A, και εξετάστε αν είναι διαγωνίσιμη.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A, και εξετάστε αν είναι διαγωνίσιμη."

Transcript

1 Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων μανικών πρωτοβάθμιων παραγόντων στο [ x] Αντίστοιχα των παραπάνω για το ελάχιστο πολυώνυμο γραμμικής απεικόνισης Θεώρημα (Ταυτόχρονη διαγωνοποίηση) Έστω, Τα ακόλουθα είναι ισοδύναμα 1 1 o Υπάρχει αντιστρέψιμος P τέτοιος ώστε οι P P και P P είναι διαγώνιοι o Οι Α,Β είναι διαγωνίσιμοι και ισχύει Συνιστώμενες ασκήσεις: 1-8, 11-1, 1-19, 1-6, 1-7, (1) Έστω a Βρείτε το ελάχιστο πολυώνυμο του b Εξετάστε αν ο είναι διαγωνίσιμος c Δείξτε ότι ο είναι αντιστρέψιμος και βρείτε ( x) [ x] βαθμού το πολύ 1 με d ρείτε ( x) [ x] βαθμού το πολύ 1 με 4 ( ) (1) Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των , και εξετάστε αν οι, είναι όμοιοι (1) Έστω vˆ ( v1, v, v ) μια διατεταγμένη βάση του και :, ( xv yv zv ) ( x y) v ( y z) v ( x y z) v 1 1 Βρείτε το ελάχιστο πολυώνυμο της και εξετάστε αν υπάρχει διατεταγμένη βάση û του ( : uˆ, uˆ ), όπου Α είναι ο πίνακας της προηγούμενης άσκησης 4 (1) Θεωρούμε τη γραμμική απεικόνιση : [ x] [ x], ( ( x)) ( x) ( x) a Βρείτε το ελάχιστο πολυώνυμο της και εξετάστε αν η είναι διαγωνίσιμη b Βρείτε τη διάσταση κάθε ιδιόχωρου της 1 ( ) τέτοια ώστε (1) Έστω τέτοιος ώστε ( I )( 4 I )( 7 I ) 0 Εξετάστε αν ο είναι a διαγωνίσιμος, b αντιστρέψιμος 6 () Να καθοριστούν όλοι οι τέτοιοι ώστε 0 και Tr 6 7 (1) Να βρεθεί το χαρακτηριστικό πολυώνυμο και το ελάχιστο πολυώνυμο του Εξετάστε αν ο είναι διαγωνίσιμος t 8 () Έστω 1 Βρείτε το ελάχιστο πολυώνυμο της γραμμικής απεικόνισης :, ( ), και εξετάστε αν είναι διαγωνίσιμη

2 Ασκήσεις 64 9 () Αν : V V είναι μια γραμμική απεικόνιση τέτοια ώστε, τότε κάθε στοιχείο v V γράφεται κατά μοναδικό τρόπο ως v v1 v0 v1, όπου v ker( 1 V ), 1,0,1 10 (1) Δείξτε ότι ( x) ( x) για κάθε t 11 () Έστω και W ο υπόχωρος του diw deg ( x) που παράγεται από τα στοιχεία 1 (1) Έστω,, C και D 0 C a Δείξτε ότι αν ο D είναι διαγωνίσιμος, τότε οι και C είναι διαγωνίσμοι b Ισχύει το αντίστροφο του a; 1 () Βρείτε το ελάχιστο πολυώνυμο του () Δείξτε τα εξής a Αν deg ( x) deg ( x), τότε ( x) ( 1) ( x) b Έχουμε ( x) x 1 και ( x) ( x 1), όπου , (1) Έστω a b d 0 c e Αποδείξτε ότι ο Α είναι διαγωνίσιμος αν και μόνο αν a 0 16 (1) Έστω 1 k a Βρείτε τις τιμές του k ώστε deg ( x) 1 b Για την τιμή του k που βρήκατε πριν, υπολογίστε τον με χρήση του ( x ) I,,, Δείξτε ότι c () Δείξτε ότι ο δεν είναι διαγωνίσιμος για κάθε θετικό ακέραιο (1) Να βρεθούν οι τιμές του c τέτοιες ώστε το πολυώνυμο ( x) ( x x c) να μηδενίζεται από τον πίνακα

3 Ασκήσεις 6 18 (1) Έστω : γραμμική απεικόνιση με ( x) x( x 1) Βρείτε όλα τα a, b, c με 181 a b c (1) Έστω a 0 a a 1 Για καθεμιά από τις ακόλουθες περιπτώσεις βρείτε όλες τις τιμές του a (αν υπάρχουν) τέτοιες ώστε να αληθεύει η αναγραφόμενη ιδιότητα 1 a Υπάρχει αντιστρέψιμος πίνακας P με ο P P άνω τριγωνικό 1 b Υπάρχει αντιστρέψιμος πίνακας P με P P είναι διαγώνιο c Ο πίνακας Α μηδενίζει το πολυώνυμο ( x1)( x)( x 010) 0 () Έστω τέτοιος ώστε 1 (1) Έστω, με I, I, I 0, I 0 a Να δειχθεί ότι οι Α, Β έχουν το ίδιο ελάχιστο πολυώνυμο b Αληθεύει ότι έχουν το ίδιο χαρακτηριστικό πολυώνυμο; c Εξετάστε αν οι, είναι τριγωνίσιμοι () Έστω () Έστω για κάποιο θετικό ακέραιο και Tr Αποδείξτε ότι I I με I 4I ή I i, i 1,,, με i 9i 0I 0 Δείξτε ότι δύο από τους i Δείξτε ότι ισχύει ακριβώς μία από τις παρακάτω περιπτώσεις ή όμοιος με τον diag (4, 4,) ή όμοιος με τον diag (4,, ) είναι όμοιοι 4 () Έστω, g : V V δυο γραμμικές απεικονίσεις τέτοιες ώστε ( ( x), ( x)) 1 a Δείξτε ότι η γραμμική απεικόνιση g ( ) : V V είναι ισομορφισμός b Δείξτε ότι αν ker {0 V }, τότε ker g {0 V } () Έστω a a a a 1 1 Στην άσκηση 17, είδαμε ότι ( x ) ( 1) ( x a x 1 a 0) Δείξτε ότι ( x) ( 1) ( x) 6 () Έστω και ( x) [ x] Ο ( ) είναι αντιστρέψιμος αν και μόνο αν ( ( x), ( x)) 1 7 () Έστω ένας αντιστρέψιμος, τριγωνίσιμος πίνακας τέτοιος ώστε ( x) ( x) Δείξτε ότι ( I ) 0 8 () a Έστω, τέτοιοι ώστε ( x) ( x) Δείξτε ότι οι, είναι όμοιοι b Έστω C, D Δείξτε ότι ( x) ( x) και ( x) ( x), αλλά οι πίνακες C, D δεν είναι όμοιοι C D C D 9 () Έστω Θεωρούμε τη γραμμική απεικόνιση R :, R ( ) Δείξτε τα εξής g

4 Ασκήσεις 66 a Αν ( x) [ x], τότε ( R )( ) ( ) για κάθε, και b ( x) ( x) R Αληθεύει ότι ( x) ( x) ; R 0 (1) Έστω, Ξέρουμε ότι ( x) ( x) (βλ άσκηση 7) Αληθεύει ότι ( x) ( x) ; (Βλ άσκηση 40 για τη σχέση των δύο ελαχίστων πολυωνύμων) 1 () Εξετάστε ποιες από τις ακόλουθες προτάσεις είναι σωστές Σε κάθε περίπτωση δώστε μια απόδειξη ή ένα αντιπαράδειγμα 44 a Υπάρχει με ( x ) ( x 1)( x 1) και ( x) ( x1) ( x 1) b Έστω τέτοιος ώστε I 0 Τότε ο είναι διαγωνίσιμος * 0 * c Υπάρχει με ( x) ( x 1)( x ) και όμοιο με πίνακα της μορφής * * ; * 0 * (1) Αν : V V είναι διαγωνίσιμη γραμμική απεικόνιση και U είναι -αναλλοίωτος υπόχωρος του V, τότε ο περιορισμός της στο U είναι διαγωνίσιμη () Έστω με det 0 Δείξτε ότι υπάρχει μη μηδενικός με 0 4 () Έστω, τέτοιοι ώστε και Δείξτε τα εξής a Ο είναι διαγωνίσιμος και rank Tr( ) b Οι, είναι όμοιοι αν και μόνο αν rank rank () Έστω, με 0 Δείξτε τα εξής: a Αν Tr( ) Tr( ), τότε οι, είναι όμοιοι b Αν, τότε ο ( ) είναι διαγωνίσιμος για κάθε ( x) [ x] (1) Έστω με ( x ) x ( x 1)( x ) Δείξτε ότι αν X Y 0, όπου 1 X 1 και Y, τότε () Έστω, με ( x) ( x 1)( x ) και ( x ) ( x ) ( x 4) Δείξτε ότι αν V(1) V () και V () V (4), τότε () Έστω, τέτοιοι ώστε, I Τότε ο I είναι διαγωνίσιμος και αντιστρέψιμος 9 () Ένας είναι διαγωνίσιμος αν και μόνο αν υπάρχουν ai και Pi με a P a P P P PP P P για κάθε i, j 1 1 k k, i i, i j j i 40 () Έστω, Δείξτε ότι ( x) ( x), ή ( x) x( x), ή ( x) x ( x) 41 Επαναληπτική άσκηση κατανόησης Εξετάστε ποιες από τις παρακάτω προτάσεις είναι σωστές Σε κάθε περίπτωση δώστε μια απόδειξη ή ένα αντιπαράδειγμα Έστω a 0 για κάποιο θετικό ακέραιο 0 b αντιστρέψιμος (0) 0 c Αν 4, τότε ο είναι διαγωνίσιμος 0 d Αν, 0 Τότε ( x) ( x) e Αν ο είναι αντιστρέψιμος, τότε ( x) ( x) για κάθε

5 Ασκήσεις 67 Υποδείξεις/Απαντήσεις Ασκήσεις 1 Λύση: Το χαρακτηριστικό πολυώνυμο του είναι (μετά από λίγες πράξεις) x 1 ( x) det 1 x 1 ( x 1) ( x ) 1 x Ξέρουμε ότι το ελάχιστο πολυώνυμο διαιρεί το χαρακτηριστικό πολυώνυμο και έχει τις ίδιες ρίζες με αυτό (βλ Πόρισμα 14 και Θεώρημα 16) Άρα ( x) ( x 1)( x ) ή ( x) ( x 1) ( x ) Ελέγχουμε αν ο ( I)( I) είναι ίσος με 0 Έχουμε ( )( ) Συνεπώς ( x) ( x 1)( x ), που είναι γινόμενο διακεκριμένων πρωτοβαθμίων μονικών παραγόντων Άρα ο πίνακας είναι διαγωνίσιμος σύμφωνα με το Πόρισμα Ο είναι αντιστρέψιμος αφού (0) 0 Από ( x) ( x 1)( x ) x 6x παίρνουμε I I ( 6 ) ( 6 I) Ένα ζητούμενο ( x) είναι το ( x) ( x 6 I) 4 4 Με Ευκλείδεια διαίρεση βρίσουμε x ( x 6x 1) ( x) 16x 1 και επομένως 16 1 I Ένα ζητούμενο ( x) είναι το ( x) 16x 1 I Υπόδειξη: Εργαζόμενοι όπως στην προηγούμενη άσκηση βρίσκουμε ( x) ( x) ( x ), ( x) ( x ), ( x) ( x ) Οι, δεν είναι όμοιοι, γιατί όμοιοι πίνακες έχουν το ίδιο ελάχιστο πολυώνυμο (Πρόταση 18) 1 0 Απάντηση: Έχουμε ( : ˆ, ˆ v v) 0 1 και ( x) ( : vˆ, vˆ )( x) ( x ) Δεν υπάρχει πίνακας με τη δοσμένη ιδιότητα καθώς ( x) ( x) ( x) ( x) 4 Απάντηση: Θεωρώντας τη διατεταγμένη βάση (1, x, x ), εύκολα βρίσκουμε ότι ο αντίστοιχος πίνακας της είναι ο Έχουμε ( x) ( x ), η δεν είναι διαγωνίσιμη και υπάρχει μοναδικός ιδιόχωρος και η ζητούμενη διάσταση είναι di V ( ) 1 Έστω ( x) ( x )( x 4)( x 7) [ x] Έχουμε ( ) 0 και άρα ( x) ( x )

6 Ασκήσεις 68 a Από την τελευταία σχέση και το γεγονός ότι το ( x ) είναι γινόμενο πρωτοβάθμιων διακεκριμένων μονικών παραγόντων στο [ x], έπεται ότι το ( x ) είναι γινόμενο πρωτοβάθμιων διακεκριμένων μονικών παραγόντων στο [ x] Άρα ο είναι διαγωνίσιμος σύμφωνα με το Θεώρημα 1 b 1 ος τρόπος Από ( x) ( x ) και το Θεώρημα 16 έπεται ότι αν είναι μια ιδιοτιμή του, τότε, 4, 7 Άρα το 0 δεν είναι ιδιοτιμή του και επομένως ο είναι αντιστρέψιμος ος τρόπος Υπόδειξη Ο μηδενίζει ένα πολυώνυμο που έχει μη μηδενικό σταθερό όρο Άρα είναι αντιστρέψιμος, βλ άσκηση 111a (Σημείωση Αυτός ο τρόπος δεν χρησιμοποιεί ιδιοτιμές ή ελάχιστο πολυώνυμο αλλά μόνο τον ορισμό αντιστρέψιμου πίνακα) 6 Επειδή, έχουμε ( x) x( x 1)( x ) Επειδή το x( x 1)( x ) είναι 0 ( I)( I) γινόμενο διακεκριμένων πρωτοβάθμιων μονικών παραγόντων στο [ x], το ίδιο ισχύει και για το ( x ) και επομένως ο Α είναι διαγωνίσιμος σύμφωνα με το Πόρισμα Επίσης, κάθε ιδιοτιμή του είναι ένας από τους αριθμούς 0,1, Το άθροισμα των ιδιοτιμών του είναι 6 Επειδή ο είναι, συμπεραίνουμε ότι οι ιδιοτιμές είναι,, Συνεπώς ο είναι όμοιος με τον I Άρα I 7 Παρατηρούμε ότι 0 C, 0 D 4 όπου, C, D (7) 0 Έχουμε ( x) ( x ) Άρα Από ( x) ( x )( x 7) C ( x) ( x 7) D C D ( x ) ( x ) συμπεραίνουμε ότι ( x) x ( x) ( x ) ( x) ( x) ( x) ( x) ( x ) ( x 7) σύμφωνα με την Πρόταση 114 γιατί το ελάχιστο πολυώνυμο διαιρεί το χαρακτηριστικό πολυώνυμο Επειδή I 0, έχουμε ( ) ( ) x x Από ( x C ) ( x )( x 7) έπεται άμεσα ότι C ( x) ( x )( x 7) Έχουμε D ( x) x 7 Σύμφωνα με το Πόρισμα 110 ( x) ( ( x), ( x), ( x)) ( x ) ( x 7) C D Ο Α δεν είναι διαγωνίσιμος αφού το ( x) διαιρείται με το ( x ) (Πόρισμα ) 8 Υπόδειξη: Παρατηρήστε ότι Θεώρημα 1 1 Απάντηση: x x ( ) 1 Είναι διαγωνίσιμη σύμφωνα με το 9 Υπόδειξη: Χρησιμοποιώντας το ελάχιστο πολυώνυμο, δείξτε ότι η είναι διαγωνίσιμη t t 10 Υπόδειξη: Αν ( x) [ x], τότε ( ) ( ) και άρα ( ) 0 ( t ) 0 k 1 11 Υπόδειξη: Δείξτε ότι τα στοιχεία I,,,,, όπου k deg ( x), είναι μια βάση του W ( ) * 1 a Λύση: Αν ( x) [ x], τότε ( D) 0 ( C) Για ( x) D ( x) παίρνουμε

7 Ασκήσεις 69 D ( ) * 0 D( ) D( C) 0 0 D ( C) ( x) ( x), ( x) ( x) D C D Επειδή ο D είναι διαγωνίσιμος, το ( x ) είναι γινόμενο πρωτοβάθμιων διακεκριμένων μονικών παραγόντων D στο [ x] και άρα το ίδιο ισχύει για καθένα από τα ( x ), ( x ) Άρα οι, C είναι διαγωνίσιμοι 1 1 b Απάντηση: Δεν ισχύει Ένα παράδειγμα είναι C (1), D 0 1 Ο D δεν είναι διαγωνίσιμος καθώς ( ) ( 1) D x x 1 Υπόδειξη: Παρατηρήστε ότι C και άρα ( x) x( x ) Δείξτε ότι ( x) x( x ) 14 1 aλύση: Το χαρακτηριστικό πολυώνυμο του Α είναι το ( x 1) ( x ) Από το Πόρισμα 14 και το Θεώρημα 16 έπεται ότι το ελάχιστο πολυώνυμο του είναι ένα από τα ( x 1)( x ), ( x 1) ( x ), ( x 1)( x ), ( x 1) ( x ) Από το Πόρισμα, ο Α διαγωνοποιείται αν και μόνο αν το ελάχιστο πολυώνυμο είναι το ( x 1)( x ) Είναι σαφές ότι το ελάχιστο πολυώνυμο είναι το ( x 1)( x ) αν και μόνο αν ( I )( I ) 0 Υπολογίζοντας βρίσκουμε a ( I)( I ) ad ae b d 0 Επομένως ( I)( I ) 0 a 0 (και b, c, d, e τυχαία) b Απάντηση: a 0 (και b, c τυχαία) 16 Απάντηση: a Έχουμε 17 Το b Λύση: deg ( x) ( I) 0 k 0 ( ) ( 1) 1 0 x x x x I Στην περίπτωση αυτή x x ( ) ( 1) 1 k 1 1 I I c Λύση: Οι ιδιοτιμές του είναι1,1,1 Αν ο είναι διαγωνίσιμος για κάποιο, τότε θα είναι όμοιος με τον I και άρα ίσος με αυτόν, I Δηλαδή ο μηδενίζει το πολυώνυμο x 1 Άρα ( x) x 1 Από το a έπεται ότι ( x 1) ( x) και επομένως ( x1) x 1 Πρόταση 110 προκύπτει ότι όλες οι ρίζες του x 1 στο είναι απλές ( x ) ( x x c) μηδενίζεται από τον πίνακα αν και μόνο αν Αυτό είναι άτοπο καθώς εφαρμόζοντας την x x x x c ( ) ( ) 181 ( 181 ) Όπως στην άσκηση 1, βρίσκουμε ότι ( x) ( x1)( x ) Επειδή τα πολυώνυμα x1, x είναι σχετικά πρώτα, έχουμε σύμφωνα με την Πρόταση ( x) ( x ) ( x x c) x1 x x c Από την Πρόταση 11 έχουμε x1 x x c 1 c 0 c 4 18 Υπόδειξη:

8 Ασκήσεις x x ax bx c a b c1 0 x( x 1) x ax bx c 181 ( x 1) x ax bx c c 0 c x 1 x ax bx c 1 a b c 0 a 180, b 1819, c x 1181x ax b 181 a b 0 Στην τρίτη ισοδυναμία χρησιμοποιήσαμε το κριτήριο πολλαπλής ρίζας με την παράγωγο 19 Έχουμε ( x ) det( xi ) ( x a )( x 1)( x 1) και οι ιδιοτιμές του Α είναι a,1, 1 a Επειδή για κάθε a το ( x ) είναι γινόμενο πρωτοβάθμιων παραγόντων στο [ x ], ο Α είναι τριγωνίσιμος για κάθε a (Θεώρημα 4) b Αν a 1, 1, τότε ο Α έχει τρεις διακεκριμένες ιδιοτιμές και άρα είναι διαγωνίσιμος σύμφωνα με το Πόρισμα 9 Αν a 1, τότε di V (1) rank( I ) rank που είναι διάφορο της πολλαπλότητας (1) της ιδιοτιμής 1 του Α Συνεπώς για a 1, ο Α δεν είναι διαγωνίσιμος σύμφωνα με το Θεώρημα 10 Όμοια αποδεικνύεται ότι για a 1, di V ( 1) 1 ( 1) και άρα ο Α δεν είναι διαγωνίσιμος Από τα παραπάνω έπεται ότι, δεδομένου του a, υπάρχει αντιστρέψιμος πίνακας P αν a 1, 1 τέτοιος ώστε ο P 1 P είναι διαγώνιος αν και μόνο c Αν ο Α μηδενίζει το ( x1)( x )( x 010), τότε ισχύει ( x) ( x 1)( x)( x 010) Επειδή το 1 είναι ιδιοτιμή του έχουμε x 1 ( x) σύμφωνα με το Θεώρημα 16, οπότε x 1 ( x1)( x)( x 010) που είναι άτοπο Άρα δεν υπάρχει a τέτοιο ώστε ο Α να μηδενίζει το ( x1)( x )( x 010) 0 Από την υπόθεση I συνάγουμε ότι Ο Α διαγωνοποιείται Πράγματι, το ελάχιστο πολυώνυμο ( x ) του Α διαιρεί το x 1 και επειδή το x 1 έχει διακεκριμένες ρίζες στο (όπως προκύπτει εφαρμόζοντας την Πρόταση 110), το ίδιο συμβαίνει για το ( x ) Άρα ο διαγωνοποιείται σύμφωνα με το Πόρισμα Κάθε ιδιοτιμή του Α ικανοποιεί τη σχέση 1 Έστω,, 1 (όχι αναγκαστικά διακεκριμένες) οι ιδιοτιμές του Α Ξέρουμε ότι Tr 1 (Πόρισμα 117) Από την τριγωνική ανισότητα για μέτρα μιγαδικών παίρνουμε Tr Άρα η ανισότητα είναι ισότητα Συνεπώς οι μιγαδικοί αριθμοί,, 1 έχουν το ίδιο πρωτεύον όρισμα Κάθε i έχει μέτρο 1 αφού i 1 Άρα 1 Από τη σχέση Tr 1 παίρνουμε 1 1 Άρα η διαγώνια μορφή του Α είναι ο πίνακας I, οπότε PI P 1 για κάποιον αντιστρέψιμο P Επομένως I 1 a Ο Α μηδενίζει το x x x 1 ( x 1)( x 1) και άρα x x x Επειδή τα πολυώνυμα x 1 και x 1 είναι ανάγωγα στο [ x] x x x x 1, 1, ( 1)( 1) ( ) ( 1)( 1) παίρνουμε ότι το ( x ) είναι ένα από τα

9 Ασκήσεις 71 Από την υπόθεση I και το γεγονός ότι deg ( x) (ο πίνακας είναι ), παίρνουμε ( ) 1 x x Με ανάλογο τρόπο προκύπτει ότι ( ) 1 x x b Έχουμε ( x) ( x) (Πόρισμα 14), deg ( x) deg ( x) (από το a), και τα ( x), ( x) έχουν τον ίδιο μεγιστοβάθμιο συντελεστή Άρα ( x) ( x) c Δεν είναι τριγωνίσιμοι σύμφωνα με το Θεώρημα 4 γιατί το χαρακτηριστικό τους πολυώνυμο είναι το x 1 που δεν είναι γινόμενο πρωτοβάθμιων πολυωνύμων στο [ x] Από τη σχέση έπεται ότι x x x x x Άρα έχουμε τρεις I ( ) 9 0 ( 4)( ) περιπτώσεις 1) ( ) 4 4 x x I ) ( ) x x I ) ( x) ( x4)( x ) διαγωνίσιμος (βλ Πόρισμα 9 ή Πόρισμα ) Στην περίπτωση αυτή, οι ιδιοτιμές του είναι οι 4, 4, ή οι 4,, σύμφωνα με το Θεώρημα 16 Άρα στην περίπτωση αυτή, ο είναι όμοιος με τον diag (4, 4,) ή diag (4,, ) Οι τέσσερις πίνακες 4 I, I, diag (4, 4,), diag (4,, ) είναι ανά δύο μη όμοιοι (πχ έχουν διαφορετικά χαρακτηριστικά πολυώνυμα) και άρα ισχύει ακριβώς μια από τις ανωτέρω περιπτώσεις Απάντηση: Έπεται άμεσα από την προηγούμενη άσκηση καθώς έχουμε πίνακες και 4 κλάσεις ομοιότητας Άρα υπάρχουν δύο πίνακες που ανήκουν στην ίδια κλάση ομοιότητας 4 a Από το Θεώρημα 16 υπάρχουν a( x), b( x) [ x] τέτοια ώστε 1 ( x) a( x) ( x) b( x) Άρα 1 ( g) a( g) ( g) b( g) ( g) a( g) V g Από 1 ( g) a( g) έπεται ότι η γραμμική απεικόνιση ( g) : V V είναι επί Επειδή ο V είναι V πεπερασμένη διάστασης, η ( g) : V V είναι ισομορφισμός b Έστω ότι και ο ker και ο ker g είναι μη τετριμμένοι Τότε το 0 είναι ιδιοτιμή και της και της g Από το Θεώρημα 16 έπεται ότι το x διαιρεί και το ( x ) και το g ( x ), άτοπο αφού ( ( x), ( x)) 1 Υπόδειξη: Παρατηρήστε αρχικά ότι ότι τα στοιχεία g I E E, E E, E E,, E E Δείξτε ότι από αυτό έπεται I,,,, x x συνέχεια δείξτε ότι ( ) ( 1) ( ) είναι γραμμικά ανεξάρτητα και επομένως deg ( x) deg ( x) Στη 6 1 ος τρόπος Έστω ότι ( ( x), ( x)) 1 Τότε από το Θεώρημα 16 έχουμε ( x) a( x) ( x) b( x) 1 για κάποια a( x), b( x) [ x] Άρα ( ) a( ) και ο ( ) είναι αντιστρέψιμος I Αντίστροφα, έστω ότι ο ( ) είναι αντιστρέψιμος Έστω p( x ) ένας κοινός παράγοντας των ( x), ( x) με deg p( x) 1 Τότε ( x) p( x) c( x), ( x) p( x) d( x) για κάποια c( x), d ( c) [ x] Από την πρώτη σχέση παίρνουμε ( ) p( ) c( ), οπότε det ( ) det p( ) det c( ) και άρα det p( ) 0, δηλαδή ο p( ) είναι αντιστρέψιμος Από τη δεύτερη g

10 Ασκήσεις 7 σχέση παίρνουμε 0 ( ) p( ) d( ) και επειδή ο p( ) είναι αντιστρέψιμος έχουμε d( ) 0 Άρα ( ) ( ) x d x και deg ( x) deg d( x), άτοπο αφού ( x) p( x) d( x) και deg p( x) 1 ος τρόπος Εδώ χρησιμοποιούμε το θεμελιώδες θεώρημα της Άλγεβρας θεωρώντας ότι και ( x), ( x) [ x] Έχουμε ( ( x), ( x)) 1 τα ( x), ( x) δεν έχουν κοινή ρίζα στο κάθε ιδιοτιμή του δεν είναι ρίζα του ( x) το 0 δεν είναι ιδιοτιμή του ( ) αντιστρέψιμος Στην προ-τελευταία ισοδυναμία χρησιμοποιήσαμε το θεώρημα Φασματικής Απεικόνισης που λέει ότι κάθε ιδιοτιμή του ( ) είναι της μορφής ( ), ιδιοτιμή του 7 Υπόδειξη: Αν το είναι μια ιδιοτιμή του, τότε καθένα από τα n, n 1,,, είναι μια ιδιοτιμή του Επειδή, προκύπτει ότι 1,0,1 Συμπεράνετε ότι ( x ) ( 1) ( x 1) 8 Υπόδειξη: a Διακρίνετε περιπτώσεις αν το ελάχιστο πολυώνυμο έχει διακεκριμένες ρίζες ή πολλαπλή ρίζα Στην ειδική περίπτωση που ( x) ( x) ( x ), χρησιμοποιώντας τριγωνοποίηση έπεται ότι αρκεί να a b δειχτεί ότι οι, 0 0, είναι όμοιοι Δείξτε ότι οι πίνακες αυτοί είναι όμοιοι υπολογίζοντας έναν a b αντιστρέψιμο P με P P 0 0 b Όμοιοι πίνακες έχουν το ίδιο rank k k 9 Υπόδειξη: a Αποδείξτε ότι R ( ) για κάθε θετικό ακέραιο k b Αρκεί να δειχτεί ότι για κάθε ( x) [ x] ισχύει ( R ) 0 ( ) 0 Η ισοδυναμία αυτή έπεται από το a Γενικά δεν αληθεύει ότι ( x) ( x) καθώς έχουν βαθμούς αντίστοιχα v, v 0 Απάντηση: Δεν αληθεύει Ένα αντιπαράδειγμα είναι 1 ( ) x x , Έχουμε ( x) x και a Λάθος γιατί το ( x ) δεν διαιρεί το ( x ) (βλ Πόρισμα 14) b Σωστό Έχουμε ότι ( ) 1 x x x Αρκεί να δείξουμε ότι το x x 1 δεν έχει διπλή ρίζα στο, γιατί τότε θα συμβαίνει το ίδιο για το ( x ) και άρα ο θα είναι διαγωνίσιμος σύμφωνα με το Πόρισμα Έστω ότι το ( x) x x 1 έχει διπλή ρίζα στο, οπότε θα έχει κοινή ρίζα με την παράγωγό 4 4 του ( x) x σύμφωνα με την Πρόταση 110 Αν a 0, τότε a a, οπότε ( a) 0 a a 1 0 a a 1 0 a Αλλά το a 1 4 δεν είναι ρίζα του ( x) x, άτοπο * 0 * c Λάθος καθώς το είναι ιδιοτιμή του * * αλλά όχι του * 0 * Υπόδειξη: Δείξτε ότι ( x) ( x ) U Υπόδειξη: Αν ( x) x ( x), τότε μια επιλογή είναι ( ) Δικαιολογείστε γιατί 0

11 Ασκήσεις 7 4 aυπόδειξη: Ο είναι όμοιος με διαγώνιο πίνακα της μορφής diag(0,,0,1,,1, 1,, 1), όπου a, b, c 0, a b c και rank b c Τότε ο είναι όμοιος με το Υπόδειξη: a Δείξτε ότι οι, είναι όμοιοι με πίνακες της μορφής a b c diag(0,,0,1,,1) a bc diag (,,,0,,0), a diag(,,,0,,0), αντίστοιχα, όπου Tr( ) a και Tr( ) b Τώρα αν Tr( ) Tr( ), έχουμε a b οπότε οι, είναι όμοιοι με τον ίδιο πίνακα diag (,,,0,,0) και άρα όμοιοι b Χρησιμοποιείστε το θεώρημα ταυτόχρονης διαγωνοποίησης για να δείξετε ότι ο είναι διαγωνίσιμος 6 Υπόδειξη: Θεωρώντας διαστάσεις ιδιόχωρων δείξτε ότι ο είναι διαγωνίσιμος Άρα ( x) x( x 1)( x ) (γιατί;) και επομένως ( I)( I) Λύση: Έχουμε V (1) V () επειδή ο είναι διαγωνίσιμος Από αυτό και την υπόθεση 61 V(1) V (), V() V (4) προκύπτει ότι υπάρχει βάση { X1,, X 6} του, όπου κάθε X i είναι ιδιοδιάνυσμα και του και του Το ζητούμενο έπεται από το θεώρημα ταυτόχρονης διαγωνοποίησης n 8 Yπόδειξη: Επειδή κάθε ρίζα στο του x 1 είναι απλή, οι, είναι διαγωνίσιμοι Επειδή ισχύει, είναι ταυτόχρονα διαγωνίσμοι Δείξτε ότι από αυτό έπεται ότι ο I είναι διαγωνίσιμος (Παρόμοιο επιχείρημα υπάρχει στη λύση της άσκησης b) Άρα κάθε ιδιοτιμή του I είναι της μορφής , όπου 1 Χρησιμοποιώντας τριγωνομετρική μορφή μιγαδικών αριθμών, δείξτε ότι Υπόδειξη: Έστω ότι ο Α είναι όμοιος με το diag( 1,, ) Παρατηρήστε ότι diag(,, ) E E, E E και E E 0 για κάθε i j, όπου E diag(0,,1,,0) και το 1 βρίσκεται στη θέση ( i, i ) ii Για την άλλη κατεύθυνση, δείξτε ότι τα P i της εκφώνησης διαγωνοποιούνται ταυτόχρονα ii 40 Υπόδειξη: Δείξτε ότι ( ) ( ) για κάθε ( x) [ x] Για ( x) ( x) προκύπτει ότι ( x) x ( x ) και για ( x) ( x) προκύπτει ότι ( x) x ( x ) 41 Απάντηση: a Σ b Σ c Σ d Σ e Σ The Matrix ii ii jj b

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 009 Όνομα συνοπτικές ενδεικτικές λύσεις ΑΜ Ημ/ία Αίθουσα 1 Σύνολο Η εξέταση αποτελείται από θέματα. Κάθε θέμα αξίζει 4 μονάδες. Το άριστα είναι μονάδες και η βάση

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των, Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας

Διαβάστε περισσότερα

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b)

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b) Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας που αντιστοιχεί στο άθροισμα,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι,

Γραμμική Άλγεβρα Ι, Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής.

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις4: Ορίζουσες Βασικά σημεία Ορισμός και ιδιότητες οριζουσών (ιδιότητες γραμμών και στηλών, αναπτύγματα οριζουσών, det( B) det( )det( B)) Ένας τετραγωνικός πίνακας είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0 Γραμμική Άλγεβρα Ι Θέματα Εξετάσεων Ιανουαρίου 6. (α Υπολογίστε τον πίνακα X R και την ορίζουσα det(x 5 αν AX = B + C και ( ( ( 3 3 A = B = C =. 4 3 (β Θεωρούμε πίνακα A R n n τέτοιον ώστε A = 4A 4I n.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ CAYLEY-HAMILTON. Έστω A πίνακας ν ν. Από το θεώρηµα Cayley-Hamilton συµπεραίνουµε ότι το σύνολο των πολυωνύµων p( λ ), ώστε p( A)

ΘΕΩΡΗΜΑ CAYLEY-HAMILTON. Έστω A πίνακας ν ν. Από το θεώρηµα Cayley-Hamilton συµπεραίνουµε ότι το σύνολο των πολυωνύµων p( λ ), ώστε p( A) Γραµµική Άλγεβρα ΙΙ Σελίδα από Μάθηµα 7 ο ΘΕΩΡΗΜΑ CYLEY-HMILTON Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ 60 Ασκήσεις :,,, σελ 6 Ελάχιστο πολυώνυµο πίνακα Έστω πίνακας ν ν Από το θεώρηµα Cayley-Hamilton

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 009-0 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα Έστω η γραμμική απεικόνιση T : με (α) Βρείτε τον πίνακα της T, I Ως προς την κανονική βάση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x)

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0} 1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 16 Μαρτίου 2018

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 5: Κανονικοί Πίνακες Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 6

Μαθηµατικά Ιβ Σελίδα 1 από 6 Μαθηµατικά β Σελίδα από 6 Μάθηµα 9 ο ΑΩΝΠΗΣΗ ΠΝΑΚΑ Θεωρία : ραµµική Άλγεβρα : εδάφιο 5, σελ 5 (µόνο την Πρόταση 6) Τα παραδείγµατα που αντιστοιχούν στην ύλη έχουν διδαχθεί Ασκήσεις :,, 4, 8, 9, σελ 58

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10) Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση

Διαβάστε περισσότερα