ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ"

Transcript

1 (Transportation Problems) Βασίλης Κώστογλου URL:

2 Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού τρόπου ικανοποίησης των απαιτήσεων n σημείων ζήτησης χρησιμοποιώντας τις δυναμικότητες m σημείων εφοδιασμού. Προσπαθώντας να βρεθεί ο καλύτερος τρόπος, πρέπει να ληφθεί υπόψη το μεταβλητό κόστος μεταφοράς του προϊόντος από ένα σημείο εφοδιασμού σε ένα σημείο ζήτησης ή κάποιος παρόμοιος περιορισμός.

3 Μοντέλο μεταφοράς Οι επιχειρήσεις παράγουν προϊόντα σε τοποθεσίες που λέγονται πηγές' και αποστέλλουν αυτά τα προϊόντα σε τοποθεσίες πελατών που λέγονται προορισμοί. Κάθε πηγή έχει περιορισμένο ποσότητα που μπορεί να αποστείλει και κάθε προορισμός (πελάτης) πρέπει να παραλάβει μία απαιτούμενη ποσότητα του προϊόντος. Τα μόνα πιθανά φορτία είναι εκείνα που μεταφέρονται απευθείας από μία πηγή σ έναν προορισμό. Τα προβλήματα με τα παραπάνω χαρακτηριστικά ονομάζονται «προβλήματα μεταφοράς». Αυτά τα προβλήματα περιλαμβάνουν την αποστολή ενός ομογενούς προϊόντος από ένα σύνολο σημείων παροχής σ ένα σύνολο σημείων ζήτησης. 3

4 Ένα τυπικό πρόβλημα μεταφοράς απαιτεί τρία σύνολα αριθμών: Δυναμικότητες (ή παροχές) Υποδηλώνουν το μέγιστο που μπορεί να αποστείλει κάθε θέση παραγωγής σε ένα δεδομένο χρονικό διάστημα. Ζητήσεις (ή απαιτήσεις) Τυπικά εκτιμώνται από κάποιο τύπο μοντέλου πρόβλεψης. Συνήθως οι ζητήσεις βασίζονται σε ιστορικά δεδομένα της ζήτησης των πελατών. Μοναδιαίο κόστος αποστολής Προσδιορίζεται από ανάλυση του κόστους μεταφοράς. 4

5 Το πρόβλημα μεταφοράς ή αποστολής περιλαμβάνει τον καθορισμό της ποσότητας των αγαθών ή τεμαχίων που θα μεταφερθούν από ένα σύνολο πηγών σ ένα σύνολο προορισμών. Ο συνήθης αντικειμενικός στόχος είναι η ελαχιστοποίηση του συνολικού κόστους μεταφοράς ή του συνόλου των αποστάσεων που πρέπει να διανυθούν. Τα προβλήματα μεταφοράς είναι μία ειδική περίπτωση προβλημάτων Γραμμικού Προγραμματισμού. Για την επίλυσή τους έχει αναπτυχθεί ένας ειδικός αλγόριθμος. Το πρόβλημα: Δεδομένων των αναγκών στις τοποθεσίες ζήτησης, πώς θα έπρεπε να εκλάβουμε την περιορισμένη παροχή στις τοποθεσίες παροχής και να μετακινήσουμε τα αγαθά. Ο στόχος είναι η ελαχιστοποίηση του συνολικού κόστους μεταφοράς. 5

6 Βασική ιδέα Στόχος: Η ελαχιστοποίηση του κόστους Μεταβλητές: Οι ποσότητες των προϊόντων που μεταφέρεται από κάθε σημείο παροχής σε κάθε σημείο ζήτησης. Περιορισμοί: - Μη αρνητικά φορτία - Διαθεσιμότητα φορτίων σε κάθε σημείο παροχής - Ανάγκη ζήτησης σε κάθε σημείο ζήτησης 6

7 Βασικά μεγέθη προβλημάτων μεταφοράς Συμβολισμός Μεταβλητή m n a i b j c ij x ij C Πηγές (θέσεις παραγωγής) Προορισμοί (θέσεις κατανάλωσης) Δυναμικότητα (ή ικανότητα παραγωγής) της πηγής i Ανάγκες (ζήτηση ή κατανάλωση) του προορισμού j Μοναδιαίο κόστος μεταφοράς από την πηγή i στον προορισμό j Ποσότητα μονάδων που αποστέλλεται από την πηγή i στον προορισμό j Συνολικό κόστος μεταφοράς 7

8 Μαθηματικό μοντέλο min C = c x + c x c n x n + c x + c x c n x n c m x m + c m x m c mn x mn με τους περιορισμούς δυναμικότητας: x + x x n = a x + x x n = a... x m + x m x mn = a m τους περιορισμούς αναγκών: x + x x m = b x + x x m = b... x n + x n x mn = b n καθώς και τους περιορισμούς μη αρνητικότητας x ij 0, i,j 8

9 Το πρότυπο μοντέλο του προβλήματος μεταφοράς min C = m i n j c ij x ij με τους περιορισμούς n j x ij = a i m i x ij = bj και x ij 0, όπου i =,,..., m και j =,,..., n 9

10 Το πρόβλημα αυτό έχει δυνατές λύσεις μόνο αν το σύνολο των δυναμικοτήτων των πηγών είναι ίσο προς το σύνολο των αναγκών των προορισμών, όταν δηλαδή: n j ai m n m = b i = x ij i j i 0

11 Παραδοχές Το μοναδιαίο κόστος μεταφοράς είναι ανεξάρτητο από τη μεταφερόμενη ποσότητα Η παροχή και ζήτηση είναι γνωστές και ανεξάρτητες από την τιμή χρέωσης του προϊόντος Η διαθέσιμη χωρητικότητα των μεταφορικών μέσων για αποστολή σε οποιαδήποτε διαδρομή είναι απεριόριστη Μεταφέρεται ένα μόνο είδος εμπορεύματος

12 Τυποποιημένη μορφή πίνακα μεταφοράς j i () () (n) a i () x () x (m) c c... x m c m x c x c x m c m x n c n x n c n x mn c mn a a... a m b j b b b n Σa i = Σ b j

13 Παράδειγμα προβλήματος μεταφοράς Μία μεταλλευτική εταιρεία εξορύσσει το βασικό προϊόν που εμπορεύεται από τρία λατομεία, έστω Λ, Λ και Λ 3. Η εβδομαδιαία παραγωγή του κάθε λατομείου είναι 75, 50 και 75 τόνοι χαλικιού αντίστοιχα. Το προϊόν που εξορύσσεται πρέπει να μεταφερθεί σε πέντε κύριους καταναλωτές, έστω Κ, Κ, Κ 3, Κ 4 και Κ 5, οι οποίοι χρειάζονται για τις ανάγκες τους 00, 60, 40, 75 και 5 τόνους χαλικιού ανά εβδομάδα αντίστοιχα. Το πρόβλημα που απασχολεί τη διοίκηση της εταιρείας είναι η ελαχιστοποίηση του απαιτούμενου κόστους για τη μεταφορά της ποσότητας του προϊόντος στους καταναλωτές. Για το σκοπό αυτό έγινε αναλυτική κοστολόγηση, η οποία έδωσε τα αποτελέσματα του ακόλουθου πίνακα (τα αριθμητικά δεδομένα συμβολίζουν το κόστος μεταφοράς σε ανά τόνο χαλικιού). 3

14 Πίνακας κόστους μεταφοράς χαλικιού Καταναλωτές Κ Κ Κ 3 Κ 4 Κ 5 Λ Λατομεία Λ 4 4 Λ

15 Μέθοδοι εύρεσης αρχικής βασικής δυνατής λύσης. Μέθοδος βορειοδυτικής γωνίας (Northwest corner method). Μέθοδος ελάχιστου κόστους (Minimum cost method) 3. Μέθοδος Vogel (Vogel method) 5

16 Μέθοδος της βορειοδυτικής γωνίας. Εκχωρείται στο βορειοδυτικό (επάνω αριστερό) κελί η μέγιστη δυνατή ποσότητα ανάλογα με την προσφορά και τη ζήτηση της αντίστοιχης γραμμής ή στήλης. Η προσφορά της γραμμής και η ζήτηση της στήλης προσαρμόζονται κατάλληλα.. Διαγράφεται είτε η γραμμή της οποίας η προσφορά έχει εξαντληθεί είτε η στήλη της οποίας η ζήτηση έχει ικανοποιηθεί. 3. Αν έχουν εξαντληθεί όλες οι προσφορές και έχουν ικανοποιηθεί όλες οι ζητήσεις τότε ΤΕΛΟΣ, διαφορετικά: μεταφορά στο βήμα. 6

17 Πιο αναλυτικά: Ξεκινώντας από το κελί (, ) δίνεται στη μεταβλητή x ij η μέγιστη δυνατή τιμή, η οποία είτε ικανοποιεί τις ανάγκες του προορισμού j είτε εξαντλεί την υπόλοιπη δυναμικότητα της πηγής i, και συγκεκριμένα τη μικρότερη από τις δύο ποσότητες. Κατόπιν δίνεται τιμή στη μεταβλητή x ij+ στην πρώτη περίπτωση ή στη μεταβλητή x i+j στη δεύτερη περίπτωση. Προφανώς, λόγω των ιδιοτήτων του προβλήματος μεταφοράς, με την τιμή της τελευταίας μεταβλητής x mn ικανοποιούνται ταυτόχρονα η δυναμικότητα της πηγής m και οι ανάγκες του προορισμού n. Η μέθοδος της βορειοδυτικής γωνίας είναι απλή στη χρήση της, ωστόσο δε χρησιμοποιεί καθόλου τις δαπάνες αποστολής. Μπορεί να δώσει εύκολα μια αρχική βασική δυνατή λύση, αλλά το αντίστοιχο συνολικό κόστος αποστολής μπορεί να είναι υψηλό. 7

18 Αρχική δυνατή λύση με τη μέθοδο της βορειοδυτικής γωνίας Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ K min = 765 8

19 Μέθοδος ελάχιστου κόστους Η μέθοδος του ελάχιστου κόστους χρησιμοποιεί τα κόστη αποστολής, έτσι ώστε να καταλήξει σε μία βασική δυνατή λύση που έχει χαμηλότερο κόστος. Για να ξεκινήσει η μέθοδος εντοπίζεται αρχικά η μεταβλητή x ij με το μικρότερο κόστος αποστολής. Κατανέμεται στη μεταβλητή x ij η μεγαλύτερη δυνατή τιμή που είναι το ελάχιστο από τα αντίστοιχα a i και b j. Κατόπιν, όπως στη μέθοδο της βορειοδυτικής γωνίας, διαγράφεται η γραμμή i ή η στήλη j και ελαττώνεται η παροχή ή η ζήτηση της μη διαγραφείσας γραμμής ή στήλης κατά την ποσότητα x ij. Το επόμενο κελί με το ελάχιστο κόστος αποστολής επιλέγεται ανάμεσα από αυτά που δε βρίσκονται στη διαγραφείσα γραμμή ή στήλη. Αυτή η διαδικασία επαναλαμβάνεται έως ότου εξαντληθούν όλες οι δυναμικότητες και ικανοποιηθούν όλες οι ζητήσεις. 9

20 Αρχική δυνατή λύση με τη μέθοδο του ελάχιστου κόστους Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ K min = 70 0

21 Μέθοδος Vogel Βήματα μεθοδολογίας. Προσθήκη - κάτω και δεξιά του πίνακα μεταφοράς - μίας νέας γραμμής και μίας νέας στήλης με στοιχεία τη διαφορά των δύο μικρότερων στοιχείων κόστους κάθε γραμμής και κάθε στήλης αντίστοιχα.. Επιλογή του μεγαλύτερου στοιχείου των δύο νέων ευθειών που προστέθηκαν στον πίνακα μεταφοράς. 3. Εύρεση του μικρότερου στοιχείου της γραμμής i ή της στήλης j, στην οποία ανήκει το στοιχείο που προσδιορίσθηκε στο βήμα. 4. Κατανομή της τιμής x ij = min(a i, b j ) στο δρομολόγιο που αντιστοιχεί στη θέση του μικρότερου στοιχείου, προκειμένου να ικανοποιηθεί η δυναμικότητα μίας πηγής ή η ζήτηση ενός προορισμού.

22 5. Αν εξαντλείται η δυναμικότητα μίας πηγής, τότε η ζήτηση b j του αντίστοιχου προορισμού μειώνεται κατά την ποσότητα a i. Αντίθετα, εάν ικανοποιείται η ζήτηση ενός προορισμού, τότε η δυναμικότητα a i της αντίστοιχης πηγής μειώνεται κατά b j. Η πηγή (γραμμή) ή ο προορισμός (στήλη) που ικανοποιήθηκε διαγράφεται και δε λαμβάνεται υπόψη στη συνέχεια. Κάθε φορά που επαναλαμβάνεται η παραπάνω διαδικασία εξαντλείται η δυναμικότητα μίας πηγής ή ικανοποιούνται οι ανάγκες ενός προορισμού. Η εφαρμογή της μεθόδου τερματίζεται όταν ικανοποιηθούν ταυτόχρονα η δυναμικότητα της τελευταίας γραμμής και οι ανάγκες της τελευταίας στήλης. Η λύση που προκύπτει με τον τρόπο αυτό είναι δυνατή, διότι ικανοποιεί όλες τις δυναμικότητες και όλες τις ανάγκες.

23 Επαναληπτικά βήματα μεθόδου Vogel ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ 75 Λ 4 4 Λ 50 Λ Λ Διαφορά ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ 4 4 Λ 50 Λ 3 Λ Διαφορά

24 3 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ 4 4 Λ 50 Λ 3 Λ Διαφορά ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 4 Λ Λ 4 Λ 50 Λ 3 Λ Διαφορά ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ 4 Λ Λ 3 Λ Διαφορά

25 6 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ 4 Λ Λ 3 Λ Διαφορά

26 Αρχική βασική δυνατή λύση (μέθοδος Vogel) Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ K min = 640 6

27 Εκφυλισμένη αρχική λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ

28 Αρχική λύση που δεν είναι πλέον εκφυλισμένη Κ Κ Κ 3 Κ 4 Κ 5 Λ 00 ε 00+ε Λ Λ ε

29 Μεθοδολογία επίλυσης προβλημάτων μεταφοράς Αρχικό βήμα Δημιουργία μίας αρχικής βασικής δυνατής λύσης χρησιμοποιώντας μία από τις μεθόδους προσδιορισμού αρχικής λύσης. Μεταφορά στον κανόνα τερματισμού. Επαναληπτικό βήμα. Καθορισμός της μεταβλητής που θα εισέλθει στη βάση: Επιλογή της μη βασικής μεταβλητής x ij με τη μεγαλύτερη αρνητική διαφορά c ij - u i - v j. Καθορισμός της μεταβλητής που θα εξέλθει από τη βάση: Αναγνώριση του βρόχου που έχει ως κορυφές βασικές μόνο μεταβλητές. Κατανομή στην εισερχόμενη μεταβλητή της μεγαλύτερης δυνατής ποσότητας. Για τον προσδιορισμό της επιλέγεται μεταξύ των δρομολογίων-δοτών εκείνο που έχει τη μικρότερη τιμή. Η αντίστοιχη μεταβλητή εξέρχεται από τη βάση. 9

30 3. Προσδιορισμός της νέας βασικής δυνατής λύσης: Πρόσθεση της ποσότητας θ σε κάθε δρομολόγιο-λήπτη και αφαίρεσή της από κάθε δρομολόγιο-δότη, έτσι ώστε να μη παραβιάζονται οι περιορισμοί πηγών και προορισμών. Κανόνας τερματισμού Υπολογισμός των στοιχείων u i και v j. [Συνιστάται η επιλογή της ευθείας με το μεγαλύτερο πλήθος βασικών δρομολογίων, κατανομών, δίνοντας στο αντίστοιχο u i (v j ) την τιμή μηδέν και λύνοντας το σύστημα των εξισώσεων c ij = u ι + v j για κάθε βασικό δρομολόγιο (i,j)] Έλεγχος αριστότητας της λύσης: Αν για κάθε μη βασικό δρομολόγιο (i,j), ισχύει η σχέση u i + v j <= c ij τότε η λύση είναι άριστη Τέλος. Σε αντίθετη περίπτωση, μεταφορά στο επαναληπτικό βήμα. 30

31 Λ - Λ -0 Λ 3 - Διαδοχικά βήματα εύρεσης της άριστης λύσης η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j u i 75 * θ θ * θ * 50-θ

32 Η μεγαλύτερη ποσότητα που μπορεί να μετακινηθεί από το δρομολόγιο Λ - Κ (εξερχόμενη μεταβλητή) στο δρομολόγιο Λ3 - Κ (εισερχόμενη μεταβλητή επειδή c 3 = u 3 - v = -(-)-4 = - < 0) είναι η θ max = 5. 3

33 Λ Λ 3 - η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 75-θ * θ * Λ * θ 5 5-θ

34 Συνολικό κόστος μεταφοράς: 75 Εισερχόμενη μεταβλητή : x 5 (c 5 -u -v 5 = -) Εξερχόμενη μεταβλητή : x 35 Μεταφερόμενη ποσότητα : θ max = 5 34

35 Λ Λ 3-3η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 50-θ θ * Λ θ θ

36 Συνολικό κόστος μεταφοράς : 640 (ίσο με εκείνο της μεθόδου Vogel) Εισερχόμενη μεταβλητή : x 4 (c 4 -u -v 4 = -) Εξερχόμενη μεταβλητή : x 34 Μεταφερόμενη ποσότητα : θ max = 5 36

37 Λ Λ 3-4η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i Λ

38 Η λύση αυτή είναι η άριστη, εφόσον για κάθε μη βασική μεταβλητή x ij ισχύει η συνθήκη αριστότητας u i + v j c ij. Το ελάχιστο συνολικό κόστος μεταφοράς είναι 65. Επομένως το καλύτερο πρόγραμμα μεταφοράς και διανομής των 300 τόνων του παραγόμενου χαλικιού είναι το ακόλουθο: 5 τόνοι στον καταναλωτή Κ από το λατομείο Λ 5 - " - Κ " - Κ 5 60 τόνοι στον καταναλωτή Κ από το λατομείο Λ 40 - " - Κ " - Κ 4 από το λατομείο Λ 3 75 τόνοι στον καταναλωτή Κ 38

39 Εκφυλισμένη λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ 00 ε 00+ε Λ Λ 3 θ ε

40 Λ η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 00 ε-θ * θ* 00+ε Λ θ 40 5-θ * 5 4 Λ θ 5-θ ε Με αστερίσκο (*) σημειώνονται όλα τα μη βασικά δρομολόγια, για τα οποία η διαφορά c ij -u i -v j είναι αρνητική. 40

41 Συνολικό κόστος μεταφοράς : 740 Εισερχόμενη μεταβλητή : x 5 (c 5 -u -v 5 = -3) Εξερχόμενη μεταβλητή : x Μέγιστη μεταφερόμενη ποσότητα : θ max = ε 4

42 Λ Λ 0 Λ 3 - η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j u i 00-θ ε+θ 00+ε * 60+ε ε * θ* 50+ε 5-ε-θ ε

43 Συνολικό κόστος μεταφοράς : 740 Εισερχόμενη μεταβλητή : x 3 (c 3 -u 3 -v = -) Εξερχόμενη μεταβλητή : x 35 Μέγιστη μεταφερόμενη ποσότητα : θ max = 5-ε 43

44 Λ 3-3η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i Λ 75-θ 3 3 θ* ε Λ ε 40 5-ε ε+θ ε-θ ε

45 Συνολικό κόστος μεταφοράς : 665 Εισερχόμενη μεταβλητή : x 4 (c 4 -u -v 4 = -) Εξερχόμενη μεταβλητή : x 34 Μέγιστη μεταφερόμενη ποσότητα : θ max = 50+ε 45

46 Λ 0 Λ 3-4η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 3 4 u i 5 50+ε 5 00+ε Λ ε 40 5-ε ε

47 Για όλα τα μη βασικά δρομολόγια του τελευταίου πίνακα ισχύει η συνθήκη ui + vj cij, επομένως η τρέχουσα λύση είναι άριστη. Προκειμένου να αναγνωρισθεί αυτή η λύση, αρκεί η απαλοιφή της βοηθητικής μεταβλητής ε, η συνεισφορά της οποίας έχει πλέον ολοκληρωθεί. Μπορεί πλέον να προσδιοριστεί το συνολικό κόστος μεταφοράς ( 65) και το αναλυτικό πρόγραμμα μεταφοράς και διανομής των 300 τόνων του χαλικιού. 47

48 Άριστη λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ Λ

49 Έλλειψη ισορροπίας. Πλεονάζουσα παραγωγή m x ij j n x ij i a i b i (όπου i =,,...,m) (όπου j =,,...,n) m j i n a i b j i i Δημιουργία φανταστικού προορισμού (θέσης κατανάλωσης) Οι τιμές των στοιχείων της πρόσθετης στήλης που δημιουργείται εξαρτώνται από την τύπο και τα χαρακτηριστικά του εκάστοτε προβλήματος. 49

50 . Ελλειμματική παραγωγή m x ij j i n x ij i i b a i i (όπου i =,,...,m) (όπου j =,,...,n) m j i n a i b j i i Δημιουργία φανταστικής πηγής (θέσης παραγωγής) 50

51 Όσον αφορά στα στοιχεία της πρόσθετης γραμμής που δημιουργείται: Αν το κόστος έλλειψης της ποσότητας που πρέπει να μεταφερθεί σε έναν προορισμό είναι μηδενικό, το αντίστοιχο στοιχείο κόστους τίθεται ίσο με μηδέν. Αν η αδυναμία ικανοποίησης της ζήτησης συνεπάγεται ορισμένες οικονομικές επιπτώσεις (ποινικές ρήτρες, εκπτώσεις, κόστος καλής φήμης κλπ), τότε το κόστος σε κάθε θέση της πρόσθετης γραμμής ισούται με το αντίστοιχο μοναδιαίο κόστος έλλειψης. 5

52 3. Υποχρέωση ικανοποίησης Σε τέτοιες περιπτώσεις ο πίνακας μεταφοράς πρέπει να διαμορφωθεί με τρόπο ώστε το αντίστοιχο πρόσθετο δρομολόγιο της φανταστικής πηγής ή προορισμού να έχει οπωσδήποτε μηδενική τιμή (δηλ. δε θα συμμετέχει) στην τελική λύση. Για το σκοπό αυτό δίνεται στο στοιχείο κόστους αυτού του δρομολογίου μία πολύ μεγάλη θετική τιμή (Μ). Έτσι εξασφαλίζεται ότι αυτό το δρομολόγιο δεν πρόκειται να συμμετάσχει σε καμία περίπτωση στην τελική λύση. 5

53 4. Πλεονάζουσα ή ελλειμματική παραγωγή Είναι πιθανό σε ορισμένα προβλήματα μεταφοράς να μην είναι γνωστό εκ των προτέρων κατά πόσον η παραγωγή θα είναι πλεονάζουσα ή ελλειμματική. Αυτό μπορεί να συμβεί αν τα στοιχεία c ij της αντικειμενικής συνάρτησης παριστάνουν οικονομικά αποτελέσματα (κέρδος, ζημία ή κάποιο άλλο μέτρο αποτελεσματικότητας) από την ικανοποίηση των θέσεων κατανάλωσης. Κάποια απ' αυτά τα στοιχεία μπορεί να είναι αρνητικά. Ως εκ τούτου είναι ίσως πιο συμφέρον να μην ικανοποιηθεί καθόλου κάποια ζήτηση παρά το αντίστοιχο οικονομικό αποτέλεσμα να οδηγήσει σε ζημία. Για την αντιμετώπιση μίας τέτοιας κατάστασης προστίθενται στον αρχικό πίνακα μεταφοράς μία φανταστική πηγή (γραμμή) και ένας φανταστικός προορισμός (στήλη). Η δυναμικότητα και η ζήτηση των δύο πρόσθετων ευθειών πρέπει να είναι τέτοιες, ώστε να υπάρχει η δυνατότητα να μην είναι υποχρεωτική ούτε η ικανοποίηση όλων των αναγκών κατανάλωσης ούτε η χρησιμοποίηση όλων των δυναμικοτήτων. 53

54 Επίλυση προβλημάτων μεγιστοποίησης Σε μία τέτοια περίπτωση στόχος είναι η μεγιστοποίηση της αντικειμενικής συνάρτησης. Η μεθοδολογία εύρεσης της άριστης λύσης ενός τέτοιου προβλήματος είναι πολύ παρόμοια με αυτή των προβλημάτων ελαχιστοποίησης. Τα απαιτούμενα βήματα μετά τον προσδιορισμό μιας αρχικής βασικής λύσης μένουν αμετάβλητα. Η μόνη διαφορά αφορά στον κανόνα τερματισμού κατά τον έλεγχο αριστότητας της λύσης: Η τρέχουσα λύση είναι άριστη αν για κάθε μη βασικό δρομολόγιο ισχύει η σχέση: u i + v j c ij 54

55 Διαφοροποιήσεις στην εφαρμογή των μεθόδων εύρεσης αρχικής λύσης Μέθοδος βορειοδυτικής γωνίας: Καμία διαφορά. Μέθοδος ελάχιστου κόστους: Ουσιαστικά μετονομάζεται σε μέθοδο του μέγιστου κέρδους, οπότε διατηρώντας την ίδια λογική κατανέμεται κατά προτεραιότητα η μέγιστη δυνατή ποσότητα στο δρομολόγιο με το μέγιστο μοναδιαίο κέρδος. Μέθοδος Vogel: Οι διαφορές λόγω της συνθετότητάς της είναι περισσότερες: - Βήμα : Η πρόσθετη στήλη και γραμμή έχουν στοιχεία τις διαφορές των δύο μεγαλύτερων στοιχείων κέρδους κάθε γραμμής και κάθε στήλης αντίστοιχα. - Βήμα 3: Μέσα στον πίνακα μεταφοράς αναζητείται το μεγαλύτερο στοιχείο της κατάλληλης στήλης ή γραμμής. 55

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών Αθήνα, 2007 Η ΠΕΡΙΠΤΩΣΗ ΕΛΕΓΧΟΥ ΑΠΟΘΕΜΑΤΩΝ

Διαβάστε περισσότερα

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής Δημήτρης Μπάλιος ΘΕΩΡΙΑ Κοστολόγηση συνεχούς παραγωγής Η επιχείρηση παράγει πολλά τεμάχια ενός μοναδικού προϊόντος (τυποποιημένο προϊόν) για μεγάλο χρονικό

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Βασικές Υποθέσεις (i) Οι αγορές όλων των αγαθών είναι τέλεια ανταγωνιστικές. Οι καταναλωτές και οι επιχειρήσεις

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Ειδικά Μοντέλα Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Μοντέλο μη αυτόματου εφοδιασμού (Economic Lot size) Αλγόριθμος Wagner-Whitin

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος Το Υπόδειγμα των Jones και Samuelson Διεθνές Εμπόριο και Διανομή του Εισοδήματος Υπάρχουν δύο βασικοί λόγοι για τους οποίους το διεθνές

Διαβάστε περισσότερα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα -Σκοπός: Εξήγηση Διακυμάνσεων του Πραγματικού ΑΕΠ - Δυνητικό Προϊόν: Το προϊόν που θα μπορούσε

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09

Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09 Εισαγωγή στην Οικονομική Επιστήμη Ι Επιχειρήσεις σε ανταγωνιστικές αγορές Αρ. Διάλεξης: 09 Τι είναι ανταγωνιστική αγορά; Η ανταγωνιστική αγορά έχει πολλούς αγοραστές/καταναλωτές και πολλούς παραγωγούς/επιχειρήσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή,

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Κεφάλαιο 7 Παράδοση την Στιγμή που Χρειάζεται (Just-in-Time) και Ευέλικτη Αλυσίδα Εφοδιασμού

Κεφάλαιο 7 Παράδοση την Στιγμή που Χρειάζεται (Just-in-Time) και Ευέλικτη Αλυσίδα Εφοδιασμού Κεφάλαιο 7 Παράδοση την Στιγμή που Χρειάζεται (Just-in-Time) και Ευέλικτη Αλυσίδα Εφοδιασμού ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ ανάπτυξη τρόπου χρησιμοποίησης φιλοσοφίας του Just-in-time εισαγωγή έννοιας της ευέλικτης αλυσίδας

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο Άσκηση Οικισµός ΑΒΓ Α υδροδοτείται από δεξαµενή µέσω

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα