζρεζηαθό ινγηζκό πεδίσλ { ό (,,, cis351, )}

41 Πξνεπηζθόπεζε ζηελ QBE: { ό (,,, cis351, )} ΦΟΙΣΗΣΗ ΑΜ όνομα διεύθσνζη _x P. ΠΑΙΡΝΔΙ ΑΜ κωδ βαθμόρ _x cis351

42 Πξνεπηζθόπεζε ζηελ QBE: Φηιηθή πξνο ηνλ ρξήζηε ηεξίδεηαη πνιύ ζην ζρεζηαθό ινγηζκό πεδίσλ Αξθεηά παξόκνηα κε ηε δηεπαθή ηεο MS Access ΦΟΙΣΗΣΗ ΑΜ όνομα διεύθσνζη _x P. ΠΑΙΡΝΔΙ ΑΜ κωδ βαθμόρ _x cis351

43 Πεξηζζόηεξα παξαδείγκαηα Σξηπιή ζπλέλσζε: βξεο ηα νλόκαηα ησλ θνηηεηώλ πνπ έρνπλ πάξεη κάζεκα κε 2 ΓΜ- ζε ζρεζηαθό ινγηζκό πιεηάδσλ: { t s e c ( s[ ] e[ ] ζσνένωζη e[ ] c[ ] t[ ό ] s[ ό ] προβολή c[ ] 2)} επιλογή

44 Θπκεζείηε ηε κηθξή καο ΒΓ _x.p ΦΟΙΣΗΣΗ ΑΜ Όνομα Γιεύθσνζη 123 ηαύροσ Αιόλοσ 234 Ανηωνίοσ Κιλκίς _y 2 ΜΑΘΗΜΑ Κωδ Όνομα ΓΜ cis331 ΓΒ 2 cis321 C 2 ΠΑΙΡΝΔΙ ΑΜ Κωδ βαθμόρ 123 cis331 A 234 cis331 B _x _y

45 Πεξηζζόηεξα παξαδείγκαηα Σξηπιή ζπλέλσζε: βξεο ηα νλόκαηα ησλ θνηηεηώλ πνπ έρνπλ πάξεη κάζεκα κε 2 ΓΜ { ό...,,,.,,., 2 }

46 Πεξηζζόηεξα παξαδείγκαηα Σξηπιή ζπλέλσζε: βξεο ηα νλόκαηα ησλ θνηηεηώλ πνπ έρνπλ πάξεη κάζεκα κε 2 ΓΜ { ό,,,,. (, ό,,.,.,., 2 )}

47 Αθόκα Πεξηζζόηεξα Παξαδείγκαηα self -joins: βξεο ηνπο παππνύδεο ηνπ Θσκά ΓΠ Γ-id Μαπία Πέτπορ Γιάννηρ π-id Θωμάρ Μαπία Θωμάρ ΓΠ Γ-id Μαπία Πέτπορ Γιάννηρ π-id Θωμάρ Μαπία Θωμάρ

48 Αθόκα Πεξηζζόηεξα Παξαδείγκαηα self -joins: βξεο ηνπο παππνύδεο ηνπ Θσκά { t p q ( p[ id] q[ id] p[ id] t[ id] q[ id] " ά ")}

49 Αθόκα Πεξηζζόηεξα Παξαδείγκαηα self -joins: βξεο ηνπο παππνύδεο ηνπ Θσκά { t p q ( p[ id] q[ id] p[ id] t[ id] q[ id] " ά ")} { (,, " ά " )}

50 Αθόκα Πεξηζζόηεξα Παξαδείγκαηα self -joins: βξεο ηνπο παππνύδεο ηνπ Θσκά { (,, " ά " )}

51 Γύζθνια Παξαδείγκαηα: ΓΙΑΙΡΔΗ Βξεο ηνπο πξνκεζεπηέο πνπ παξείραλ όια ηα κέξε ηεο AΣ_BOMBΑ ΠΡΟΗΜΘΔΙΑ προμηθεσηής προϊόν s1 s2 s1 s3 s5 p1 p1 p2 p1 p3 ΑΣ-ΒΟΜΒΑ προϊόν p1 p2 ΤΠ_ΠΡΟΜ προμηθεσηή s1

52 Γύζθνια Παξαδείγκαηα: ΓΙΑΙΡΔΗ Βξεο ηνπο πξνκεζεπηέο πνπ παξείραλ όια ηα κέξε ηεο AΣ_BOMBΑ { t p( p A ( s ( t[ s #] s[ s #] s[ p #] p[ p #])))}

53 Γύζθνια Παξαδείγκαηα: ΓΙΑΙΡΔΗ Βξεο ηνπο πξνκεζεπηέο πνπ παξείραλ όια ηα κέξε ηεο AΣ_BOMBΑ { t p( p A ( s ( t[ s #] s[ s #] s[ p #] p[ p #])))} { ( A, )}

54 Πεξηζζόηεξα γηα ηε δηαίξεζε Βξεο ηνπο θνηηεηέο (ΑΜ) πνπ πήξαλ όια ηα καζήκαηα πνπ πήξε ν θνηηεηήο κε ΑΜ =123 (θαη ίζσο πεξηζζόηεξα) { o t(( t t[ ] 123) t1 ( t1[ ] t[ ] t1[ ] o[ ]) )}

55 Πεξηζζόηεξα γηα ηε δηαίξεζε Βξεο ηνπο θνηηεηέο (ΑΜ) πνπ πήξαλ όια ηα καζήκαηα πνπ πήξε ν θνηηεηήο κε ΑΜ =123 (θαη ίζσο πεξηζζόηεξα) {. ( g( 123,,, ) g '(,., ') ))}

56 Αζθάιεηα Δθθξάζεσλ Παξόκνηα κε ην ζρεζηαθό ινγηζκό πιεηάδσλ ΜΗ ΔΠΙΣΡΔΠΣΗ: {,,,, }

57 Αζθάιεηα Δθθξάζεσλ { x 1, x 2,, x n P(x 1, x 2,, x n )} Δίλαη αζθαιήο αλ ηζρύνπλ όια ηα αθόινπζα: 1. Όιεο νη ηηκέο ζηηο πιεηάδεο ηεο έθθξαζεο είλαη κεηαβιεηέο από ην dom a(p) (δει.νη ηηκέο εκθαλίδνληαη είηε ζην P ή ζε κηα πιεηάδα κηαο ζρέζεο πνπ αλαθέξεηαη ζην P ) 2. Γηα θάζε there exists ηύπν ηεο κνξθήο x (P 1 (x)), ν ηύπνο αμηνινγείηαη ζε true αλ θαη κόλν αλ ππάξρεη κηα ηηκή x ζην dom (P 1 ) ηέηνηα ώζηε ην P 1 (x) λα αμηνινγείηαη ζε true. 3. Γηα θάζε for all ηύπν ηεο κνξθήο x (P 1 (x)), ν ηύπνο αμηνινγείηαη ζε true αλ θαη κόλν αλ ην P 1 (x) αμηνινγείηαη ζε true γηα όιεο ηηο ηηκέο ηνπ x από ην dom (P 1 ).

58 Δπηζθόπεζε -αλαιπηηθά Σχεζιακός Λογιζμός Πεδίων + QBE Οξηζκόο Λεπηνκέξεηεο Ιζνδπλακία κε ζρεζηαθή άιγεβξα

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΧΝ Ι

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΧΝ Ι ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΧΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σσεζιακό Μονηέλο ΙΙ (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C. Faloutsos)

Διαβάστε περισσότερα

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Στεσιακό Μοντέλο Ι (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C. Faloutsos)

Διαβάστε περισσότερα

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σχεσιακό Μοντέλο SQL- Μέρος Β (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C.

Διαβάστε περισσότερα

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σχεσιακό Μοντέλο SQL Μέρος Α (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C.

Διαβάστε περισσότερα

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε

Διαβάστε περισσότερα

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι

ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Query by Example QBE (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C. Faloutsos)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεσιακό Μοντέλο ΙΙΙ Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos CMU)

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Ενδεικτικά Θέματα Στατιστικής ΙΙ Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε

Διαβάστε περισσότερα

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12 ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 .1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε

Διαβάστε περισσότερα

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε. ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.

Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.

Διαβάστε περισσότερα

ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ Πζτρα-Ψαλίδι-Χαρτί Κεξδίδεη ΠΔΣΡΑ ΨΑΛΗΓΗ ΧΑΡΣΗ ΠΔΣΡΑ Ψ Α Ψ ΨΑΛΗΓΗ Ψ Ψ Α ΧΑΡΣΗ Α Ψ Ψ Η ζτέζη Κερδίζει αναπαρίζηαηαι από ηο ζύνολο {(Π,Ψ),(Ψ,Χ),(Χ,Π)}. (Εκεί ποσ γίνεηαι αληθές δηλαδή)

Διαβάστε περισσότερα

Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις

Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις Μαξία-Ησάλλα Αξγπξνπνύινπ Βαζίιεο Παπιόπνπινο Τνκέαο Ψπρνινγίαο, Παλεπηζηήκην Αζελώλ Αλαθνίλσζε ζην 5 ν Παλειιήλην

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ: ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

x x x x tan(2 x) x 2 2x x 1

x x x x tan(2 x) x 2 2x x 1 ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ

Διαβάστε περισσότερα

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΘΔΜΑ 1 ο Μονάδες 5,10,10 ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο

Διαβάστε περισσότερα

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2 TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Καηαζθεπάδνπκε έλα νγθνκεηξηθό δνρείν από πιαζηηθό κπνπθάιη λεξνύ

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

Σρήκα Α. Γξάθνπκε ηα ζηνηρεία ηνπ Πξνκεζεπηή θαη παηάκε Δηζαγσγή. Σρήκα Β1

Σρήκα Α. Γξάθνπκε ηα ζηνηρεία ηνπ Πξνκεζεπηή θαη παηάκε Δηζαγσγή. Σρήκα Β1 MENU ΜΗΤΡΩΑ Προμηθεστές Σε απηό ην ζεκείν ηεο εθαξκνγήο επεμεξγαδόκαζηε ηo κεηξών Πξνκεζεπηώλ. Κάλνληαο θιηθ κε ην πνληίθη πάλσ ζην Πξνζζήθε (βειάθη 1) ζα βγεη ε θόξκα γηα ηελ εηζαγσγή λέαο εγγξαθήο (Σρήκα

Διαβάστε περισσότερα

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: 1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii) . Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη

Διαβάστε περισσότερα

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο

Διαβάστε περισσότερα

ΒΗΜΑ 2. Εηζάγεηε ηνλ Κωδηθό Πξόζβαζεο πνπ ιακβάλεηε κε SMS & δειώλεηε επηζπκεηό Όλνκα Πξόζβαζεο (Username) θαη ην ζαο

ΒΗΜΑ 2. Εηζάγεηε ηνλ Κωδηθό Πξόζβαζεο πνπ ιακβάλεηε κε SMS & δειώλεηε επηζπκεηό Όλνκα Πξόζβαζεο (Username) θαη ην  ζαο Δίζνδνο ζηελ Υπεξεζία Αλ είζηε ήδε εγγεγξακκέλνο ρξήζηεο ζηελ ππεξεζία, γηα ηελ είζνδν ζαο (login) ζηελ ππεξεζία e-bill, εηζάγεηαη ην Όλνκα Φξήζηε (username) θαη ηνλ Κωδηθό Πξόζβαζεο (password) πνπ είραηε

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.

Διαβάστε περισσότερα

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ

Διαβάστε περισσότερα

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017 α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα. Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ

Διαβάστε περισσότερα

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5

Διαβάστε περισσότερα

Έκδοζη /10/2014. Νέα λειηοσργικόηηηα - Βεληιώζεις

Έκδοζη /10/2014. Νέα λειηοσργικόηηηα - Βεληιώζεις Έκδοζη 2.89.31 08/10/2014 Η έκδοζη 2.89.31, περιλαμβάνει : Βεληιώζεις Καηάζηαζη Υπερφριών (Ε8) Αναγγελία πρόζληυης (Ε3) 08/10/2014 1 Βεληιώζεις Καηάζηαζη Υπερφριών (Ε8) Επεηδή ζηελ ειεθηξνληθή ππνβνιή

Διαβάστε περισσότερα

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,

Διαβάστε περισσότερα

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access) Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα

Διαβάστε περισσότερα

Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67)

Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Γηα λα επαλαθέξεηε ην FritzBox Fon WLAN 7140 ζηηο πξνεπηιεγκέλεο ηνπ ξπζκίζεηο

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_3207/391 1. Τελ άιιε κέξα νη Τξηάθνληα, πνιύ ηαπεηλσκέλνη θαη ληώζνληαο εγθαηαιειεηκκέλνη, ζπγθεληξώζεθαλ ζην ρώξν ησλ ζπλεδξηάζεσλ παξάιιεια, νη «ηξεηο ρηιηάδεο», ζε όια ηα ζεκεία όπνπ είραλ ηνπνζεηεζεί,

Διαβάστε περισσότερα

Ηλεκηπονικά Απσεία και Διεπαθέρ

Ηλεκηπονικά Απσεία και Διεπαθέρ MENU ΑΝΑΦΟΡΕΣ Ηλεκηπονικά Απσεία και Διεπαθέρ Σε απηό ην ζεκείν ηεο εθαξκνγήο δεκηνπξγνύκε ηα δηάθνξα Ηιεθηξνληθά Αξρεία έηζη ώζηε λα ηα ππνβάινπκε ζηνπο δηάθνξνπο θνξείο. Γηα λα επηιέμνπκε έλα είδνο αξρείνπ

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Case Study. Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report.

Case Study. Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report. Case Study Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report. Βήκα 1 ο : Login ζηο Turnitin. Κάλεηε είζνδν ζην Turnitin κε

Διαβάστε περισσότερα

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο

Διαβάστε περισσότερα

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ 1 Σ. Δ. Ι. ΓΤ Σ Ι Κ Η Μ Α Κ Δ Γ Ο Ν Ι Α ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΚΩΝ ΔΦΑΡΜΟΓΩΝ Σ Μ Η Μ Α Μ Η Υ Α Ν ΟΛΟ Γ Ι Α Δξγαζηήξην Μεραλνπξγηθώλ Καηεξγαζηώλ & CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ ΜΑΘΗΜΑ 2: Πνηόηεηα Δπηθάλεηαο Γξ. Βαξύηεο

Διαβάστε περισσότερα

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά: ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,

Διαβάστε περισσότερα

Οργάνωση και Δομή Παρουσιάσεων

Οργάνωση και Δομή Παρουσιάσεων Οργάνωση και Δομή Παρουσιάσεων Οη παξνπζηάζεηο κε βνήζεηα ηνπ ππνινγηζηή γίλνληαη κε πξνγξάκκαηα παξνπζηάζεσλ, όπσο ην OpenOffice.org Impress [1] θαη ην Microsoft Office PowerPoint [2]. Απηά ηα πξνγξάκκαηα

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ Θέμα 1o Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το άθροισμα των τετραγώνων των καθέτων πλευρών του είναι

Διαβάστε περισσότερα

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 Κα ακαθένεηε 5 εονςπασθέξ πώνεξ θαη κα βνείηε ημ είδμξ ημο μνοθημύ ημοξ πιμύημο. Πμημη πανάγμκηεξ επηηνέπμοκ ηεκ θαηαζθεοή μεγάιςκ ηεπκηθώκ ένγςκ; Ε ελόνολε (ελαγςγή

Διαβάστε περισσότερα

Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη

Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη

Διαβάστε περισσότερα

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Δνκή επηινγήο Απιή Επηινγή ύλζεηε Επηινγή Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ 1 Επηινγή ηελ πξάμε πνιύ ιίγα πξνβιήκαηα κπνξνύλ λα επηιπζνύλ κε ηνλ πξνεγνύκελν ηξόπν ηεο ζεηξηαθήο/αθνινπζηαθήο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): blogsschgr/iordaniskos/ Επιμελητής: Ιορδάνης Κόσογλου blogsschgr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatoponblogspotgr/ Επιμελητής: Σωκράτης Ρωμανίδης

Διαβάστε περισσότερα

Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ;

Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Αιγόξηζκνο Γεκηνπξγία_Πίλαθα Γηα i από 1 κέρξη 5 Α[i] i Γηα i από 2

Διαβάστε περισσότερα

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ ΑΔΠΠ

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ ΑΔΠΠ ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ 2009 - ΑΔΠΠ ΘΔΜΑ 1ο Α. Να ραξαθηεξίζεηε θάζε κία από ηηο πξνηάζεηο πνπ αθνινπζνύλ γξάθνληαο ζην ηεηξάδηό ζαο, δίπια από ηνλ αξηζκό θάζε

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο

Διαβάστε περισσότερα

Αγορές Χρήματος & Κεφαλαίου

Αγορές Χρήματος & Κεφαλαίου Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Αγορές Χρήματος & Κεφαλαίου Ενότητα 9: ΑΜΟΙΒΑΙΑ ΚΕΦΑΛΑΙΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.

Διαβάστε περισσότερα

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30

Διαβάστε περισσότερα

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplace

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplace ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplac Δηεπξύλεη ηε θιάζε ηωλ ζεκάηωλ γηα ηα νπνία κπνξεί λα επηηεπρζεί ε κεηάβαζε από ην πεδίν ηνπ ρξόλνπ ζην πεδίν ηεο ζπρλόηεηαο. Παξέρεη ηε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0

Διαβάστε περισσότερα

Άσκηση 1 - Μοπυοποίηση Κειμένου

Άσκηση 1 - Μοπυοποίηση Κειμένου Άσκηση 1 - Μοπυοποίηση Κειμένου Σηηο παξαθάησ γξακκέο εθαξκόζηε ηε κνξθνπνίεζε πνπ πεξηγξάθνπλ Γξακκή κε έληνλε γξαθή Γξακκή κε πιάγηα γξαθή Γξακκή κε ππνγξακκηζκέλε γξαθή Γξακκή κε Arial Font κεγέζνπο

Διαβάστε περισσότερα

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W. ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη

Διαβάστε περισσότερα

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird

Διαβάστε περισσότερα

Εξγαζηήξην Πιεξνθνξηθήο

Εξγαζηήξην Πιεξνθνξηθήο Εξγαζηήξην Πιεξνθνξηθήο «Λογικές παραστάσεις (Boolean expressions)» Τμήμα Εκπαιδεςηικών Πολιηικών Δομικών Έπγυν (Α4) Ραούλησ Δημήτριοσ Αθήνα, 16 Ιανουαρίου 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ 5... 2 Λογικζσ παραςτάςεισ

Διαβάστε περισσότερα

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε

Διαβάστε περισσότερα

5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη

5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη 5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη Σηα πιαίζηα ηεο πέκπηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital

Διαβάστε περισσότερα

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε

Διαβάστε περισσότερα

EL Eνωμένη στην πολυμορυία EL A8-0046/319. Τροπολογία

EL Eνωμένη στην πολυμορυία EL A8-0046/319. Τροπολογία 8.3.2016 A8-0046/319 319 Άρθρο 34 παράγραθος 1 ζηοιχείο δ (δ) 14 έηε γηα θηεληαηξηθά θάξκαθα πνπ πξννξίδνληαη γηα άιια είδε δώωλ από απηά πνπ αλαθέξνληαη ζηελ παξάγξαθν 1 ζηνηρεία α) θαη γ). (δ) 10 έηε

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε

Διαβάστε περισσότερα