Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι"

Transcript

1 Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά δίνει κατά κανόνα πολύ καλύτερες λύσεις που είναι πλησιέστερεςστη βέλτιστη λύση, ή σε αρκετές περιπτώσεις και αυτή ακόµη τη βέλτιστη λύση Η µέθοδος Vogelλαµβάνει υπ' όψη το κόστος των διαδροµών, αλλά όχι το απόλυτο κόστος κάθε διαδροµής, όπως στη µέθοδο του Ελάχιστου Κόστους Αντίθετα, η µέθοδος Vogelλαµβάνει υπ' όψη για κάθε πηγή και κάθε προορισµό την αύξηση κόστους που θα προέκυπτε αν αντί της πιο οικονοµικής διαδροµής, επιλέγαµε τη δεύτερη πιο οικονοµική Υπολογίζει δηλαδή ένα είδος πιθανής "ποινής" (µε την έννοια της αύξησης κόστους που θα προέκυπτε αν χανόταν η πρώτη επιλογή) Έτσι, η επιλογή των διαδροµών δεν γίνεται µε βάση το απόλυτο κόστος κάθε διαδροµής, αλλά την πιθανή "ποινή" και στόχος είναι η επιλογή των διαδροµών µε βάση τη µέγιστη ποινή, δηλαδή να επιλεγούν διαδροµές για τις οποίες η εναλλακτική λύση θα απέφερε µεγάλη αύξηση του κόστους

2 Η εφαρµογή της µεθόδου Vogel στο προηγούµενο παράδειγµα Βήµα 1. Για κάθε "πηγή προέλευσης" όπως και για κάθε "προορισµό" υπολογίζουµε ένα "δείκτη ποινής Ο δείκτης αυτός ορίζεται από τη διαφορά µεταξύ του µικρότερου και του αµέσως µικρότερου κόστους των διαδροµών κάθε γραµµής και κάθε στήλης Στο παράδειγµα της ΛΟΥΤΡΟΦΙΝ για την Πάτρα η ποινή είναι 2 (5-3), για το Βόλο 1 (4-3) και για τη Θεσσαλονίκη 1 (5-4) Στις στήλες του πίνακα οι αντίστοιχες ποινές είναι: Ιωάννινα 0 (5-5), Λάρισα 1 (4-3), Αθήνα 1 (4-3) και Ηράκλειο 1 (8-7) Η µεγαλύτερη ποινή όλων των γραµµών και στηλών του πίνακα αντιστοιχεί στην πρώτη γραµµή (Πάτρα) Εποµένως, πρέπει να επιλέξουµε µία διαδροµή που ξεκινά από την Πάτρα και επιλέγουµε αυτή µε το µικρότερο κόστος που είναι η διαδροµή Πάτρα- Αθήνα Όπως και στις προηγούµενες µεθόδους, εκχωρούµε το µέγιστο δυνατό φορτίο στη διαδροµή που επιλέχθηκε, ώστε να µηδενιστεί η αντίστοιχη γραµµή ή στήλη Στην προκειµένη περίπτωση µηδενίζεται η γραµµή της Πάτρας

3

4 Βήµα 2. Μετά από κάθε εκχώρηση φορτίου σε µια διαδροµή επανυπολογίζουµετους δείκτες ποινής για κάθε "πηγή προέλευσης" και κάθε "προορισµό Τα κελιά της γραµµής ή στήλης που µηδενίστηκε εξαιρούνται από τους υπολογισµούς επειδή οι αντίστοιχες διαδροµές δεν µπορούν πλέον να χρησιµοποιηθούν Εποµένως, για την Πάτρα δεν έχει έννοια ο υπολογισµός ποινής, για το Βόλο παραµένει 1 (4-3) και για τη Θεσσαλονίκη επίσης παραµένει 1 (5-4) Στις στήλες του πίνακα οι αντίστοιχες ποινές αλλάζουν διότι τα κελιά της πρώτης γραµµής δεν λαµβάνονται υπ' όψη. Έτσι έχουµε: Ιωάννινα 1 (6-5), Λάρισα 1 (4-3), Αθήνα 2 (6-4) και Ηράκλειο 1 (8-7). Η µεγαλύτερη ποινή όλων των γραµµών και στηλών του πίνακα αντιστοιχεί τώρα στη τρίτη στήλη (Αθήνα) Εποµένως, πρέπει να επιλέξουµε µια διαδροµή που καταλήγει στην Αθήνα Αυτή µε το µικρότερο κόστος είναι η διαδροµή Βόλος-Αθήνα Όπως και στις προηγούµενες µεθόδους, εκχωρούµε το µέγιστο δυνατόφορτίο στη διαδροµή που επιλέχθηκε ώστε να µηδενιστεί η αντίστοιχη γραµµή ή στήλη Στην προκειµένη περίπτωση, µηδενίζεται εκχωρούµε φορτίο 50 µονάδων, όση δηλαδή είναι η αποµένουσα ζήτηση στην Αθήνα στη διαδροµή Βόλος-Αθήνα µε αποτέλεσµα να µηδενιστεί η στήλη της Αθήνας

5

6 Βήµα 3. Υπολογίζουµεξανά για κάθε "πηγή προέλευσης" και κάθε "προορισµό" τις διαφορές µεταξύ του µικρότερου και του αµέσως µικρότερου κόστους, εξαιρώντας τη σειρά της Πάτρας και τη στήλη της Αθήνας, διότι τα αντίστοιχα φορτία έχουν εξαντληθεί Οι υπολογισµοί φαίνονται στον τρίτο πίνακα Vogel Η ποινή για τη γραµµή που αντιστοιχεί στο Βόλο έχει αλλάξει από 1 σε 3, γιατί ενώ η πιο οικονοµική επιλογή παραµένει η Βόλος-Λάρισα, η δεύτερη πιο οικονοµική επιλογή από Βόλο είναι τώρα η Βόλος- Ιωάννινα Η ποινή για τη Θεσσαλονίκη παραµένει η ίδια και εποµένως η µέγιστη ποινή όλων των γραµµών και στηλών αντιστοιχεί στο Βόλο Άρα, στη διαδροµή µε το µικρότερο κόστος στη δεύτερη γραµµή, πουείναι η Βόλος-Λάρισα, εκχωρούµε το µέγιστο δυνατό φορτίο που είναι οι 250 µονάδες που έχουν αποµείνει στο Βόλο µε αποτέλεσµα να µηδενιστεί και ο Βόλος

7

8 Βήµα 4. Εφόσοντο µόνο εργοστάσιο που διαθέτει φορτίο είναι η Θεσσαλονίκη µε 450 µονάδες, η ζήτηση, στα Ιωάννινα (200 µονάδες), η αποµένουσα ζήτηση στη Λάρισα (50 µονάδες) και η ζήτηση στο Ηράκλειο (200 µονάδες) θα ικανοποιηθούν από τη Θεσσαλονίκη Ο τελικός πίνακας των µεταφορών που προκύπτουν από τη µέθοδο Vogel έχει τώρα ως εξής:

9 Τοκόστος της αρχικής λύσηςπου προέκυψε από τη µέθοδο Vogel υπολογίζεται ως εξής: Ηµέθοδος Vogelπαράγει γενικώς καλύτερες αρχικές λύσεις από τις προηγούµενες µεθόδους, παρόλο που η εφαρµογή της είναι αρκετά πιο πολύπλοκη από τις µεθόδους της "Β Γωνίας" και του Ελάχιστου Κόστους

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον ΓΠ στη Θεωρία ικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας κατανάλωσης Το προϊόν

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Καταβολή Α δόσης σε Κλαδικούς Φορείς

Καταβολή Α δόσης σε Κλαδικούς Φορείς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ KAI ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΕΘΝΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ Οι αποφάσεις σχετικά µε την διαχείριση ή «πολιτική» των αποθεµάτων που πρέπει να πάρει κάποιος, ασχολείται µε το «πόσο» πρέπει να παραγγείλει (ή να παράγει) και «πότε» να παραγγείλει

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΦΟΡΤΙΟΥ economic_dispatch.xls

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΦΟΡΤΙΟΥ economic_dispatch.xls Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΦΟΡΤΙΟΥ economic_dispatch.xls Το πρόβληµα της Οικονοµικής Κατανοµής φορτίου στις θερµικές µονάδες ενός συστήµατος ορίζεται ως εξής : Σε µια δεδοµένη

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα Πρόβληµα Μεταφοράς Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Μοντέλο Προβλήµατος Μεταφοράς 2. Εύρεση Μιας Αρχικής Βασικής

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 7: Μοντέλα χωροθέτησης και ανάθεσης δυναμικότητας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commos

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Search and Replication in Unstructured Peer-to-Peer Networks

Search and Replication in Unstructured Peer-to-Peer Networks Search and Replication in Unstructured Peer-to-Peer Networks Presented in P2P Reading Group in 11/10/2004 Abstract: Τα µη-κεντρικοποιηµένα και µη-δοµηµένα Peer-to-Peer δίκτυα όπως το Gnutella είναι ελκυστικά

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM)

ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) Η διαµόρφωση και το µοντέλο του προβλήµατος ανάθεσης (π.χ. εργασιών σε µηχανές ή δραστηριοτήτων σε άτοµα) περιγράφεται στις

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) η Σειρά Ασκήσεων 19/1/7 Ι. Σ. Ράπτης 1. Ηµιαγωγός, µε ενεργειακό χάσµα 1.5, ενεργό µάζα ηλεκτρονίων m.8m, ενεργό µάζα οπών

Διαβάστε περισσότερα

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. Ηλεκτρική δυναµική ενέργεια Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. e o Έστω δοκιµαστικό φορτίο,

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η Ουγγρική Μέθοδος ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος" Τοπλήθος των εφικτών λύσεων σε ένα πρόβληµα ανάθεσης µε m δραστηριότητες και mπόρους είναι ίσο µε m! 6 Αυτό σηµαίνει ότι ο αριθµός των εφικτών λύσεων

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 3, Πέμπτη Θεσσαλονίκη 4, Παρασκευή Αθήνα 10, Πέμπτη Θεσσαλονίκη 11, Παρασκευή Αθήνα 17, Πέμπτη Αθήνα, Θεσσαλονίκη Ιανουάριος 18, Παρασκευή

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Σχέσεις μεταξύ του πρωτεύοντος και του δυϊκού του. Για να χρησιμοποιήσουμε τη θεωρία δυϊκότητας αλλάζουμε την μορφή του πίνακα της μεθόδου simplex, προσθέτοντας μια σειρά και μια στήλη. Η σειρά προστίθεται

Διαβάστε περισσότερα

Εφαρµογή Βusiness. ιαδικασίες Μετασχηµατισµών Παραστατικών

Εφαρµογή Βusiness. ιαδικασίες Μετασχηµατισµών Παραστατικών Εφαρµογή Βusiness ιαδικασίες Μετασχηµατισµών Παραστατικών ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Μετασχηµατισµοί Παραστατικών... 4 1.1 Συνδεόµενα Παραστατικά (Έµµεση Οθόνη)...4 1.2 Μαζικοί Μετασχηµατισµοί...7 Σελίδα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ- Μ.Β.Α. ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΕΣΠΟΙΝΑ ΞΑΝΘΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ- Μ.Β.Α. ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΕΣΠΟΙΝΑ ΞΑΝΘΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ- Μ.Β.Α. ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΕΣΠΟΙΝΑ ΞΑΝΘΟΥ «Μεταφορά ασθενών σε χώρους νοσηλείας. Θεωρητική προσέγγιση

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ

ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ 1 ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ Θα πρέπει να γνωρίζουμε: 1. τις επιφάνειες του χώρου στις οποίες γίνεται μετάβαση της θερμότητας. 2. τις διαστάσεις των επιφανειών αυτών. 3. τη διαφορά θερμοκρασίας

Διαβάστε περισσότερα

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 8: Μοντέλα χωροθέτησης και ανάθεσης δυναμικότητας - Μέρος ΙΙ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Πρόβλεψη Βάσεων Παν. Εξετ. 2015 από Σχ. Συμβ. ΠΕ03 Καραγιάννη Ιωαν.

Πρόβλεψη Βάσεων Παν. Εξετ. 2015 από Σχ. Συμβ. ΠΕ03 Καραγιάννη Ιωαν. ΜΟΡΙΑ 2015 ΚΕΝΤΡΙΚΗ ΒΑΣΕΙΣ ΚΩΔ ΟΝΟΜΑ ΣΧΟΛΗΣ (ΕΚΤΙΜΗΣΗ) ΤΙΜΗ 2015 ΑΠΟΚΛΙΣΗ 301 ΙΑΤΡΙΚΗΣ (ΙΩΑΝΝΙΝΑ) 18220-18280 18250 18339 89 299 ΙΑΤΡΙΚΗΣ (ΠΑΤΡΑ) 18480-18540 18510 18494-16 302 ΙΑΤΡΙΚΗΣ (ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ)

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή Εισαγωγή Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή στο σχεδιασμό των Μεταφορών Βασικές έννοιες και αρχές των Μεταφορών Διαδικασία Ορθολογικού

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΑΚΥΡΩΣΗΣ ΕΙΣΙΤΗΡΙΩΝ, ΕΚ ΟΣΗΣ OPEN ΕΙΣΙΤΗΡΙΩΝ OPEN ΚΑΡΤΩΝ ΚΑΙ ΚΑΡΤΩΝ ΕΠΙΒΙΒΑΣΗΣ ΓΙΑ ΤΗΝ BLUE STAR FERRIES ΜΕΣΩ ΤΗΣ ΕΦΑΡΜΟΓΗΣ OPEN SEAS (v

ΕΓΧΕΙΡΙ ΙΟ ΑΚΥΡΩΣΗΣ ΕΙΣΙΤΗΡΙΩΝ, ΕΚ ΟΣΗΣ OPEN ΕΙΣΙΤΗΡΙΩΝ OPEN ΚΑΡΤΩΝ ΚΑΙ ΚΑΡΤΩΝ ΕΠΙΒΙΒΑΣΗΣ ΓΙΑ ΤΗΝ BLUE STAR FERRIES ΜΕΣΩ ΤΗΣ ΕΦΑΡΜΟΓΗΣ OPEN SEAS (v ΕΓΧΕΙΡΙ ΙΟ ΑΚΥΡΩΣΗΣ ΕΙΣΙΤΗΡΙΩΝ, ΕΚ ΟΣΗΣ OPEN ΕΙΣΙΤΗΡΙΩΝ OPEN ΚΑΡΤΩΝ ΚΑΙ ΚΑΡΤΩΝ ΕΠΙΒΙΒΑΣΗΣ ΓΙΑ ΤΗΝ BLUE STAR FERRIES ΜΕΣΩ ΤΗΣ ΕΦΑΡΜΟΓΗΣ OPEN SEAS (v 3.17) ΑΚΥΡΩΣΗ ΕΙΣΙΤΗΡΙΩΝ A) Μερική ακύρωση 1. Ανακαλούµε

Διαβάστε περισσότερα

Προγραµµατισµός προσωπικού (Staff scheduling)

Προγραµµατισµός προσωπικού (Staff scheduling) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 7 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (OPTIMIZATION) (3 ο σετ

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων σε σφαιρική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Α) Αν το τριώνυμο έχει δύο ρίζες x 1

Α) Αν το τριώνυμο έχει δύο ρίζες x 1 αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο m υ ο k R Α Ο οµογενής κύλινδρος του σχήµατος έχει µάζα m = 8 kg, ακτίνα R και κυλίεται χωρίς να ολισθαίνει στο οριζόντιο επίπεδο έτσι

Διαβάστε περισσότερα

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Πρόβλημα Μεταφοράς Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ Οι ασκήσεις που αναφέρονται στο νόµο του Τζάουλ είναι απλή εφαρµογή στον τύπο. Για τη λύση των ασκήσεων θα ακολουθούµε τα εξής βήµατα: i) ιαβάζουµε προσεκτικά την εκφώνηση της άσκησης,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ

ΚΕΦΑΛΑΙΟ ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ ΚΕΦΑΛΑΙΟ 4 41 ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ Η συνδεσµολογία κοινού συλλέκτη φαίνεται στο σχήµα 41 Αν σχηµατίσουµε το ac ισοδύναµο θα δούµε ότι ο συλλέκτης συνδέεται στη γη και αποτελεί κοινό

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

7.9.2 Άμεση δρομολόγηση 1

7.9.2 Άμεση δρομολόγηση 1 7.9.2 Άμεση δρομολόγηση 1 Διαδικασία Άμεση 1. Αρχικά, εξάγονται από την επικεφαλίδα του ΙΡ πακέτου οι διευθύνσεις ΙΡ πηγής και 2. Έπειτα, σε επίπεδο ΙΡ ουσιαστικά δεν πραγματοποιείται καμία ενέργεια! (ίσα

Διαβάστε περισσότερα

Αθλητισμός & Υγεία. Τεύχος 4 o Σεπτέμβρης- Δεκέμβρης 2008 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΓΡΑΦΕΙΟ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

Αθλητισμός & Υγεία. Τεύχος 4 o Σεπτέμβρης- Δεκέμβρης 2008 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΓΡΑΦΕΙΟ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Αθλητισμός & Υγεία Υπεύθυνος Έκδοσης: Οικονόμου Χαράλαμπος Προϊστάμενος Κ.Ξ.Γ.Φ.Α. Συντάκτης: Γκότσης Κωνσταντίνος Καθηγητής Φ.Α. Τεύχος 4 o Σεπτέμβρης- Δεκέμβρης 2008 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 7 8 (Πολυδιάστατη Κίνηση Αναδρομικός τύπος Kaufman- Roberts) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Θεωρία Αποφάσεων και Βελτιστοποίηση

Θεωρία Αποφάσεων και Βελτιστοποίηση Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (ΜΟΝΑΔΕΣ 5) Ένας κατασκευαστής αυτοκινήτων θέλει να προγραμματίσει για μια χρονική περίοδο την παραγωγή δύο μοντέλων αυτοκινήτου: του μοντέλου Α και του μοντέλου Β. Κάθε μοντέλο αυτοκινήτου απαιτεί

Διαβάστε περισσότερα

ιαχείριση Εφοδιαστικής Αλυσίδας

ιαχείριση Εφοδιαστικής Αλυσίδας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιαχείριση Εφοδιαστικής Αλυσίδας Εφοδιαστική Αλυσίδα (ΕΡΓ.)

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Business Express Post TΙΜΟΚΑΤΑΛΟΓΟΣ

Business Express Post TΙΜΟΚΑΤΑΛΟΓΟΣ Business Express Post TΙΜΟΚΑΤΑΛΟΓΟΣ TΙΜΟΚΑΤΑΛΟΓΟΣ 2 Business Express Post "O οικονομικότερος Courier... στο συρτάρι σας" Τι είναι: Πρόκειται για μία υπηρεσία που αφορά στην κατεπείγουσα επίδοση (την επόμενη

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001 Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της

Διαβάστε περισσότερα

Εσωτερικός Βαθµός Απόδοσης (ΕΒΑ)

Εσωτερικός Βαθµός Απόδοσης (ΕΒΑ) . Κεφάλαιο 9 Εσωτερικός Βαθµός Απόδοσης (ΕΒΑ) (Internal Rate of Return - IROR) 9. Γενικά Ο ΕΒΑ είναι η τελευταία από τις τέσσερις µεθόδους αξιολόγησης αµοιβαία αποκλειόµενων εναλλακτικών λύσεων. Αν και

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01

Διαβάστε περισσότερα

5ο Επιστημονικό πεδίο ΑΕΙ ΚΩΔ ΟΝΟΜΑ ΣΧΟΛΗΣ ΕΙΔΟΣ ΘΕΣΗΣ 2014 2013 ΔΙΑΦ ΔΙΑΦ(%) 90% ΓΕΝΙΚΗ 90% ΓΕΝΙΚΗ

5ο Επιστημονικό πεδίο ΑΕΙ ΚΩΔ ΟΝΟΜΑ ΣΧΟΛΗΣ ΕΙΔΟΣ ΘΕΣΗΣ 2014 2013 ΔΙΑΦ ΔΙΑΦ(%) 90% ΓΕΝΙΚΗ 90% ΓΕΝΙΚΗ 5ο Επιστημονικό πεδίο ΑΕΙ ΚΩΔ ΟΝΟΜΑ ΣΧΟΛΗΣ ΕΙΔΟΣ ΘΕΣΗΣ 2014 2013 ΔΙΑΦ ΔΙΑΦ(%) 314 ΜΑΡΚΕΤΙΝΓΚ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ (ΑΘΗΝΑ) ΣΕΙΡΑ 14.956 14.708 248 1.7% 314 ΜΑΡΚΕΤΙΝΓΚ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ (ΑΘΗΝΑ) ΣΕΙΡΑ ΕΣΠΕΡΙΝΑ

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ ΚΕΦΑΛΑΙΟ : ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ. Εισαγωγή Στις αρχές του ου αιώνα ο Ρώσος Μαθηµατικός A. A. Markov στην προσπάθειά του να ερµηνεύσει την «αβεβαιότητα»

Διαβάστε περισσότερα

Παρουσίαση Αποτελεσμάτων Αποτελεσμάτων Πανελλή Πανελλ νια ς Έρ Έ ευνα ς για γ τ η τ ν η ν Ψωρ Ψω ίασ ίασ

Παρουσίαση Αποτελεσμάτων Αποτελεσμάτων Πανελλή Πανελλ νια ς Έρ Έ ευνα ς για γ τ η τ ν η ν Ψωρ Ψω ίασ ίασ Παρουσίαση Αποτελεσμάτων Πανελλήνιας Έρευνας ςγ για την Ψωρίαση Ετοιμάστηκε για τις: Ταυτότητα Έρευνας Μθδλ Μεθοδολογία: Συμπλήρωση του ερωτηματολογίου στο internet και αυτοσυμπληρούμενα ερωτηματολόγια

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΕΠΛ 232 Φροντιστήριο 2

ΕΠΛ 232 Φροντιστήριο 2 Πρόβληµα ΕΠΛ Φροντιστήριο Έχετε 0 και θέλετε να τις επενδύσετε για n µήνες. Tην πρώτη µέρα κάθε µήνα έχετε µόνο µια από τις παρακάτω τρεις επιλογές:. Να αγοράσετε ένα πιστοποιητικό αποταµίευσης από την

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη 5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 3: Πολυπολική ανάπτυξη Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει την πολυπολική ανάπτυξη του δυναμικού

Διαβάστε περισσότερα

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 9: Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Μεταφοράς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative

Διαβάστε περισσότερα

Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης)

Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης) Ονοµατεπώνυµο:.... Τάξη: ΕΠΑ.Λ Τµήµα:. Ηµεροµηνία:.. 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης) Ανοίξτε την προσοµοίωση EOEK_a.ip, που βρίσκεται στο φάκελο µε τίτλο ιδακτική

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΝΕΡΓΕΙΑΚΗΣ ΘΕΡΜΟΚΗΠΙΟΥ ΣΕ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Επιβλέπων Καθηγητής:. ΜΑΜΑΗΣ. Αργυρή ηµοπούλου ΑΘΗΝΑ, ΙΟΥΝΙΟΣ 2011

ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΝΕΡΓΕΙΑΚΗΣ ΘΕΡΜΟΚΗΠΙΟΥ ΣΕ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Επιβλέπων Καθηγητής:. ΜΑΜΑΗΣ. Αργυρή ηµοπούλου ΑΘΗΝΑ, ΙΟΥΝΙΟΣ 2011 ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΕΚΠΟΜΠΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΚΗΠΙΟΥ ΣΕ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΛΥΜΑΤΩΝ (Ε.Ε.Λ.).) Αργυρή ηµοπούλου Επιβλέπων Καθηγητής:. ΜΑΜΑΗΣ ΑΘΗΝΑ, ΙΟΥΝΙΟΣ 2011 1 ΣΤΟΧΟΙ

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα