Γραμμικός Προγραμματισμός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμικός Προγραμματισμός"

Transcript

1 Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης

2 ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας εργοταξίων, γραφείων αποθηκών

3 Προβλήματα Μεταφοράς & Δρομολόγησης Ένας εργολάβος οργανώνει την προμήθεια ready-mix μπετόν σε τέσσερεις τοποθεσίες. Εκτιμά ότι η συνολική ημερήσια ζήτηση στα τέσσερα εργοτάξια ανέρχεται σε 24 φορτία και έχει προσδιορίσει τρεις προμηθευτές που μπορούν να χρησιμοποιηθούν. Στόχος του είναι να ελαχιστοποιήσει το κόστος προμήθειας και μεταφοράς του ready-mix μπετόν στα τέσσερα εργοτάξια.

4 Προβλήματα Μεταφοράς & Δρομολόγησης Ένας εργολάβος οργανώνει την προμήθεια ready-mix μπετόν σε τέσσερεις τοποθεσίες. Εκτιμά ότι η συνολική ημερήσια ζήτηση στα τέσσερα εργοτάξια ανέρχεται σε 24 φορτία και έχει προσδιορίσει τρεις προμηθευτές που μπορούν να χρησιμοποιηθούν. Στόχος του είναι να ελαχιστοποιήσει το κόστος προμήθειας και μεταφοράς του ready-mix μπετόν στα τέσσερα εργοτάξια. Βήμα 1 Βασικά στοιχεία που πρέπει να ληφθούν υπ όψη στη μοντελοποίηση αυτού του προβλήματος? Τι είδους δεδομένα είναι απαραίτητα? Βήμα 2 Παραδοχές Βήμα 3 Αρχικό μοντέλο: Μεταβλητές / Αντικειμενική Συνάρτηση / Περιορισμοί

5 Το Πρόβλημα Μεταφοράς Μεταβλητές 2 δείκτες: i = 1,2,3 συμβολίζει τον προμηθευτή j = 1,2,3,4 συμβολίζει το εργοτάξιο Χ ij = Ποσότητα ready-mix που μεταφέρεται από προμηθευτή i στο εργοτάξιο j Αντικειμενική Συνάρτηση: Ελαχιστοποίηση κόστους μεταφοράς C ij = Κόστος μεταφορά ανά μεταφερόμενη μονάδα ready-mix από προμηθευτή i στο εργοτάξιο j Συνολικό Κόστος = i j C ij X ij

6 Το Πρόβλημα Μεταφοράς Περιορισμοί Ικανοποίηση της ζήτησης: Το σύνολο της ποσότητας που μεταφέρεται στο εργοτάξιο j ικανοποιεί τη ζήτηση D j η συνολικά ζητούμενη ποσότητα ready-mix στο εργοτάξιο j, τότε i X ij D j Ικανοποίηση του δυναμικού παραγωγής: Το σύνολο της ποσότητας που μεταφέρεται από τον προμηθευτή i δεν μπορεί να ξεπερνά τη διαθέσιμη ποσότητα του συγκεκριμένου προμηθευτή S i η διαθέσιμη ποσότητα ready-mix στον προμηθευτή i, τότε j X ij S i

7 ΓΠ σε Προβλήματα Μεταφοράς & Δρομολόγησης Ένας εργολάβος οργανώνει την προμήθεια ready-mix μπετόν σε τέσσερεις τοποθεσίες. Εκτιμά ότι η συνολική ημερήσια ζήτηση στα τέσσερα εργοτάξια ανέρχεται σε 24 φορτία και έχει προσδιορίσει τρεις προμηθευτές που μπορούν συνολικά να καλύψουν τη ζήτηση. Οι διαθέσιμες ποσότητες από κάθε προμηθευτή είναι: S1: 4; S2: 8; S3:12, ενώ οι απαιτούμενες ποσότητες στα τέσσερα εργοτάξια είναι: A: 5, B: 2, C:10, D:7 Συμφωνήθηκε ότι το κόστος μεταφοράς θα είναι ανάλογο της απόστασης από κάθε εργοτάξιο όπως στον πίνακα που ακολουθεί: A B C D S S S Με ποιο τρόπο θα ελαχιστοποιηθεί το κόστος προμήθειας του ready-mix μπετόν στα τέσσερα εργοτάξια;

8 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος ΒΔ Γωνίας Ξεκινούμε από πάνω αριστερά και εκχωρούμε μέγιστη δυνατή ποσότητα σε κάθε διαδρομή. Όταν εξαντληθεί η διαθεσιμότητα ή ικανοποιηθεί η ζήτηση αλλάζουμε γραμμή ή στήλη αντίστοιχα Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσιμότητα Πάτρα Βόλος Θεσ/νίκη Ζήτηση

9 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος ΒΔ Γωνίας Ξεκινούμε από πάνω αριστερά και εκχωρούμε μέγιστη δυνατή ποσότητα σε κάθε διαδρομή. Όταν εξαντληθεί η διαθεσιμότητα ή ικανοποιηθεί η ζήτηση αλλάζουμε γραμμή ή στήλη αντίστοιχα Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσιμότητα Πάτρα Βόλος Θεσ/νίκη Ζήτηση Κόστος: 216

10 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές II. Μέθοδος Ελάχιστου κόστους Ξεκινούμε από τη διαδρομή με το χαμηλότερο μοναδιαίο κόστος και συνεχίζουμε με αύξουσα σειρά κόστους. Κάθε φορά εκχωρούμε τη μέγιστη δυνατή ποσότητα στη διαδρομή. Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσιμότητα Πάτρα Βόλος Θεσ/νίκη Ζήτηση Κόστος: 218

11 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος Vogel. Υπολογίζουμε ποινές (Διαφορά μικρότερου από το αμέσως επόμενο μικρότερο κόστος για κάθε πηγή και προορισμό). Ξεκινούμε από την πηγή ή προορισμό με τη μεγαλύτερη ποινή. Εκχωρούμε μέγιστη δυνατή ποσότητα στη διαδρομή με το μικρότερο κόστος. Επαναλαμβάνουμε. Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσι μότητα Ποινές Πάτρα =1 Βόλος Θεσ/νίκη Ζήτηση =1 6-5=1 Ποινές 11-6= =4 5-2=3 6-5=1

12 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος Vogel. Υπολογίζουμε ποινές (Διαφορά μικρότερου από το αμέσως επόμενο μικρότερο κόστος για κάθε πηγή και προορισμό). Ξεκινούμε από την πηγή ή προορισμό με τη μεγαλύτερη ποινή. Εκχωρούμε μέγιστη δυνατή ποσότητα στη διαδρομή με το μικρότερο κόστος. Επαναλαμβάνουμε. Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσι μότητα Ποινές Πάτρα =1 Βόλος =1 Θεσ/νίκη =1 Ζήτηση Ποινές 11-6= = = =5 5-2=3 13-5=8 6-5=1 12-6=6

13 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος Vogel. Υπολογίζουμε ποινές (Διαφορά μικρότερου από το αμέσως επόμενο μικρότερο κόστος για κάθε πηγή και προορισμό). Ξεκινούμε από την πηγή ή προορισμό με τη μεγαλύτερη ποινή. Εκχωρούμε μέγιστη δυνατή ποσότητα στη διαδρομή με το μικρότερο κόστος. Επαναλαμβάνουμε. Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσι μότητα Ποινές Πάτρα =1 Βόλος = =6 Θεσ/νίκη =1 11-6=5 Ζήτηση Ποινές 11-6= = = =5 5-2=3 13-5=8 6-5=1 12-6=6

14 Πρόβλημα Μεταφοράς: Αρχικές λύσεις Υποθέτουμε ότι Σύνολο διαθέσιμης ποσότητας = Σύνολο ζητούμενης Κατανομή στις διαδρομές ώστε να αθροίζουν οι στήλες και οι γραμμές I. Μέθοδος Vogel. Υπολογίζουμε ποινές (Διαφορά μικρότερου από το αμέσως επόμενο μικρότερο κόστος για κάθε πηγή και προορισμό). Ξεκινούμε από την πηγή ή προορισμό με τη μεγαλύτερη ποινή. Εκχωρούμε μέγιστη δυνατή ποσότητα στη διαδρομή με το μικρότερο κόστος. Επαναλαμβάνουμε. Ιωάννινα Λάρισα Αθήνα Ηράκλειο Διαθεσι μότητα Ποινές Πάτρα =1 Βόλος = =6 Θεσ/νίκη =1 11-6=5 Ζήτηση Κόστος: 205 Ποινές 11-6= = = =5 5-2=3 13-5=8 6-5=1 12-6=6

15 Επίλυση του Προβλήματος Μεταφοράς με Solver ΠΙΝΑΚΑΣ ΚΟΣΤΟΥΣ ΜΕΤΑΦΟΡΑΣ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΖΗΤΗΣΗΣ & ΠΡΟΣΦΟΡΑΣ Ιωάννινα Λάρισα Αθήνα Ηράκλειο Πάτρα Βόλος Θεσσαλονίκη Ζήτηση ΔΕΔΟΜΕΝΑ Κόστος Μεταφοράς ανά μονάδα Ζήτηση Διαθεσιμότητα ΜΕΤΑΒΛΗΤΕΣ ΛΥΣΗ - ΜΕΤΑΦΕΡΟΜΕΝΕΣ ΠΟΣΟΤΗΤΕΣ ΠΕΡΙΟΡΙΣΜΟΙ ΣΥΝΟΛΙΚΗ ΠΟΣΟΤΗΤΑ ΣΕ ΠΡΟΟΡΙΣΜΟ >= Ζήτησης Διαθεσιμότητα ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΕΤΑΦΕΡΟΜΕΝΩΝ ΦΟΡΤΙΩΝ Διαθεσιμότητα Ιωάννινα Λάρισα Αθήνα Ηράκλειο Πάτρα Βόλος Θεσσαλονίκη Ζήτηση ΣΥΝΟΛΙΚΗ ΠΟΣΟΤΗΤΑ ΑΠΟ ΠΗΓΗ <= Διαθεσιμότητας Κοστος Ελαχιστοποίηση Συνολικό Κόστος Μεταφοράς 205

16 Ανάλυση του Προβλήματος Μεταφοράς με Solver 1/2 Microsoft Excel 15.0 Αναφορά ευαισθησίας Φ ύλλο εργασίας: [TRANSPORTATION.xls]TRANSPORTATION MODEL Ημερομηνία δημιουργίας αναφοράς: 17/1/ :19:18 πμ Ρυθμιζόμενα κελιά Τελική Μειωμένο Αντικειμενικός ΕπιτρεπόμενηΕπιτρεπόμενη Κελί Όνομα τιμή κόστος συντελεστής αύξηση μείωση $B$11 Πάτρα Ιωάννινα E+30 $C$11 Πάτρα Λάρισα E+30 2 $D$11 Πάτρα Αθήνα E+30 2 $E$11 Πάτρα Ηράκλειο E+30 4 $B$12 Βόλος Ιωάννινα E+30 1 $C$12 Βόλος Λάρισα $D$12 Βόλος Αθήνα E+30 2 $E$12 Βόλος Ηράκλειο $B$13 Θεσσαλονίκη Ιωάννινα $C$13 Θεσσαλονίκη Λάρισα E+30 1 $D$13 Θεσσαλονίκη Αθήνα $E$13 Θεσσαλονίκη Ηράκλειο Μειωμένο Κόστος: Μεταβολή στο βέλτιστο κόστος, στην περίπτωση που η τιμή της μεταβλητής αυξηθεί κατά 1 μονάδα. Δηλαδή αν εκχωρηθεί μία μονάδα προϊόντος για μεταφορά στην αντίστοιχη διαδρομή η οποία δεν έχει επιλεγεί στη βέλτιστη λύση. Προφανώς με προσαρμογές εκχωρήσεων στις άλλες διαδρομές

17 Ανάλυση του Προβλήματος Μεταφοράς με Solver 2/2 Microsoft Excel 15.0 Αναφορά ευαισθησίας Φύλλο εργασίας: [TRANSPORTATION.xls]TRANSPORTATION MODEL Ημερομηνία δημιουργίας αναφοράς: 17/1/ :19:18 πμ Περιορισμοί Τελική Σκιώδης Περιορισμός ΕπιτρεπόμενηΕπιτρεπόμενη Κελί Όνομα τιμή τιμή R.H. Side αύξηση μείωση $B$14 Ζήτηση Ιωάννινα $C$14 Ζήτηση Λάρισα $D$14 Ζήτηση Αθήνα $E$14 Ζήτηση Ηράκλειο $F$11 Πάτρα Διαθεσιμότητα $F$12 Βόλος Διαθεσιμότητα E+30 0 $F$13 Θεσσαλονίκη Διαθεσιμότητα Σκιώδης τιμή: Μεταβολή στο βέλτιστο κόστος αν ο περιορισμός (ζήτηση ή διαθεσιμότητα) αυξηθεί κατά 1 μονάδα. - Γιατί η διαφορά μεταξύ θετικών και αρνητικών τιμών; - Γιατί η μεταβολή στη διαθέσιμη ποσότητα στο Βόλο δεν επηρεάζει το συνολικό κόστος;

18 Το Πρόβλημα Μεταφοράς Άλλα Ζητήματα Κόστος παραγωγής είναι διαφορετικό ανά προμηθευτή Η συνολική προσφορά ξεπερνά τη ζήτηση Κάποιες διαδρομές δεν επιθυμούμε να χρησιμοποιηθούν ή αντίθετα επιθυμούμε να χρησιμοποιηθούν Χρησιμοποιούνται διαφορετικά μέσα μεταφοράς: Χωρητικότητα / Κόστος / Ταχύτητα /

19 Προβλήματα Μεταφοράς & Δρομολόγησης Στο προηγούμενο πρόβλημα ας υποθέσουμε ότι η μεταφορά γίνεται με διαφορετικά μεταφορικά μέσα το οποία μπορούν να χρησιμοποιηθούν σε όλες τις διαδρομές, αλλά έχουν διαφορετική χωρητικότητα και διαφορετικό κόστος? Πως θα άλλαζε το μοντέλο του προβλήματος

20 Homework Στο πρόβλημα μεταφοράς υποθέστε ότι οι διαθέσιμες ποσότητες από κάθε προμηθευτή είναι: S1: 4; S2: 8; S3:12, ενώ οι απαιτούμενες ποσότητες στα τέσσερα εργοτάξια είναι: A: 5, B: 2, C:10, D:7 Επίσης Συμφωνήθηκε ότι το κόστος μεταφοράς θα είναι ανάλογο της απόστασης από κάθε εργοτάξιο όπως στον πίνακα που ακολουθεί: A B C D S S S Με ποιο τρόπο θα ελαχιστοποιηθεί το κόστος προμήθειας του ready-mix μπετόν στα τέσσερα εργοτάξια. Επιλύστε το πρόβλημα λαμβάνοντας υπ όψη ότι το κόστος παραγωγής ανά μεταφερόμενο τόνο είναι διαφορετικό για κάθε προμηθευτή, δηλαδή S1: 110; S2: 100; S3:105,

21 Ένα άλλο παράδειγμα Μια επιχείρηση πρόκειται να επενδύσει σε διάφορα έργα επέκτασης των δραστηριοτήτων της. Τα αναγκαία κεφάλαια θα τα να δανεισθεί από διάφορες τράπεζες με τις οποίες συνεργάζεται και οι οποίες θεωρούν την επιχείρηση αξιόπιστη. Κάθε τράπεζα θέτει ένα μέγιστο όριο δανεισμού. Επίσης κάθε τράπεζα δίνει διαφορετικά επιτόκια για κάθε έργο ανάλογα με τον εκτιμώμενο κίνδυνο. Ο παρακάτω πίνακας δίνει συγκεντρωτικά τα χορηγούμενα επιτόκια στην επιχείρηση από κάθε τράπεζα, τις ανάγκες δανειοδότησης, καθώς και το ανώτατο όριο δανεισμού από κάθε τράπεζα. Τράπεζα Κίνησης Εξοπλισμού Επιτόκια ανά Τύπο Επένδυσης Κτιριακά Αγορές Εξωτερικού Μέγιστο όριο δανεισμού ΑΛΦΑ ΠΙΣΤΙΣ ΘΕΣΣΑΛΙΑ Απαιτούμενα Κεφάλαια Τουλάχιστον 70 και έως 100

22 Προβλήματα Αναθέσεων Προσωπικού Πέντε project managers με διαφορετικές ικανότητες και εμπειρία πρόκειται να τοποθετηθούν σε πέντε έργα διαφορετικών τύπων και προϋπολογισμού. Η καταλληλότητα κάθε στελέχους για κάθε έργο αξιολογήθηκε από τη διοίκηση του οργανισμού σε 20-βάθμια κλίμακα ως εξής: Με ποιο τρόπο θα πρέπει να γίνει η ανάθεση των 5 έργων στους 5 project managers ώστε να επιτευχθεί το καλύτερο δυνατό αποτέλεσμα A B C D E Αντίστοιχο με πρόβλημα μεταφοράς με οριζόντια και κατακόρυφα αθροίσματα = 1

23 Ακέραιος Προγραμματισμός Όταν οι μεταβλητές λαμβάνουν μόνον ακέραιες τιμές Η επίλυση του προβλήματος είναι δυσκολότερη (ειδικές τεχνικές) Δεν ισχύει η ανάλυση ευαισθησίας του ΓΠ Στον Solver οι μεταβλητές δηλώνονται στους περιορισμούς ως int Ειδική Περίπτωση: Δυαδικές (binary) μεταβλητές Οι δυαδικές μεταβλητές (τιμές 0 ή 1) χρησιμοποιούνται συχνά για να εκφράσουν την ανάληψη ή μη δραστηριοτήτων Y j = 1 όταν αναληφθεί η δραστηριότητα j, και Y j = 0 αν δεν αναληφθεί. Πιθανοί περιορισμοί: Υ 1 + Υ 2 + Υ = 1 για αμοιβαία αποκλειόμενες δραστηριότητες Υ 1 + Υ 2 + Υ (<= ή = ή >=) ν όταν το πολύ ή ακριβώς ή τουλάχιστον ν δραστηριότητες εκτελούνται ή επιλέγονται Υ j Υ i, η δραστηριότητα j μπορεί να εκτελεσθεί μόνον εφόσον εκτελεσθεί η i. Στον Solver οι μεταβλητές δηλώνονται στους περιορισμούς ως bin

