ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων"

Transcript

1 ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ Οι αποφάσεις σχετικά µε την διαχείριση ή «πολιτική» των αποθεµάτων που πρέπει να πάρει κάποιος, ασχολείται µε το «πόσο» πρέπει να παραγγείλει (ή να παράγει) και «πότε» να παραγγείλει (ή να παράγει). Εάν κάποιος παραγγείλει πολύ µεγάλες ποσότητες θα αυξηθεί το κόστος αποθήκευσης, εάν αντίθετα παραγγείλει µικρές ποσότητες θα παρουσιασθεί ένα κόστος έλλειψης. Ετσι θα πρέπει να βρεθεί η χρυσή τοµή ώστε να ελαχιστοποιηθεί το συνολικό κόστος. Γενικά µε τη βοήθεια της θεωρίας των αποθεµάτων 1) ιαµορφώνουµε ένα µαθηµατικό πρότυπο (µοντέλο) που να περιγράφει τη συµπεριφορά του συστήµατος αποθεµάτων ) Προσδιορίζουµε την άριστη «πολιτική αποθεµάτων» σε σχέση µε το πρότυπο αυτό. Τα µοντέλα αποθεµάτων ταξινοµούνται σε : 1) προσδιοριστικά εάν η ζήτηση του προϊόντος είναι γνωστή για µια ορισµένη χρονική περίοδο ) στοχαστικά εάν η ζήτηση είναι µια τυχαία µεταβλητή που ακολουθεί µια κατανοµή πιθανοτήτων Ι. Προσδιοριστικά Μοντέλα αποθεµάτων Χαρακτηριστικά των µοντέλων των αποθεµάτων Για να απαντήσουµε στην ερώτηση «πόσο» πρέπει να παραγγείλουµε προσδιορίζουµε την «βέλτιστη ποσότητα παραγγελίας» µε κριτήριο την ελαχιστοποίηση του συνολικού κόστους. Μερικά από τα πιο σηµαντικά κόστη είναι : 1. Κόστος αγοράς το οποίο βασίζεται στην τιµή ανά µονάδα του προϊόντος Το κόστος αγοράς µπορεί να είναι σταθερό ή να κυµαίνεται ανάλογα µε την έκπτωση που προσφέρεται µε το µέγεθος της παραγγελίας.. σταθερό κόστος παραγγελίας (ή παραγωγής) δηλαδή το κόστος που απαιτείται όταν τίθεται µια παραγγελία και περιλαµβάνει διαχειριστικά κόστη και διάφορα γενικά 31

2 3. κόστος διατήρησης ή αποθήκευσης δηλαδή το κόστος διατήρησης των προϊόντων σε απόθεµα. Αυτό περιλαµβάνει το κόστος επένδυσης σε κεφάλαιο καθώς και το κόστος αποθήκευσης, (ή διατήρησης). 4. κόστος έλλειψης είναι η ποινή της έλλειψης αποθέµατος. Περιλαµβάνει την πιθανή απώλεια του εισοδήµατος λόγω έλλειψης του προϊόντος καθώς και το υποκειµενικό κόστος της απώλειας εµπιστοσύνης των πελατών. Ολα τα παραπάνω κόστη εκφράζονται σε µονάδες της επιθυµητής ποσότητας παραγγελίας και του χρόνου µεταξύ δύο παραγγελιών Για να απαντήσουµε στην ερώτηση «πότε» πρέπει να παραγγείλουµε θα πρέπει να διακρίνουµε 1) εάν το σύστηµα των αποθεµάτων απαιτεί ένα περιοδικό έλεγχο (µηνιαίο ή εβδοµαδιαίο) εποµένως ο χρόνος παραλαβής µιας νέας παραγγελίας συµπίπτει µε την αρχή της νέας περιόδου ή ) εάν το σύστηµα βασίζεται σε συνεχή έλεγχο τότε οι νέες παραγγελίες γίνονται όταν το επίπεδο των αποθεµάτων µειώνεται σε ένα ορισµένο επίπεδο (σηµείο επαναπαραγγελίας). Στατικά µοντέλα οικονοµικής ποσότητας παραγγελίας 1) Κλασσικό µοντέλο οικονοµικής ποσότητας παραγγελίας Είναι το πιο απλό από τα µοντέλα αποθεµάτων µε τις εξής υποθέσεις : 1. Η ζήτηση είναι σταθερή µε ρυθµό µονάδες προϊόντος στη µονάδα του χρόνου (έτος, µήνα,..). Τα προϊόντα είναι άµεσης αναπλήρωσης δηλαδή παραδίδονται τη χρονική στιγµή που παραγγέλλονται 3. Τα προϊόντα παραγγέλλονται (ή παράγονται) σε σταθερές ποσότητες µονάδες προϊόντος κάθε φορά 4. εν υπάρχουν ελλείψεις 3

3 Το µοντέλο κόστους απαιτεί τις παρακάτω παραµέτρους κόστους: 1. το σταθερό κόστος παραγγελίας που συνδέεται µε την τοποθέτηση κάθε εντολής παραγγελίας και συµβολίζεται µε Κ χρηµατικές µοναδες ανεξάρτητα από την ποσότητα. το κόστος αγοράς µιας µονάδας προϊόντος (µεταβλητό κόστος παραγγελίας) συµβολίζεται µε c χρηµατικές µονάδες ανά µονάδα προϊόντος 3. το κόστος διατήρησης (αποθήκευσης) αποθεµάτων συµβολίζεται µε h σε χρηµατικές µονάδες ανά µονάδα αποθέµατος ανά χρονική µονάδα Εάν λοιπόν συµβολίσουµε µε τη ποσότητα παραγγελίας (αριθµός µονάδων του προϊόντος ) ο ρυθµός ζήτησης (µονάδες προϊόντος ανά µονάδα χρόνου) t χρονική διάρκεια του κύκλου παραγγελίας (χρονικές µονάδες) Ζητείται να βρεθούν: 1. η βέλτιστη ποσότητα παραγγελίας. ο βέλτιστος χρόνος αναπαραγγελίας 3. το βέλτιστο συνολικό κόστος στη µονάδα του χρόνου t TC Επίλυση Το ύψος των αποθεµάτων ακολουθεί το παρακάτω σχήµα Στην αρχή των αξόνων το ύψος των αποθεµάτων είναι µονάδες προϊόντος όσες και η παραγγελία. Μετά τα αποθέµατα µειώνονται οµοιόµορφα µε σταθερό ρυθµό ζήτησης δηλαδή σύµφωνα µε την εξίσωση - t και µηδενίζονται την χρονική στιγµή t / οπότε τίθεται νέα παραγγελία. ηλαδή ο κύκλος µιας παραγγελίας έχει χρονική διάρκεια t χρονικές µονάδες. 33

4 Το µέσο ύψος αποθεµάτων είναι µονάδες προϊόντος Το συνολικό µέσο κόστος TC ανά χρονική µονάδα (π.χ. έτος) υπολογίζεται ως το άθροισµα των επιµέρους κόστων: TC ετήσιο σταθερό κόστος παραγγελιών + ετήσιο κόστος αγορών + ετήσιο κόστος διατήρησης Αναλυτικά: Το ετήσιο σταθερό κόστος παραγγελιών ετήσιο αριθµό εντολών παραγγελίας επί (το κόστος έκδοσης µιας εντολής παραγγελίας) (ετήσια ζήτηση /ποσότητα παραγγελίας) επί (το κόστος έκδοσης µιας εντολής παραγγελίας) ( ). k Το ετήσιο κόστος αγορών ετήσια ζήτηση επί το κόστος αγοράς ανά µονάδα προϊόντος δηλ..c Το ετήσιο κόστος διατήρησης το µέσο απόθεµα (/) επί το ετήσιο κόστος διατήρησης µιας µονάδας (h) δηλαδή ( ). h Αρα.k Τ C +.C+ h 34

5 Η τιµή της που ελαχιστοποιεί την TC (θέτοντας την πρώτη παράγωγο της TC ως προς ίση µε 0 ) είναι η (Ο.Π.Π) οικονοµική ποσότητα παραγγελίας και αποδεικνύεται ότι είναι k h Το χρονικό διάστηµα µεταξύ δύο διαδοχικών παραγγελιών ή άριστος χρόνος επαναπαραγγελίας t Το ελάχιστο ολικό µέσο κόστος στη µονάδα του χρόνου είναι Τ C.k +.C+ h Αναµενόµενος αριθµός παραγγελιών είναι λ Παράδειγµα 1 Ενα νοσοκοµείο παραγγέλνει συχνά ακτινογραφικά φιλµ από ένα προµηθευτή. Τα φιλµ παραγγέλλονται σε παρτίδες ίδιων ποσοτήτων. Τα αρχεία του νοσοκοµείου έδειξαν ότι η ζήτηση είναι σταθερή σε 1500 φιλµ το µήνα. Το σταθερό κόστος παραγγελίας ανά παραγγελία είναι 100 χρηµατικές µονάδες. Το κόστος αγοράς κάθε φιλµ είναι 0 χρηµ µονάδες και το ετήσιο κόστος αποθήκευσης είναι 30% του µοναδιαίου κόστους αγοράς. Ο µάνατζερ του νοσοκοµείου θέλει να προσδιορίσει το άριστο µέγεθος των παρτίδων φιλµ που θα παραγγέλνει και κάθε πότε να παραγγέλνει έτσι ώστε το νοσοκοµείο να µην έχει έλλειψη σε φιλµ αλλά συγχρόνως να διατηρήσει το ελάχιστο δυνατό κόστος. Λύση Στο παράδειγµα αυτό παρατηρούµε ότι οι διάφορες µεταβλητές αναφέρονται σε διαφορετικούς χρονικές µονάδες. Πρώτα λοιπόν τις αναγάγουµε στην ίδια χρονική µονάδα π.χ. το έτος. Ετσι µετατρέπουµε τη ζήτηση σε ετήσια, δηλαδή: ετήσια ζήτηση: 1500 φιλµ /µήνα 1 µήνες /έτος φιλµ ανά έτος 35

6 Τα υπόλοιπα µεγέθη αναλύονται ως εξής: σταθερό κόστος παραγγελίας Κ 100 χρηµ. µον. ανά παραγγελία κόστος αγοράς c 0 χρηµ µον. ανά φιλµ ετήσιο κόστος αποθήκευσης: h 0, χρηµ. µον. ανά έτος Άρα η βέλτιστη ή οικονοµική ποσότητα παραγγελίας είναι: k.(18000).(100) ,6 h 6 Επειδή δεν είναι δυνατό να παραγγείλουµε δεκαδικό αριθµό φιλµ θα παραγγείλουµε είτε 774 ή 775. Για να καθορίσουµε ποιο από τα δύο µεγέθη θα πρέπει να υπολογίσουµε το συνολικό κόστος για κάθε µέγεθος και να επιλέξουµε το µέγεθος που δίνει το µικρότερο κόστος. ΤC.k +.C ,58 h (18000) (18000)(0) + 6.(775) ΤC.k +.C+ h (18000) (18000)(0) + 6.(774) ,58 Επειδή και τα δύο µεγέθη δίνουν το ίδιο συνολικό κόστος µπορούµε να επιλέξουµε όποιο µέγεθος θέλουµε. Εστω ότι επιλέγουµε ως οικονοµική ποσότητα παραγγελίας το µέγεθος 775 Ο µέσος αριθµός παραγγελιών στο έτος λ ετήσια ζήτηση / οικονοµική ποσότητα παραγγελίας 1800/ 775 3,3 παραγγελίες κάθε έτος. Επειδή δεν είναι δυνατόν να παραγγέλλετε δεκαδικό αριθµό παραγγελιών ορισµένα έτη θα κάνετε 3 παραγγελίες το έτος και ορισµένα 4 Ο άριστος χρόνος επανα-παραγγελίας t 36

7 οικονοµική ποσότητα παραγγελίας / ετήσια ζήτηση 775 / / 3,3 του έτους ή 365 / 3,3 15,7 ηµέρες. ) ΕΚΠΤΩΣΕΙΣ ΛΟΓΩ ΑΓΟΡΑΣ ΜΕΓΑΛΩΝ ΠΟΣΟΤΗΤΩΝ Οι εκπτώσεις παρουσιάζονται σε εταιρείες που δίνουν κίνητρο στους αγοραστές να παραγγέλνουν µεγάλες ποσότητες προϊόντος. Αυτό σηµαίνει για τους αγοραστές µικρότερο κόστος αγοράς αλλά µεγαλύτερο κόστος διατήρησης. Αν η µείωση του κόστους αγοράς είναι µεγαλύτερη από την αύξηση του κόστους διατήρησης θα πρέπει να επιδιώκεται η έκπτωση. Παράδειγµα Εστω ότι µια εταιρεία Α παρέχει τις εξής εκπτώσεις Κατηγορία εκπτώσεων µέγεθος παραγγελίας έκπτωση % % και άνω 5% Εάν το κόστος αγοράς χωρίς έκπτωση είναι 5 χρηµ. µονάδες, το κόστος διατήρησης για τους αγοραστές (εταιρεία Β) είναι 0% του κόστους αγοράς και το σταθερό κόστος παραγγελίας είναι 49 χρηµ µονάδες ανά παραγγελία και η ετήσια ζήτηση είναι 5000 µονάδες προϊόντος, να βρεθεί η ποσότητα παραγγελίας που πρέπει να επιλέξει η εταιρεία Β. Λύση Κατηγορία εκπτώσεων µέγεθος παραγγελίας έκπτωση Μοναδιαίο κόστος κόστος διατήρησης % 5 (0,0).(5) % 4,85 (0,).4,850, και άνω 5% 4,75 (0,).4,750,95 Στον παραπάνω πίνακα υπολογίζω για κάθε κατηγορία το µοναδιαίο κόστος µιας µονάδας προϊόντος και το αντίστοιχο κόστος διατήρησης αφού είναι συνάρτηση του µοναδιαίου κόστους 37

8 Ετσι για τη η κατηγορία εκπτώσεων εάν αγοράσει από 1000 έως 499 τεµάχια προϊόντος θα γίνει έκπτωση 3% δηλαδή το κόστος ανά µονάδα προϊόντος θα είναι 5- (3%.5)4,85. Το αντίστοιχο κόστος διατήρησης θα είναι 0%.4,85. Παρόµοια υπολογίζουµε και για την τρίτη κατηγορία. Μετά υπολογίζουµε για κάθε κατηγορία εκπτώσεων την Οικονοµική Ποσότητα Παραγγελίας. 1. k h.(5000).(49) k h.(5000).(49) 0, k h.(5000).(49) 0, Παρατηρούµε ότι τα µεγέθη 711 και είναι αδύνατα γιατί το κατώτερο όριο της παραγγελίας της ης κατηγορίας πρέπει να είναι ίσο µε 1000 και της τρίτης κατηγορίας εκπτώσεων πρέπει να είναι ίσο µε 500 (σύµφωνα µε τα µεγέθη παραγγελίας για να τους δοθεί έκπτωση). Ετσι αναπροσαρµόζουµε τις ποσότητες Για να επιλέξουµε ποια ποσότητα παραγγελίας θα πρέπει να επιλέξουµε από τις τρεις είναι λογικό να επιλέξουµε εκείνη που δίνει το µικρότερο ετήσιο συνολικό κόστος Ετσι υπολογίζουµε το ετήσιο συνολικό κόστος για κάθε κατηγορία εκπτώσεων θέτοντας κάθε φορά την αντίστοιχη οικονοµική ποσότητα παραγγελίας. 38

9 1.) ΤC ).k +.C h1 1 (5000)(49) (5000)(5) + 1.(700).k h (5000)(49) (0,97).(1000) ΤC +.C + + ( 5000)(4,85) ).k h33 (5000)(49) (0,95).(500) ΤC3 +.C 3+ + ( 5000)(4,75) Επιλέγουµε την η κατηγορία εκπτώσεων και παραγγέλνουµε 1000 µονάδες προϊόντος επειδή αντιστοιχεί στο µικρότερο συνολικό ετήσιο κόστος. 3) Μοντέλο οικονοµικής ποσότητας παραγγελίας µε σηµείο επαναπαραγγελίας Στο µοντέλο 1 υποθέσαµε ότι την στιγµή που δίδεται η εντολή για καινούρια παραγγελία οι ποσότητες καταφθάνουν αµέσως. Αυτό βέβαια δεν είναι δυνατό στην πραγµατικότητα εκτός των περιπτώσεων just in time µε την στενή έννοια (π.χ. Toyot city). Ορίζουµε λοιπόν το χρονικό διάστηµα µεταξύ της εντολής της παραγγελίας και της στιγµής της παράδοσης ως χρόνο παράδοσης ή χρονική ανοχή L (led time, delivery lg). Η εντολή της παραγγελίας θα πρέπει να γίνει πριν, ενώ θα υπάρχει ακόµη απόθεµα για να ικανοποιήσει την ζήτηση κατά τη διάρκεια της χρονικής ανοχής. Αυτό το ύψος του αποθέµατος αναφέρεται ως σηµείο επαναπαραγγελίας. 39

10 Το σηµείο επαναπαραγγελίας R για το κλασσικό υπόδειγµα οικονοµικής ποσότητας παραγγελίας µε σταθερή ζήτηση και σταθερό χρόνο παράδοσης είναι η ποσότητα που ζητείται κατά τη χρονική ανοχή L. ηλαδή R.L όπου η ζήτηση κατά τη µονάδα του χρόνου L χρονική ανοχή ή χρόνος παράδοσης Στο παράδειγµα 1 εάν η χρονική ανοχή L 1 εβδοµάδα 1/5 έτους τότε το σηµείο επαναπαραγγελίας R.L (1/5) 346 φίλµ, δηλαδή χρειάζονται 346 φίλµ κατά τη διάρκεια της χρονικής ανοχής. ηλαδή µόλις το ύψος των αποθεµάτων φθάσει τα 346 φίλµ, δίνεται η εντολή νέας παραγγελίας για 775 φίλµ. Οταν η νέα παραγγελία παραληφθεί µια εβδοµάδα αργότερα το ύψος των προηγούµενων 346 φίλµ θα έχει µηδενιστεί. 40

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

Τι είναι απόθεµα (Inventory) ;

Τι είναι απόθεµα (Inventory) ; Τι είναι απόθεµα (Inventory) ; κάθε αδρανές οικονοµικό µέσο ή πόρος που διατηρείται για την ικανοποίηση µελλοντικής ζήτησης γι αυτό. 1995 Corel Corp. 1984-1994 T/Maker Co. 1984-1994 T/Maker Co. 3 Απόθεµα

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 9. ιαχείριση αποθεµάτων Μοντέλα διαχείρισης Η αβεβαιότητα στη διαχείριση αποθεµάτων Συστήµατα Kanban/Just In Time (JIT) Εισηγητής: Θοδωρής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βέλτιστη Ποσότητα Παραγγελίας (EOQ) Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός του προβλήματος βέλτιστης ποσότητας παραγγελίας

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων

Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων Source: Corbis Προγραµµατισµός και έλεγχος αποθεµάτων Προγραµµατισµός και έλεγχος αποθεµάτων Στρατηγική παραγωγής Η αγορά απαιτεί µια ποσότητα προϊόντων

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες.

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες. Ασκήσεις Αποθεµάτων 1. Το πρόγραμμα παραγωγής μιας βιομηχανίας προβλέπει την κατανάλωση 810.000 μονάδων πρώτης ύλης το χρόνο, με ρυθμό πρακτικά σταθερό, σε όλη τη διάρκεια του έτους. Η βιομηχανία εισάγει

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Ειδικά Μοντέλα Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Μοντέλο μη αυτόματου εφοδιασμού (Economic Lot size) Αλγόριθμος Wagner-Whitin

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operations Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 3 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Συστήµατα προγραµµατισµού, ελέγχου και διαχείρισης

Διαβάστε περισσότερα

ιαχείριση Εφοδιαστικής Αλυσίδας

ιαχείριση Εφοδιαστικής Αλυσίδας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιαχείριση Εφοδιαστικής Αλυσίδας Εφοδιαστική Αλυσίδα (ΕΡΓ.)

Διαβάστε περισσότερα

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Άσκηση Μια μεγάλη εταιρεία σκοπεύει να μπει δυναμικά στην αγορά αναψυκτικών της χώρας διαθέτοντας συνολικά 7 μονάδες κεφαλαίου. Το πρόβλημα που αντιμετωπίζει είναι αν πρέπει να κατασκευάσει ένα κεντρικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

7.1. Εισαγωγή Τύποι Αποθεμάτων Βασικοί Τύποι αποθεμάτων Μέθοδοι Μείωσης παραγγελιών Ταξινόμηση ΑΒC...

7.1. Εισαγωγή Τύποι Αποθεμάτων Βασικοί Τύποι αποθεμάτων Μέθοδοι Μείωσης παραγγελιών Ταξινόμηση ΑΒC... Κεφάλαιο 7: ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ Περιεχόμενα 7.1. Εισαγωγή... 2 7.2. Το Πρόβλημα Διαχείρισης Αποθεμάτων... 4 7.2.1 Σκοπός Διατήρησης Αποθεμάτων... 4 7.2.2 Στοιχεία Κόστους Αποθεμάτων... 4 7.2.3 Εξαρτημένη

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών : Θεματική Ενότητα : Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 11 Εισαγωγή στη Διοικητική Επιχειρήσεων & Οργανισμών Ακαδ. Έτος: 2007-08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

6 ΔΙΟΙΚΗΣΗ ΕΚΜΕΤΑΛΛΕΥΣΗΣ

6 ΔΙΟΙΚΗΣΗ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 Ο ΣΚΟΠΟΣ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ... 13 Γενική περιγραφή των συστημάτων παραγωγής και εκμετάλλευσης... 16 Λειτουργίες μεταποίησης και λειτουργίες υπηρεσιών... 18 Στρατηγική

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1 Επώνυµη ονοµασία Η επώνυµη ονοµασία είναι αυτή η ονοµασία που ξεχωρίζει τα προϊόντα και τις υπηρεσίες µας από αυτές των ανταγωνιστών. Οι σχετικές αποφάσεις θα επηρεαστούν από τις εξής ερωτήσεις: 1. Χρειάζεται

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑ.Λ. (ΟΜΑ Α Β ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού *

Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού * ΚΕΦ.8 ΕΙ ΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Ιδιαίτερη κατηγορία των προβληµάτων ΓΠ είναι τα προβλήµατα δικτυακής ροής. Σε αυτά ανήκουν τα προβλήµατα µεταφοράς και εκχώρησης. 8. Πρόβληµα µεταφοράς Σε m πηγές (κέντρα προσφοράς)

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Αθήνα, Ιανουάριος 2015 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Θα εξετάσουµε τεχνικά ζητήµατα που έχουν επιπτώσεις στην απόδοση του MRP

Θα εξετάσουµε τεχνικά ζητήµατα που έχουν επιπτώσεις στην απόδοση του MRP Ειδικά Θέµατα MRP Ειδικά Θέµατα MRP Θα εξετάσουµε τεχνικά ζητήµατα που έχουν επιπτώσεις στην απόδοση του MRP Τρόποι βελτίωσης αποδοτικότητας Συχνότητα Ενηµέρωσης Troubleshooting Οριστικοποίηση Προγραµµατισµένων

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 7: Έλεγχος Αποθεμάτων Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΙΑΧΕΙΡΙΣΗΣ ΑΠΟΘΕΜΑΤΩΝ

ΣΥΣΤΗΜΑΤΑ ΙΑΧΕΙΡΙΣΗΣ ΑΠΟΘΕΜΑΤΩΝ ΑΛΕΞΑΝ ΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ ΤΜΗΜΑ ΤΥΠΟΠΟΙΗΣΗΣ & ΙΑΚΙΝΗΣΗΣ ΠΡΟΪΟΝΤΟΣ (LOGISTICS) ΣΥΣΤΗΜΑΤΑ ΙΑΧΕΙΡΙΣΗΣ ΑΠΟΘΕΜΑΤΩΝ ΚΑΤΕΡΙΝΗ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΕΦΟ ΙΑΣΤΙΚΗ ΑΛΥΣΙ Α & ΣΥΣΤΗΜΑΤΑ ΙΑΧΕΙΡΙΣΗΣ

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 4 ο : Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( µε τις λύσεις ) Όταν µας δίνονται σε έναν πίνακα στοιχεία του κόστους π.χ. το Q και το

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT. Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT. Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα Κεφάλαιο 1ο: Logistics Κεφάλαιο 2ο: Συστήματα J.I.T. Logistics Ορισμος των Logistics

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ

ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ Διοίκηση Παραγωγής και Συστημάτων Υπηρεσιών ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2016-2017 ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ ΑΣΚΗΣΗ 1 Σε μια εταιρεία εκτελέστηκε μια μελέτη του παραγωγικού χρόνου των

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

Σημειώσεις. Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες

Σημειώσεις. Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες Σημειώσεις Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες Απόστολος Μπουρνέτας, Πανεπιστήμιο Αθηνών 1 Προβλήματα Παραγωγής μιας Περιόδου Το πρόβλημα του εφημεριδοπώλη. Σ αυτές τις σημειώσεις

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α ΑΡΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ ΛΥΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΗΣ ΙΑ ΟΛΕΣ ΤΙΣ ΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α ια τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Tech an Math ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ www.techanmath.gr Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2007-8 Δεύτερη Γραπτή Εργασία

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βασικές Αρχές και Κατηγοριοποιήσεις Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός αποθεμάτων Κατηγορίες αποθεμάτων Λόγοι πίεσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 12 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 ΚΕΦΑΛΑΙΟ 5ο (µε 2ο, 3ο και 4ο) ΗΜΕΡΗΣΙΑ 9/2000 ΗΜΕΡΗΣΙΑ 6/2000 ΕΣΜΕΣ 2000 ΕΣΜΕΣ 1998 28. ίνονται οι συναρτήσεις ζήτησης και προσφοράς

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

EUPA_LO_005_M_ ΔΙΑΔΙΚΑΣΙΕΣ ΓΡΑΦΕΙΟΥ

EUPA_LO_005_M_ ΔΙΑΔΙΚΑΣΙΕΣ ΓΡΑΦΕΙΟΥ Αριθμός μεθοδολογικού εργαλείου Κώδικας και Τίτλος Τομέα Εργασίας Κώδικας και Τίτλος Ενότητας Αριθμός και Τίτλος Μαθησιακού Αποτελέσματος Τίτλος μεθοδολογικού εργαλείου Στόχος μεθοδολογικού εργαλείου EUPA_LO_005_M_006

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

min f(x) x R n (1) x g (2)

min f(x) x R n (1) x g (2) KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ισότητες. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση κάτω από

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά

Διαβάστε περισσότερα

ιαχείριση Εφοδιαστικής Αλυσίδας

ιαχείριση Εφοδιαστικής Αλυσίδας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιαχείριση Εφοδιαστικής Αλυσίδας Εφοδιαστική Αλυσίδα (ΕΡΓ.)

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΕΜΑΤΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΕΜΑΤΩΝ Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΝΟΤΗΤΑΣ Εισαγωγή Ορισμοί Κατηγορίες και σημασία αποθεμάτων Είδη κόστους σε αποθέματα Κριτήρια ταξινόμησης αποθεμάτων Επιλεκτικός

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 3: Προμήθεια υλικών - Έλεγχος αποθεμάτων - Αποτίμηση Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α Α.1. Σωστό Α.2. Λάθος Α.3. Σωστό Α.4. Λάθος Α.5. Λάθος Α.6. β Α.7. γ ΟΜΑ Α Β α) Η φάση της ύφεσης. Η φάση της ύφεσης χαρακτηρίζεται από εκτεταµένη ανεργία, έλλειψη επενδύσεων και ανεπαρκή

Διαβάστε περισσότερα

ιαχείριση Αποθεµάτων Applied Mathematics

ιαχείριση Αποθεµάτων Applied Mathematics ιαχείριση Αποθεµάτων 1 Περιεχόµενα Εισαγωγή Κόστος Αποθεµάτων Κατηγορίες Αποθεµάτων Στρατηγικές µείωσης των αποθεµάτων 2 Εισαγωγή Πως δηµιουργούνται τα αποθέµατα? Όταν οι ποσότητες εισαγωγής πρώτων υλών,

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΙΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΙΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΙΙΙ ΔΑΠ-ΝΔΦΚ ΤΜΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ www.dap-papei.gr - 1 ΚΕΦΑΛΑΙΟ 7 ΘΕΩΡΙΑ 1.

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

(2 µονάδες) Α2. Η αύξηση της τιµής ενός αγαθού σηµαίνει: β) Αύξηση της ζήτησης για τα αγαθά που είναι συµπληρωµατικά προς αυτό

(2 µονάδες) Α2. Η αύξηση της τιµής ενός αγαθού σηµαίνει: β) Αύξηση της ζήτησης για τα αγαθά που είναι συµπληρωµατικά προς αυτό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 7 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η στενότητα του κεφαλαίου οφείλεται:

Διαβάστε περισσότερα

Τυχαιοκρατικοί Αλγόριθμοι

Τυχαιοκρατικοί Αλγόριθμοι Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης περίπτωσης Μελέτα τη συμπεριφορά ενός αλγορίθμου σε μια «μέση» είσοδο (ως προς κάποια κατανομή) Τυχαιοκρατικός αλγόριθμος Λαμβάνει τυχαίες αποφάσεις καθώς επεξεργάζεται

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ ΛΥΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΗΣ ΙΑ ΟΛΕΣ ΤΙΣ ΑΤΕΥΘΥΝΣΕΙΣ 2004 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ια τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 7: Ασκήσεις - Παραδείγματα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Οδηγίες χρήσης του λογισµικού "Πολλαπλασιασµός"

Οδηγίες χρήσης του λογισµικού Πολλαπλασιασµός Εκπαιδευτικό λογισµικό Μαθηµατικών Στ τάξης ηµοτικού 1 Κεφάλαιο 6 ο Πολλαπλασιασµός φυσικών και δεκαδικών αριθµών : «Φυσικοί αριθµοί Οριζόντιος Πολλαπλασιασµός» Οδηγίες χρήσης του λογισµικού "Πολλαπλασιασµός"

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΗΚΕΥΣΗΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΗΚΕΥΣΗΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΑΠΟΘΕΜΑΤΑ Αποθέματα: Αποθηκευμένη συγκέντρωση πόρων που έχουν υποστεί κάποια επεξεργασία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Αντικείμενο της ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ με τη λέξη ΑΠΟΦΑΣΗ εννοούμε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

. ΒΕΛΤΙΣΤΟ ΜΕΓΕΘΟΣ & ΣΗΜΕΙΟ ΠΑΡΑΓΓΕΛΙΑΣ

. ΒΕΛΤΙΣΤΟ ΜΕΓΕΘΟΣ & ΣΗΜΕΙΟ ΠΑΡΑΓΓΕΛΙΑΣ . ΒΕΛΤΙΣΤΟ ΜΕΓΕΘΟΣ & ΣΗΜΕΙΟ ΠΑΡΑΓΓΕΛΙΑΣ Η μακριά συνεργασία των αντιπροσώπων υπαίθρου με την εταιρεία C&R έχει οδηγήσει τη συνεργασία τους να διέπεται από κανόνες αμοιβαίας εμπιστοσύνης. Οι δε αντιπρόσωποι

Διαβάστε περισσότερα