24 Δυαδικές (binary) μεταβλητές: Παράδειγμα #1 Η εταιρεία ΧΥΖ εξετάζει τη σύνθεση του χαρτοφυλακίου των έργων της. Επτά υποψήφια έργα διαφέρουν τόσο ως προς την μακροπρόθεσμη απόδοση τους όσο και προς τις απαιτήσεις χρηματοδότησης, όπως φαίνεται στον πίνακα που ακολουθεί: Έργα Απόδοση Χρηματοδότηση M Προσωπικό Εξοπλισμός ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ Το συνολικό διαθέσιμο κεφάλαιο είναι 100 εκ. ευρώ. Το διαθέσιμο προσωπικό 16 άτομα, ενώ ο εξοπλισμός επαρκεί για 3 έργα. Τα έργα 1 και 2 είναι αμοιβαίως αποκλειόμενα, όπως και τα έργα 3 και 4. Επί πλέον ούτε το 3 ούτε το 4 μπορούν να αναληφθούν αν δεν αναληφθούν το 1 και το 2 αντίστοιχα. Αντίθετα δεν υπάρχει κανείς περιορισμός για τα έργα 5, 6 και 7. Ποια η διατύπωση του προβλήματος σε μορφή Ακέραιου Προγραμματισμού? (Λύση αναρτημένη στο e-class: Lecture 3 - Επιλογή Προμηθευτών - Λύσεις.doc

25 Παράδειγμα #1 - Λύση Ορίζουμε τις 0/1 μεταβλητές Χ1, Χ2, Χ3, Χ4, Χ5, Χ6 & Χ7 να συμβολίζουν την επιλογή ή όχι κάθε ενός έργου. Δηλαδή αν Χ1=0 το έργο 1 δεν επιλέγεται, αν Χ1=1 επιλέγεται, κ.ο.κ. Η συνολική απόδοση είναι το άθροισμα των αποδόσεων των 7 έργων πολλαπλασιασμένων αντίστοιχα με τις μεταβλητές Χ1, Χ2 κ.λπ. Επομένως Μεγιστοποίηση Απόδοσης 17Χ1 + 10Χ2 + 15Χ3 + 19Χ4 + 7Χ5 + 13Χ6 + 9Χ7 Ομοίως διατυπώνονται και οι περιορισμοί: Χρηματοδότηση: 43Χ1 + 28Χ2 + 34Χ3 + 48Χ4 + 17Χ5 + 32Χ6 + 23Χ7 100 Προσωπικό: 7Χ1 + 5Χ2 + 4Χ3 + 7Χ4 + 4Χ5 + 5Χ6 + 8Χ7 16 Εξοπλισμός (το πολύ 3 έργα) : Χ1 + Χ2 + Χ3 + Χ4 + Χ5 + Χ6 + Χ7 3 Τα 1 & 2 είναι αμοιβαία αποκλειόμενα : Χ1 + Χ2 1 Ομοίως τα 3 & 4: Χ3 + Χ4 1 Το 3 μπορεί να αναληφθεί μόνον στην περίπτωση που αναληφθεί το 1 : Χ3 Χ1 Ομοίως το 4 με το 2 : Χ4 Χ2

26 Παράδειγμα #1 - Λύση Excel

27 Παράδειγμα #1 - Λύση Excel

28 Δυαδικές (binary) μεταβλητές: Παράδειγμα #2 Η ΙΝΤΕRCON σκοπεύει να προμηθευτεί άμεσα 26 έως 32 νέα αυτοκίνητα για τις ανάγκες επίβλεψης ενός μεγάλου οδικού έργου. Η εταιρία επιθυμεί τα 14 να είναι τουλάχιστον κυβισμού 1200cc (τύπος Α), μέχρι 12 να είναι κυβισμού 1600cc (τύπος Β), και τα υπόλοιπα να είναι κυβισμού 2000cc (τύπος Γ). Η εταιρία εξετάζει τις ακόλουθες προσφορές 4 αντιπροσωπειών. 1 η Προσφορά 10 Α και 2 Β και 2 Γ συνολική τιμή η Προσφορά 15 Α η Προσφορά 4 Α και 8 Β και 5 Γ η Προσφορά 2 Α και 5 Β και 4 Γ ή 4 Α και 6 Β και 5 Γ ή Η παρούσα αξία του αναμενόμενου κέρδους για κάθε τύπο αυτοκινήτου χωρίς να υπολογίζεται η αξία αγοράς είναι (τύπος Α), (τύπος Β) και (τύπος Γ). Η ΙΝΤΕRCON επιθυμεί να προμηθευτεί τα αυτοκίνητα που χρειάζεται από μία ή το πολύ 2 αντιπροσωπείες. Ποια η διατύπωση του προβλήματος σε μορφή Ακέραιου Προγραμματισμού?

29 Παράδειγμα - Λύση Ορίζουμε τις 0/1 μεταβλητές Χ1, Χ2, Χ3, Χ4, Χ5 να συμβολίζουν την επιλογή ή όχι κάθε ενός προμηθευτή (οι 2 προσφορές του 4 ου προμηθευτή θεωρούνται διαφορετικές. Με περιορισμό που ακολουθεί δεν θα επιτρέψουμε να επιλεγούν και οι δύο). Υπολογίζουμε το καθαρό αναμενόμενο κέρδος το οποίο θα προκύψει από την επιλογή κάθε προμηθευτή εάν αυτός επιλεγεί: Τύπου Α Τύπου Β Τύπου Γ ΠΑ Αναμενόμενου κέρδους 40Α+47Β+50Γ Κόστος Αγοράς Επομένως το καθαρό αναμενόμενο κέρδος (σε χιλιάδες) που επιθυμούμε να μεγιστοποιηθεί είναι : Μεγιστοποίηση: Ζ = 354Χ Χ Χ Χ Χ5 Καθαρό Αναμενόμενο Κέρδος 1 η η η η - Α η - B

30 Παράδειγμα - Λύση Περιορισμοί: Ομοίως διατυπώνονται και οι περιορισμοί: Επιλογή το πολύ 2 προμηθευτών: Χ1 + Χ2 + Χ3 + Χ4 + Χ5 <=2 Επιλογή το πολύ ενός εκ των 4 & 5 διότι είναι του ίδιου προμηθευτή: Χ4 + Χ5 <=1 Συνολικός αριθμός αυτοκινήτων μεταξύ 26 και 32: 14Χ1 + 15Χ2 + 17Χ3 + 11Χ4 + 15Χ5 >= 26 14Χ1 + 15Χ2 + 17Χ3 + 11Χ4 + 15Χ5 <= 32 Τουλάχιστον 14 τύπου Α: 10Χ1 + 15Χ2 + 4Χ3 + 2Χ4 + 4Χ5 >= 14 Μέχρι 12 τύπου Β: 2Χ1 + 8Χ3 + 5Χ4 + 6Χ5 <= 12

31 Παράδειγμα #1 - Λύση Excel

32 Παράδειγμα #1 - Λύση Excel

33 Παράδειγμα #1 - Βέλτιστη Λύση Excel

34 Διαφοροποίηση του προβλήματος Επιλογής Προμηθευτών Ας θεωρήσουμε μία παραλλαγή του προβλήματος προμήθειας αυτοκινήτων που εξετάσαμε ήδη Η επιλογή για τους 3 τύπους αυτοκινήτων μπορεί να γίνει ανεξάρτητα από διάφορους προμηθευτές i. Αν ο αριθμός των αυτοκινήτων που μπορεί να διαθέσει ένας προμηθευτής για έναν τύπο δεν επαρκεί μπορεί να χρησιμοποιηθούν 2 ή περισσότεροι ii. Για κάθε προμηθευτή που επιλέγεται υπάρχει ένα σταθερό κόστος, ανεξάρτητα από τον αριθμό αυτοκινήτων που αγοράζονται από αυτόν

35 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Δεδομένα ΔΥΝΑΜΙΚΟ ΠΡΟΣΦΟΡΑΣ ΠΡΟΜΗΘΕΥΤΏΝ ΣΕ ΑΥΤΟΚΙΝΗΤΑ ΚΆΘΕ ΤΥΠΟΥ ΤΥΠΟΥ Α ΤΥΠΟΥ Β ΤΥΠΟΥ Γ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ ΤΙΜΕΣ ΑΝΑ ΠΡΟΜΗΘΕΥΤΗ ΤΥΠΟΥ Α ΤΥΠΟΥ Β ΤΥΠΟΥ Γ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ

36 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Δεδομένα ΖΗΤΗΣΗ ΣΕ ΑΡΙΘΜΟ ΑΥΤΟΚΙΝΗΤΩΝ ΖΗΤΗΣΗ : ΑΡΙΘΜΟΣ ΑΥΤΟΚΙΝΗΤΩΝ ΚΆΘΕ ΤΥΠΟΥ ΤΥΠΟΥ Α ΤΥΠΟΥ Β ΤΥΠΟΥ Γ ΣΤΑΘΕΡΟ ΚΟΣΤΟΣ ΑΝΑ ΠΡΟΜΗΘΕΥΤΗ ΠΡΟΜΗΘΕΥΤΗΣ 1 5 ΠΡΟΜΗΘΕΥΤΗΣ 2 6 ΠΡΟΜΗΘΕΥΤΗΣ 3 6 ΠΡΟΜΗΘΕΥΤΗΣ 4 7

37 Παράδειγμα Λύσης ΑΓΟΡΑ ΑΠΌ ΚΆΘΕ ΠΡΟΜΗΘΕΥΤΗ ΤΥΠΟΥ Α ΤΥΠΟΥ Β ΤΥΠΟΥ Γ ΠΡΟΜΗΘΕΥΤΗΣ 1 ΠΡΟΜΗΘΕΥΤΗΣ ΠΡΟΜΗΘΕΥΤΗΣ 3 5 ΠΡΟΜΗΘΕΥΤΗΣ 4 5 Ικανοποιούνται οι απαιτήσεις ΤΙΜΕΣ ΑΝΑ ΠΡΟΜΗΘΕΥΤΗ ΤΥΠΟΥ Α ΤΥΠΟΥ Β ΤΥΠΟΥ Γ ΚΟΣΤΟΣ ΠΡΟΜΗΘΕΥΤΗ ΠΡΟΜΗΘΕΥΤΗΣ 1 7 x 20 = ΠΡΟΜΗΘΕΥΤΗΣ 2 8 x 14 = x 35 = ΠΡΟΜΗΘΕΥΤΗΣ 3 5 x 13 = 65 1 x 36 = 36 6 ΠΡΟΜΗΘΕΥΤΗΣ 4 Συνολικό Κόστος =

38 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Μοντελοποίηση Ποιος είναι ο στόχος? Ελαχιστοποίηση Κόστους Πως υπολογίζουμε το κόστος? Κόστος Αυτοκινήτων & Κόστος Προμηθευτών Κόστος Αυτοκινήτων. Κόστος Προμηθευτών.. Ποιες είναι οι μεταβλητές του προβλήματος? Ποια είναι η σχέση μεταξύ τους?

39 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Μεταβλητές 2 δείκτες: i = 1,2,3,4 συμβολίζει τον προμηθευτή j = A,B,Γ συμβολίζει τον τύπο αυτοκινήτου Χ ij = Ποσότητα αυτοκινήτων τύπου j που αγοράζονται από προμηθευτή i Y i = 0-1 ανάλογα με το αν ο προμηθευτής i έχει επιλεγεί Το Y i δεν μπορεί να είναι μηδέν αν κάποιο από τα Χ ij είναι θετικό, ή Τα Χ ij δεν μπορούν να είναι >0 αν το Y i είναι 0.

40 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Αντικειμενική Συνάρτηση Έστω C ij το κόστος του τύπου j αυτοκινήτου από τον προμηθευτή i, και F i το σταθερό κόστος για τον προμηθευτή i Χ ij = η ποσότητα αυτοκινήτων τύπου j που αγοράζονται από προμηθευτή i Y i = 0-1 ανάλογα με το αν ο προμηθευτής i έχει επιλεγεί Συνολικό Κόστος = i j C ij X ij + i F i Y i

41 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Περιορισμοί Έστω S ij η διαθέσιμη ποσότητα τύπου j αυτοκινήτων από τον προμηθευτή i, τότε X ij S ij Y i Αν ο προμηθευτής i, διαθέτει S ij αυτοκίνητα τύπου j τότε η ποσότητα που αγοράσουμε από αυτόν δεν μπορεί να ξεπερνά τα S ij. Αν ο προμηθευτής I δεν επιλεγεί τότε X ij = 0

42 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Άλλοι περιορισμοί Έστω D j η συνολικά ζητούμενη ποσότητα τύπου j αυτοκινήτων, τότε i X ij D j O συνολικός αριθμός αυτοκίνητων τύπου j που θα αγορασθούν από όλους τους προμηθευτές πρέπει να καλύπτει τη ζήτηση

43 Το Πρόβλημα Επιλογής Προμηθευτών - ΙΙ Συνολική Διατύπωση Ελαχιστοποίηση Κόστους i j C ij X ij + i F i Y i Υπό τους περιορισμούς X ij S ij Y i i X ij D j αριθμός περιορισμών i x j αριθμός περιορισμών j Y i μεταβλητές 0, 1

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Ερμηνεία Λύσεων

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ

ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Πρόβλημα 1 ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Η εταιρεία GALAXY INDUSTRIES διαθέτει στην αγορά 2 είδη πλάκες πεζοδρομίου: τη Space Ray και τη Galaxy Ray. Τα 2 είδη κατασκευάζονται σε δωδεκάδες από την ίδια βασική πρώτη

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων Περιεχόμενα (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων 1. Ανάλυση ευαισθησίας Λυμένο παράδειγμα 7 από το βιβλίο, σελ.85, λύση σελ.328

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΠΑΝΤΑΙΔΑΚΗΣ ΜΙΧΑΗΛ Α.Μ 8342 ΕΞΑΜΗΝΟ :ΠΤΘ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανάλυση ευαισθησίας. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανάλυση ευαισθησίας. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ανάλυση ευαισθησίας Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Παράδειγμα TOYCO Η επιχείρηση TOYCO χρησιμοποιεί τρεις διαδικασίες

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Ανάλυση Ευαισθησίας. Έχοντας λύσει ένας πρόβλημα ΓΠ θα πρέπει να αναρωτηθούμε αν η λύση έχει φυσική σημασία. Είναι επίσης πολύ πιθανό να έχουμε χρησιμοποιήσει δεδομένα για τα οποία δεν είμαστε σίγουροι

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού *

Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού * ΚΕΦ.8 ΕΙ ΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Ιδιαίτερη κατηγορία των προβληµάτων ΓΠ είναι τα προβλήµατα δικτυακής ροής. Σε αυτά ανήκουν τα προβλήµατα µεταφοράς και εκχώρησης. 8. Πρόβληµα µεταφοράς Σε m πηγές (κέντρα προσφοράς)

Διαβάστε περισσότερα

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # : Επιχειρησιακή έρευνα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον Γραμμικό Προγραμματισμό στη Θεωρία Δικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Προβλήµατα Ακέραιου Προγραµµατισµού Ι Τα προβλήµατα Ακέραιου Προγραµµατισµού, ανήκουν γενικά σε 3

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 5: Εφαρμογές Γραμμικού Προγραμματισμού (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1)

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Οι στρατηγικές χρηματοοικονομικής δομής αναφέρονται στην επιλογή των μέσων χρηματοδότησης επενδυτικών προγραμμάτων, λειτουργιών της παραγωγής και

Διαβάστε περισσότερα

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. 1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον ΓΠ στη Θεωρία ικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας κατανάλωσης Το προϊόν

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Προβλήματα Εκχώρησης (Assignment Problems)

Προβλήματα Εκχώρησης (Assignment Problems) Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Δικτυακή Διατύπωση Λύση Hugaria Algorithm Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Εκχώρηση ατόμων στην εκτέλεση μίας δραστηριότητας Κατανομή

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 3: Ανάλυση ευαισθησίας ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Πρόβλημα Μεταφοράς Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ - ΡΙΟ 00 ΠΑΤΡΑ UNIVERSITY CAMPUS-RIO 00 PATRAS, GR ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 0 ΘΕΜΑ ( Μονάδες ) Στο παρακάτω πρόβληµα γ.π c max = + s. t + - + + + 0 +,,

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ εκαετές πρόγραµµα επενδύσεων Οκτώ επενδυτικές ευκαιρίες Έντοκα γραµµάτια δηµοσίου, κοινές µετοχές εταιρειών, οµόλογα οργανισµών κ.ά. H επένδυση

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

Τεχνικές αριστοποίησης

Τεχνικές αριστοποίησης ΚΕΦΑΛΑΙΟ 9 Τεχνικές αριστοποίησης Εισαγωγή Τα µοντέλα αριστοποίησης, ευρέως γνωστά ως µοντέλα µαθηµατικού προγραµµατισµού, είναι αναµφίβολα η δηµοφιλέστερη τεχνική λήψης αποφάσεων στο χώρο της Επιχειρησιακής

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

RIGHTHAND SIDE RANGES

RIGHTHAND SIDE RANGES Μια εταιρεία εξόρυξης μεταλλευμάτων, έλαβε μια παραγγελία για 100 τόνους σιδηρομεταλλεύματος. Η παραγγελία πρέπει να περιλαμβάνει τουλάχιστον.5 τόνους νικέλιο, το πολύ τόνους άνθρακα κι ακριβώς 4 τόνους

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Επένδυση µέρους των ρευστών διαθεσίµων ύψους

Επένδυση µέρους των ρευστών διαθεσίµων ύψους Case 03: Επιλογή Χαρτοφυλακίου Ι «ΖΗΤΑ A.E.» ΣΕΝΑΡΙΟ (Portfolio Selection) Επένδυση µέρους των ρευστών διαθεσίµων ύψους 600.000 Επένδυση Ετήσιο αναµενόµενο ποσοστό απόδοσης (%) ΤραπεζικήΜετοχήΑ 13,7 ΤραπεζικήΜετοχήΒ

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα