Τεχνική Έκθεση Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνική Έκθεση Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο"

Transcript

1

2 Δ4.2/2 2.1 Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο Ασυνεχής Collocatlion και Αριθμητικά Σχήματα Διακριτοποίησης Χρόνου Λογισμικά Ανοικτού κώδικα Μέθοδος ddhc / Επικύρωση αποτελεσμάτων Μέθοδος Φωκά / Επικύρωση αποτελεσμάτων Αποτελέσματα επιλογής λογισμικού

3 Δ4.2/3 Κεντρική επιδίωξη της παρούσας δράσης αποτελεί αφενός μεν η επικύρωση των αποτελεσμάτων μας (αποδοτικότητα μεθόδων) με ένα τόσο σημαντικό πρόβλημα, αφετέρου δε η μελέτη της εξέλιξης καρκινικών όγκων εγκεφάλου, με χρήση νέων μεθόδων, λογισμικού και σύγχρονων υπολογιστικών αρχιτεκτονικών. Την τρέχουσα περίοδο σκοπός μας ήταν η εφαρμογή της μεθόδου που αναπτύξαμε στις δράσεις 2.1 και 2.4 (βλ. Τεχνικές Εκθέσεις 2.1 και 2.4 Έτους 2012) σε προβλήματα διάχυσης καρκινικών όγκων στον εγκέφαλο στις 3 περιοχές (φαιά - λευκή - φαιά ουσία) με n πήγες στις διαστάσεις όπου παράλληλα επαληθεύσαμε την τέταρτη τάξη σύγκλισης της μεθόδου ddhc. Σε αυτήν την κατεύθυνση η ddhc μέθοδος συνδυάστηκε με βασικές μεθόδους διακριτοποίησης χρόνου, όπως η Backward Euler και η Crank Nicolson, αλλά και ένα σχήμα Diagonally Implicit Runge-Kutta τρίτης τάξεως. Επιπλέον, την περίοδο αυτή ξεκίνησε η αξιολόγηση λογισμικών πακέτων ανοικτού κώδικα σύγχρονων αριθμητικών μεθόδων, η επιλογή της πλατφόρμας πεπερασμένων στοιχείων FEniCS και η εγκατάστασή της στα υπολογιστικά συστήματα του Εργαστηρίου Εφαρμοσμένων Μαθηματικών και Η/Υ (ΕΕΜΗΥ). Τα γλοιώματα αποτελούν τους πιο συχνούς και επιθετικούς όγκους του εγκεφάλου. Το πιο συχνό πρόβλημα στην έγκαιρη διάγνωση και θεραπεία των ασθενών με γλοίωμα είναι η ταχύτατη διήθηση των καρκινικών κυττάρων στο γειτονικό φυσιολογικό ιστό με αποτέλεσμα την αδυναμία εντόπισης του όγκου στα αρχικά στάδια με τις συνήθεις χρησιμοποιούμενες μεθόδους απεικόνισης (μαγνητική και αξονική τομογραφία). Τα παραπάνω λοιπόν αποτέλεσαν κίνητρο για τους επιστήμονες ώστε να μελετήσουν και να κατανοήσουν την ανάπτυξη των γλοιωμάτων. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί μαθηματικά μοντέλα για την προσομοίωση και μελέτη της εξέλιξης ενός καρκινικού όγκου στον εγκέφαλο. Εμείς υιοθετήσαμε το μαθηματικό μοντέλο της Swanson([11],[12],[13]) η οποία πρώτη εισήγαγε στη μοντελοποίηση της ανάπτυξης των γλοιωμάτων την ετερογένεια που υπάρχει στον ιστό του εγκεφάλου. Συγκεκριμένα, ο συντελεστής διάχυσης λαμβάνει διαφορετική τιμή στην περιοχή της φαιάς ουσίας και διαφορετική σε αυτήν της λευκής ουσίας.

4 Δ4.2/4 Η μαθηματική εξίσωση του μοντέλου είναι: c t = ( D( ) c ) + ρ c, (1) όπου c(, t) είναι ο αριθμός των κυττάρων στην θέση και τον χρόνο t, ρ παριστάνει το ποσοστό της ανάπτυξης των κυττάρων συμπεριλαμβανομένου και του πολλαπλασιασμού τους και της καταστροφής τους και D( ) είναι ο συντελεστής διάχυσης των κυττάρων στον ιστό του εγκεφάλου που δίνεται από τη σχέση: D( ) = { Dg, ανήκει στη φαιά ουσία D w, ανήκει στη λευκή ουσία, (2) με D g και D w να είναι σταθερές όπου D w > D g. Στο σύνορο θεωρούμε την ροή να είναι μηδέν και η αρχική πηγή δίνεται από τη σχέση: c( ) = f( ) Το παραπάνω μαθηματικό μοντέλο έχει διαπιστωθεί ότι προσομοιάζει τη συμπεριφορά ενός πραγματικού καρκινικού όγκου στην διάρκεια του χρόνου πολύ αποτελεσματικά. Εμείς ασχοληθήκαμε με το αδιάστατο πρόβλημα σε μια χωρική διάσταση. Οι αδιαστατές λοιπόν μεταβλητές που χρησιμοποιήσαμε είναι: ( ) ρ ρ Dw x = x, t = ρ t, c(x, t) = c x, ρ t, D w D w ρn 0 ( ) f(x) = f ρ x D w όπου N 0 = f(x)dx δηλώνει τον αρχικό ρυθμό καρκινικών κυττάρων στον εγκέφαλο για t = 0. H εξίσωση λοιπόν το μοντέλου μας διαμορφώνεται ως εξής: c t = (Dc x ) x + c, x [a, b], t 0 c x (a, t) = 0 και c x (b, t) = 0 (3) c(x, 0) = f(x) ή ισοδύναμα αντικαθιστώντας c(x, t) = e t u(x, t) έχουμε ότι: u t = (Du x ) x, x [a, b], t 0 u x (a, t) = 0 και u x (b, t) = 0. u(x, 0) = f(x) (4)

5 Δ4.2/5 Ο συντελεστής διάχυσης D = D(x) είναι της μορφής: γ, a x < w 1 D(x) = 1, w 1 x < w 2, γ, w 2 x b (5) 1 1 γ γ a w 1 w 2 b με γ := D g D w < 1 να είναι ο αδιάστατος συντελεστής διάχυσης στη φαιά ουσία και 1 ο αδιάστατος συντελεστής διάχυσης στη λευκή ουσία. Τέλος, η πηγή των καρκινικών κυττάρων αρχικά δίνεται από τη συνάρτηση f(x) f(x) = k δ(x ξ i ), ξ [a, b], (6) i=1 όπου δ(x) δηλώνει τη συνάρτηση Dirac. Στη συνέχεια για την αριθμητική επίλυση του παραπάνω μοντέλου με υψηλής τάξεως αριθμητικές μεθόδους χρησιμοποιήσαμε την Hermite Collocation μέθοδο για τη χωρική διακριτοποίηση και τα Backward Euler, Crank Nicolson και Runge Kutta σχήματα για την χρονική διακριτοποιήση. Για να αντιμετωπίσουμε τις ασυνέχειες της πρώτης παραγώγου στα εσωτερικά σημεία διασύνδεσης των περιοχών χρησιμοποιήσαμε τα ασυνεχή Hermite κυβικά πολυώνυμα και διαπιστώσαμε ότι η τάξη συγκλισης της Collocation παραμένει τετάρτη. Για ένα σύστημα συνήθων διαφορικών εξισώσεων της μορφής: = C(t, ) (7) όπου C(t, ) = A 1 B. και θεωρώντας το παραπάνω σύστημα στo χρονικό βήμα t = t n+1 :

6 Δ4.2/6 με όπου (n+1) = C(t n+1, (n+1) ) (8) C(t n+1, (n+1) ) = A 1 B (n+1) [ (n+1) = (n+1) = ] T α (n+1) 1 α (n+1) 3 α (n+1) 2N+1 [ α (n+1) 1 α (n+1) 3 α (n+1) 2N+1 Αρχικά για χρονική διακριτοποίηση χρησιμοποιήσαμε το Backward Euler σχήμα το οποίο έχει τη παρακάτω μορφή: (n+1) (n) τ ] T = C(t n+1, (n+1) ) (9) ή ισοδύναμα, (A τb) (n+1) = A (n) (10) όπου το αρχικό διάνυσμα (0) καθορίζεται από την αρχική συνθήκη που είναι η δέλτα συνάρτηση (6). Στη συνέχεια χρησιμοποιήσαμε για χρονική διακριτοποίηση το Crank Nicolson (CN) σχήμα το οποίο εκφράζεται ως εξής: (n+1) (n) τ = 1 2 (C(n+1) (t, ) + C (n) (t, )) (11) ή ισοδύναμα, (A τ 2 B) (n+1) = (A + τ 2 B) (n) (12) Τέλος εφαρμόσαμε για την χρονική διακριτοποίηση την μέθοδο Diagonally Implicit Runge Kutta τρίτης τάξεως. Για ένα πρόβλημα αρχικών τιμών της μορφής y t = g(t, y), y(0) = y 0 η κύρια ιδέα των μεθόδων Runge-Kutta ([4],[6]) είναι να χρησιμοποιήσουν βάρη b i και σημεία d i, 1 i q ώστε να προσεγγίσουν τη λύση y (n+1) από τη y (n) χρησιμοποιώντας τον τύπο των q ενδιάμεσων βημάτων : q y (n+1) = y (n) + τ b i g(t (n,i), y (n,i) ) (13) με t n,i = t n + d i τ και y (n,i) = y (n) + τ i=1 q a ij g(t (n,j), y (n,j) ), 1 i q (14) j=1

7 Δ4.2/7 Ο συνδυασμός των τύπων (13) και (14), ορίζουν τη Runge-Kutta μέθοδο όπου οι συντελεστές της μπορούν να γραφούν ως εξής: a 11 a 1q d 1... a q1 a qq d q b 1 b q (15) Οι ημι-πεπλεγμένες Runge-Kutta μεθόδοι ([4] [6]), χαρακτηρίζονται από την σχέση a ij = 0, j > i και συγκεκριμένα για τις διαγώνια πεπλεγμένες Runge- Kutta μεθόδους (DIRK) [5] ισχύει επιπλέον ότι a ii = a, i = 1,..., q. Όπως βλέπουμε στις εργασίες ([1] [5]), είναι γνωστό ότι υπάρχει μία μόνο Α-ευσταθής διαγώνια πεπλεγμένη μέθοδος τρίτης τάξης και δύο βημάτων, όπου περιγράφεται ως εξής: λ 0 λ 1 2λ λ 1 λ (16) με λ = Αναπτύσοντας τώρα το (2,3)-DIRK σχήμα, που περιγράφτηκε παραπάνω, για τη λύση του DHC συστήματος των συνήθη διαφορικών εξισώσεων (11) ή ισοδύναμα (12), καταλήγουμε στις παρακάτω εξισώσεις: (n,1) = (n) + τ λ C (n,1) (t, ) (n,2) = (n) + τ [ (1 2λ)C (n,1) (t, ) + λc (n,2) (t, ) ] (n+1) = (n) + τ [ C (n,1) (t, ) + C (n,2) (t, ) ] (17) 2 ή ισοδύναμα, (A τλb) (n,1) = A (n) (A τλb) (n,2) = A (n) + τ(1 2λ)B (n,1) A (n+1) = A (n) + τ 2 [B (n,1) + B (n,2) ] (18) Σε αυτή την ερευνητική δραστηριότητα έγινε επίσης, μελέτη των δυνατοτήτων λογισμικών ανοικτού κώδικα [16] υλοποίησης αριθμητικών μεθόδων πεπερασμένων στοιχείων υψηλής ακρίβειας επίλυσης μερικών διαφορικών εξισώσεων για την επιλογή κατάλληλου λογισμικού μελέτης προβλημάτων εξέλιξης καρκινικών όγκων εγκεφάλου. Τα κριτήρια επιλογής του λογισμικού ήταν:

8 Δ4.2/8 Φάσμα επιλογής συναρτήσεων βάσης για μεθόδους Πεπερασμένων Στοιχείων Δυνατότητα επεξεργασίας γενικευμένης γεωμετρίας πεδίου ορισμού Γλώσσες προγραμματισμού Τεκμηρίωση Δυνατότητα επέκτασης των βιβλιοθηκών λογισμικού Σε αυτή την ενότητα μελετάμε αριθμητικά την απόδοση της collocation μεθόδου (DHC) με ασυνεχή πολυώνυμα Hermite στα σημεία διεπαφής σε συνδυασμό με τα χρονικά σχήματα (BE), (CN) και (2,3)-DIRK στα ακόλουθα προβλήματα: και f(x) = 1 η π e x2 /η 2, a = 5, w 1 = 1, w 2 = 1, b = 5, γ = 0.5 Η ανάπτυξη του καρκινικού όγκου στο χρόνο και για μέγιστο χρόνο t max = 4 δηλαδή πραγματικού χρόνου περίπου ενός έτους δίνεται από το παρακάτω σχήμα: 12 N 1 =N 2 =N 3 =256 τ=0.1 tmax=4 Tumour growth c(x,t) Spatial variable x Σχήμα 1: Η απόδοση της μεθόδου (DHC)/(BE).

9 Δ4.2/9 a = 5, w 1 = 1, w 2 = 1.5, b = 5, γ = 0.5 και f(x) = 1 η π (e (x+3.5)2 /η 2 + e (x 3)2 /η 2 ), Στο παρακάτω γράφημα παρουσιάζεται η συμπεριφορά της λύσης για το δεύτερο πρόβλημα: 18 N 1 =N 2 =N 3 =256, τ=0.1, tmax=4 16 Tumour growth c(x,t) Spatial variable x Σχήμα 2: Η απόδοση της μεθόδου (DHC)/(CN). a = 5, w 1 = 2, w 2 = 1, b = 5, γ = 0.5 και f(x) = 1 η π (e (x 3)2 /η 2 + e (x 4)2 /η 2 ), Αντίστοιχα, η λύση του παραπάνω προβλήματος φαίνεται στο Σχ. (3). 35 N 1 =N 2 =N 3 =256 τ=0.1 tmax=4 Tumour growth c(x,t) Spatial variable x Σχήμα 3: Η απόδοση της μεθόδου (DHC)/(DIRK). Σε όλα τα προβλήματα το η = 0.2.

10 Δ4.2/10 Η τάξη σύγκλισης της collocation μεθόδου (DHC) με ασυνεχή πολυώνυμα Hermite στα σημεία διεπαφής σε συνδυασμό με όλες τις μεθόδους χρονικής διακριτοποίησης, όπως φαίνεται στα σχήματα (4),(5) και (6) διατηρείται τετάρτης τάξεως όπως και στη συνεχή μέθοδο Collocation. Αντίστοιχα η τάξη σύγκλισης των χρονικών μεθόδων διακριτοποίησης, όπως φαίνεται στα σχήματα (7), (8) και (9), παρέμεινε ένα για την BE, δύο CN και τρία για την DIRK. Το N t συμβολίζει το πλήθος των χρονικών βημάτων μεταξύ του t = 0 και του t = 4. Τέλος παρουσιάζονται οι πίνακες Τ1, Τ2 και Τ3 με τους χρόνους των πειραμάτων για διάφορες πυκνώσεις του πλέγματος ανά περιοχή, για τα τρία παραπάνω προβλήματα αντίστοιχα και για όλα τα σχήματα χρονικής διακριτοποίησης.!" " -!" # 9:0: ;:': <=5>!" & ,,.,!" %!" $!"!"!"!# -!" # '()*+,-./-01+)+234 Σχήμα 4: Τάξη σύγκλισης της χωρικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 1. Διαπιστώσαμε λοιπόν, μέσα από μία σειρά αριθμητικών πειραμάτων, ότι η τάξη σύγκλισης της μεθόδου collocation, με ασυνεχή στοιχεία Hermite,παρέμεινε τέταρτη, χωρίς να επηρεάζεται από την παρουσία των ασυνεχών στοιχείων. Όσο αφορά τα χρονικά σχήματα, η τάξης σύγκλισης ταυτίζεται με τη θεωρητικά αναμενόμενη. Τέλος παρατηρήθηκε το γνωστό πρόβλημα της εμφάνισης ταλαντώσεων κατά τα αρχικά χρονικά βήματα της μεθόδου Crank-Nicolson. Στο μοντέλο (4), θεωρούμε: a = 5, w 1 = 1, w 2 = 1, b = 5, γ = 0.2 και γ = 0.5 u(x, 0) = δ(x + 3) και u(x, 0) = δ(x + 4) + δ(x 2). (19)

11 Δ4.2/11!" " -!" # 9:0: ;:': <=5>!" & ,,.,!" %!" $!"!"!"!# -!" # '()*+,-./-01+)+234 Σχήμα 5: Τάξη σύγκλισης της χωρικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 2.!" " -!" # 9:0: ;:': <=5>!" & ,,.,!" %!" $!"!"!"!# -!" # '()*+,-./-01+)+234 Σχήμα 6: Τάξη σύγκλισης της χωρικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 3. Σε όλα τα αριθμητικά πειράματα ο χρόνος t φτάνει μέχρι t max = 4, που αντιστοιχεί σε περίπου 1 έτος πραγματικού χρόνου (11 μήνες 3 μέρες και 8 ώρες για την ακρίβεια), που θεωρείται ο προσδόκιμος χρόνος για υψηλής διαβάθμισης κακοήθειες. Στον πίνακα που ακολουθεί,δείχνουμε την σχέση μεταξύ του αδιάστατου

12 Δ4.2/ DIRK B.E. C.N. Relative Error Number of N t 10 2 Σχήμα 7: Τάξη σύγκλισης της χρονικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα DIRK B.E. C.N. Relative Error Number of N t 10 2 Σχήμα 8: Τάξη σύγκλισης της χρονικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 2. και του πραγματικού χρόνου:

13 Δ4.2/ Relative Error DIRK B.E. C.N Number of N t 10 2 Σχήμα 9: Τάξη σύγκλισης της χρονικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 3. Υλοποιώντας την παραπάνω διαδικασία, η εξέλιξη της πυκνότητας του όγκου c(x, t) = e t u(x, t) μπορεί να παρατηρηθεί αριθμητικά, όπως φαίνεται στο σχήμα 10 για 0.2 t 4 με χρονικό βήμα dt = 0.2. Στο σχήμα 10, διαφορετικές γραμμές αναπαριστούν την πυκνότητα του όγκου σε διαφορετικές χρονικές στιγμές. Ο συντελεστής διάχυσης γ έχει τεθεί γ = 0.5 στα σχήματα 10a και 10c, ενώ στα σχήματα 10b και 10d έχει τεθεί γ = 0.2. Η αρχική πυκνότητα του όγκου θεωρείται u(x, 0) = δ(x+3) στα σχήματα 10a και 10b, και u(x, 0) = δ(x + 4) + δ(x 2) στα σχήματα 10c και 10d. Παρατηρείστε ότι σε όλες τις περιπτώσεις η φαιά ουσία (κόκκινη περιοχή) συμπεριφέρεται ως επιταχυντής ανάπτυξης. Στις πιο κατάλληλες πλατφόρμες λογισμικού για την επίλυση προβλημάτων ενδιαφέροντος συγκαταλέγονται τα: Deal.II, DUNE, FEATool και FeniCS. Η πλατφόρμα λογισμικού που επελέγη προς χρήση, μετά από μελέτη και πρόταση από την ΚΕΟ 2 του έργου, είναι η πλατφόρμα πεπερασμένων στοιχείων FeniCS [17]. Η πλατφόρμα FeniCS ικανοποιεί κατά το πλείστον τα κριτήρια επιλογής που θέσαμε στη παράγραφο 2.3 καθώς:

14 Δ4.2/14 T1 Πρόβλημα 1 B.E. C.N. DIRK T2 Πρόβλημα 2 B.E. C.N. DIRK T3 Πρόβλημα 3 B.E. C.N. DIRK Αδιάστατος Χρόνος t = 0.01 t = 0.1 t = 1 t = 4 t = 10 Πραγματικός Χρόνος 20 ώρες 8 μέρες 3 μήνες 1 χρόνος 2 χρόνια χρησιμοποιεί τις διαδεδομένες γλώσσες προγραμματισμού C++ ή python για την περιγραφή των προβλημάτων επίλυσης διαθέτει σύγχρονες υλοποιήσεις αριθμητικών μεθόδων πεπερασμένων στοιχείων μέσω των οποίων είναι εφικτή η επίλυση multi physics, multidomain προβλημάτων διαθέτει μια πολύ δραστήρια ομάδα υποστήριξης και εξέλιξης του λογισμικού από τα μεγαλύτερα πανεπιστημιακά και ερευνητικά ιδρύματα δυνατότητα επέκτασης των βιβλιοθηκών των μεθόδων

15 Δ4.2/ (a) (b) (c) (d) Σχήμα 10: Χρονική εξέλιξη του πυκνότητας του όγκου c(x, t) για t = 0.2 : 0.2 : 4 διαθέτει ένα πολύ αναλυτικό αποθετήριο σχετικών συγγραμμάτων τεκμηρίωσης διατίθεται [18] αναλυτικός οδηγός χρήσης και εφαρμογών. Η πλατφόρμα λογισμικού FeniCS εγκαταστάθηκε σε υπολογιστικά συστήματα και εξυπηρετητές (διαφορετικών λειτουργικών συστημάτων) του Εργαστηρίου Εφαρμοσμένων Μαθηματικών και Η/Υ (ΕΕΜΗΥ) προς χρήση από τα μέλη και συνεργάτες της ΚΕΟ 1. Για την πιστοποίηση της σωστής εγκατάστασης και λειτουργίας της πλατφόρμας στα συστήματα του ΕΕΜΗΥ έγιναν πολλές πειραματικές δοκιμές από τις οποίες ενδεικτικά παρατίθεται η επίλυση ενός Poisson ελλειπτικού προβλήματος, με Νeumann συνοριακές συνθήκες, η λύση του οποίου επιδεικνύεται στο Σχ. 1 ενώ ο κώδικας επίλυσης του σε python εμφανίζεται στο Σχ. 2.

16 Δ4.2/16 Σχήμα 11: Γράφημα λύσης προβλήματος δοκιμής σε FeniCS Σχήμα 12: Κώδικας επίλυσης προβλήματος δοκιμής σε python Παπαδομανωλάκη Μαρία Η μέθοδος Collocation για παραβολικές μερικές διαφορικές εξισώσεις με ασυνεχή συντελεστή διάχυσης: στην κατεύθυνση προσομοίωσης καρκινικών όγκων εγκεφάλου. Διδακτορική Διατριβή Δ. Μαντζαβίνος, Μ. Παπαδομανωλάκη, Ι. Σαριδάκης, Α. Σηφαλάκης Fokas

17 Δ4.2/17 transform method for a brain tumor invasion model with heterogeneous diffusion in 1+1 dimensions.applied Numerical Mathematics, doi: /j.apnum Ανάπτυξη Λογισμικού σε προγραμματιστικό περιβάλλον MATLAB και Fortran. Η παρούσα Ετήσια Τεχνική Έκθεση Εγκατάσταση και διαρκή αναβάθμιση σε νεότερες εκδόσεις του λογισμικού σε προσωπικά υπολογιστικά συστήματα των μελών της ερευνητικής ομάδας του ΠΚ για λειτουργικά συστήματα Linux και Mac OS-X, καθώς και σε ένα Linux server του ΕΕΜΗΥ. Η παρούσα έρευνα πραγματοποιήθηκε από η ερευνητική ομάδα του Πολυτεχνείου Κρήτης (ΚΕΟ1) αποτελούμενη από τους καθ. Ι. Σαριδάκη, καθ. Ε. Παπαδοπούλου, επ.καθ. Ε. Μαθιουδάκη, Δρ. Μ. Παπαδομανωλάκη, Δρ. Α. Σηφαλάκη και τον υποψήφιο διδάκτορα Ι. Αθανασάκη. Επίσης για την επιλογή του κατάλληλου λογισμικού υπήρξε συνεργασία μελών όλων των ερευνητικών ομάδων καθώς η χρήση αυτού του λογισμικού θα γίνει από όλες τις ομάδες. Εφαρμογή της ddhc και της μεθόδου Φωκά σε μαθηματικό μοντέλο διάχυσης καρκινικών όγκων N περιοχών και αρχικών πηγών στις διαστάσεις Εφαμοργή σε μη γραμμικά μοντέλα Βιολογικής Εισβολής πληθυσμών. Εφαρμογή σε μοντέλα διάχυσης καρκινικών όγκων στον εγκέφαλο διαστάσεων. [1] R. Alexander Diagonally Implicit Runge-Kutta Methods for stiff ODE s, SIAM vol. 14 no. 6, pp , [2] C. de Boor and B. Swartz Collocation at Gaussian points,,, vol.10, pp , 1973.

18 Δ4.2/18 [3] P.K.Burgess,P.M.Kulesa,J.D.Murray,and E.C.Alvord Jr. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas,, vol.56, no. 6, pp , [4] J.C.Butcher Implicit Runge-Kutta processes,, vol.18, pp.50-64, [5] M. Crouzeix Sur l approximation des equations differentielles operationnelles lineaires par desmethodes de Runge Kutta,,1975. [6] J.C.Butcher The numerical analysis of ordinary differential equations,, [7] G.C.Cruywagen,D.E.Woodward,P.Tracqui,G.T.Bartoo,J.D.Murray,and E.C.Alvord Jr. The modeling of diffusive tumours,, vol.3, pp , [8] A. R. Mitchell, D.F. Griffiths The Finite Difference Method in Partial Differential Equations,, [9] M.G. Papadomanolaki and Y.G. Saridakis Collocation with discontinous Hermite elements for a tumour invasion model with heterogeneous diffusion in 1+1 dimensions,, pp , [10] G.D. Smith Numerical solution of partial equations:finite difference methods(third edition),, [11] K.R.Swanson Mathematical modelling of the growth and control of tumour,, [12] K.R.Swanson, E.C.Alvord Jr and J.D.Murray A quantitive model for differential motility of gliomas in grey and white matter,, vol.33, pp , [13] K.R.Swanson,C.Bridge,J.D.Murray and E.C.Alvord Jr Virtual and real brain tumours:using mathematical modeling to quantify glioma growth and invasion,, vol.216, pp.1-10, [14] P.Tracqui,G.C.CruywagenG,D.E.Woodward,T.Bartoo, J.D.Murray and E.C.Alvord Jr. A mathematical model of glioma growth:the effect of chemotherapy on spatio-temporal growth,, vol.28, pp.17-31, 1995.

19 Δ4.2/19 [15] D.E.Woodward,J.Cook,P.Tracqui,G.C.Cruywagen,J.D.Murray,and E.C.Alvord Jr. A mathematical model of glioma growth: the effect of extent of surgical resection,, vol.29, pp , [16]. [17]. [18] Logg, Anders, Mardal, Kent-Andre, Wells, Garth,Lecture Notes in Computational Science and Engineering, (84), Springer, 2012.

Τεχνική Έκθεση DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3

Τεχνική Έκθεση DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3 Δ4.2/2 1.1 DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3 1.2 Επικύρωση αποτελεσμάτων σε γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων στις 1 + 1 διαστάσεις.......... 4 1.3 Επικύρωση αποτελεσμάτων

Διαβάστε περισσότερα

Τεχνική Έκθεση Ανάπτυξη Υβριδικής Collocation - ΜΧΔ (HC-IR) μεθόδου στις 1+1. διαστάσεις... 4

Τεχνική Έκθεση Ανάπτυξη Υβριδικής Collocation - ΜΧΔ (HC-IR) μεθόδου στις 1+1. διαστάσεις... 4 Τεχνική Έκθεση 24 Δ2./2. Ανάπτυξη ddhc για μη-γραμμικά ΠΑΣΣ-ΠΠ στις +2 διαστάσεις με ασυνέχειες μόνο σε μία διάσταση................ 3.2 Ανάπτυξη ddhc για γραμμικά ΠΑΣΣ-ΠΠ στις +2 διαστάσεις με ασυνέχειες

Διαβάστε περισσότερα

Τελική Τεχνική Έκθεση

Τελική Τεχνική Έκθεση Δ4.2/2 1.1 Σχήματα Χρονικής Διακριτοποίησης Runge-Kutta......... 4 1.2 Μοντέλα Βιολογικής Εισβολής Πληθυσμών και Διάχυσης Καρκινικών Όγκων στον Εγκέφαλο.................... 5 1.3 Εξέλιξη Καρκινικών Όγκων

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις...

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις... Δ2.4/2 1.1 Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων στις 1+1 διαστάσεις με ασυνεχή συντελεστή διάχυσης και χρονικά εξαρτώμενους συντελεστές..................... 3 1.2 Μέθοδος Φωκά για γραμμικά

Διαβάστε περισσότερα

Τεχνική Έκθεση Αναγνώριση, Ψηφιοποίηση και Διακριτοποίηση Ετερογενών Περιοχών MRI Απεικόνισης Εγκεφάλου... 14

Τεχνική Έκθεση Αναγνώριση, Ψηφιοποίηση και Διακριτοποίηση Ετερογενών Περιοχών MRI Απεικόνισης Εγκεφάλου... 14 Δ4.2/2 1.1 ddhc και IMEX RK σχήματα για μη-γραμμικά μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου.................... 3 1.2 Απεικόνιση των ddhc εξισώσεων για γραμμικά μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Τεχνική Έκθεση Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα

Τεχνική Έκθεση Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα Δ2.1/2 1.1 Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων στις 1 + 1 διαστάσεις............. 3 1.2 Ανάπτυξη της μεθόδου Hermite Collocation για ομογενή παραβολικά μη-γραμμικά προβλήματα

Διαβάστε περισσότερα

Τεχνική Έκθεση Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs... 3

Τεχνική Έκθεση Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs... 3 Δ2.1/2 1.1 Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs................... 3 2.1 Red Black Collocation γραμμικά συστήματα............ 4 2.1.1 Παράλληλος αλγόριθμος

Διαβάστε περισσότερα

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά Θαλής MATENVMED - ΜΙΣ 379416 Δράση 24 - Μέθοδοι Μετασχηματισμού Φωκά Ασβεστάς Μάριος 1, Μαντζαβίνος Διονύσιος 2, Παπαδομανωλάκη Μαριάννα 1, Παπαδοπούλου Έλενα 1, Σαριδάκης Γιάννης 1, Σηφαλάκης Τάσος 1,

Διαβάστε περισσότερα

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους Έκθεση Προόδου 2014 2 1.1 Σκοπός................................ 4 1.2 Δραστηριότητες Έτους 2014..................... 4 2.1 Υβριδικές/Ασυνεχείς Μέθοδοι Collocation............. 6 2.2 Μέθοδοι Χαλάρωσης

Διαβάστε περισσότερα

Τελική Τεχνική Έκθεση. 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4

Τελική Τεχνική Έκθεση. 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4 Δ2.1/2 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4 1.2 Η ddhc μέθοδος για γενικευμένα μη-γραμμικά παραβολικά ΠΑΣΣ- ΠΠ στις 1+1 διαστάσεις....................... 5 1.3 Η ddhc μέθοδος

Διαβάστε περισσότερα

Θαλής (ΜΙΣ:379416) Μέθοδος Φωκά για Ασυνεχή Προβλήματα

Θαλής (ΜΙΣ:379416) Μέθοδος Φωκά για Ασυνεχή Προβλήματα Το Πρόβλημα Θαλής ΜΙΣ:379416) για Ασυνεχή Προβλήματα Διονύσιος Μαντζαβίνος 1, Παπαδοπούλου Έλενα 2, Παπαδομανωλάκη Μαριάννα 2, Σαριδάκης Γιάννης 2, Σηφαλάκης Τάσος 2, Ασβεστάς Μάριος 2 1 Τμήμα Εφαρμοσμένων

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ...

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ... Δ2.2/2 2.1 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 3 2.2 Παράλληλοι Αλγόριθμοι ΜΧΔ.................... 6 3.1 Μέθοδοι χαλάρωσης στη διεπαφή για

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

Πεπερασμένες διαφορές

Πεπερασμένες διαφορές Κεφάλαιο 2 Πεπερασμένες διαφορές Αυτό το κεφάλαιο αποτελεί μια εισαγωγή στο αντικείμενο των πεπερασμένων διαφορών για την επίλυση διαφορικών εξισώσεων. Θα εισαγάγουμε ποσότητες που προκύπτουν από διαφορές

Διαβάστε περισσότερα

Περιεχόμενα Σκοπός Μεθοδολογία Συμπεράσματα Μελλοντικές Δράσεις Παραδοτέα Συνεργασίες

Περιεχόμενα Σκοπός Μεθοδολογία Συμπεράσματα Μελλοντικές Δράσεις Παραδοτέα Συνεργασίες Δ4.3/2 2.1 Παράκτιος υδροφορέας περιοχής Βαθέως Καλύμνου....... 3 2.2 Υφαλμύριση παράκτιων υδροφορέων............... 3 2.3 Οι εξισώσεις του μαθηματικού μοντέλου.............. 4 2.4 Αναλυτική λύση............................

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως: Γενικές π ληροφορίες μαθήματος: Τίτλος Υπ ολογιστική μαθήματος: Υδραυλική με Εφαρμογές σε Υδραυλικά Έργα Πιστωτικές μονάδες: 5 Κωδικός μαθήματος: CE07_H05 Φόρτος εργασίας ( ώρες): Επίπ εδο μαθήματος: Προπτυχιακό

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους Έκθεση Προόδου 2013 2 1.1 Σκοπός................................ 4 1.2 Δραστηριότητες Έτους 2013..................... 4 2.1 Υβριδικές/Ασυνεχείς Μέθοδοι Collocation............. 5 2.2 Μέθοδοι Χαλάρωσης

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7 Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 2.2 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 5 3.1 Μέθοδοι χαλάρωσης στη

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Κεφάλαιο 5 Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Σε αυτό το κεφάλαιο θεωρούμε μια απλή παραβολική εξίσωση, την εξίσωση της θερμότητας, στη μια διάσταση ως προς τον χώρο. Θα κατασκευάσουμε

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις διαστάσεις...

Τεχνική Έκθεση Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις διαστάσεις... Δ2.4/2 1.1 Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις 1 + 1 διαστάσεις........ 3 1.2 Εισαγωγή στις δύο χωρικές διαστάσεις και σε μη-γραμμικά προβλήματα................................

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.

Διαβάστε περισσότερα

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία. Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa

chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ονοµατεπώνυµο : ιεύθυνση : Email: Web: ΠΑΝΑΓΙΩΤΗΣ ΧΑΤΖΗΠΑΝΤΕΛΙ ΗΣ Τµήµα Μαθηµατικών, Λεωφ. Κνωσσού, Ηράκλειο, 71409. chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa Προσωπικά

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΒΙΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ 1.1 ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Επώνυμο ΠΟΛΙΤΗΣ Όνομα Όνομα πατρός Διεύθυνση Ηλ. διεύθυνση

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Τεχνική Έκθεση Ανάπτυξη και υποστήριξη ιστοσελίδας Πρακτικά ημερίδας σε ηλεκτρονική μορφή... 25

Τεχνική Έκθεση Ανάπτυξη και υποστήριξη ιστοσελίδας Πρακτικά ημερίδας σε ηλεκτρονική μορφή... 25 Δ2.4/2 1.1 Ανάπτυξη και υποστήριξη ιστοσελίδας............... 3 1.2 Ημερίδα παρουσίασης αποτελεσμάτων.............. 3 1.3 Επιστημονικές Ημερίδες....................... 4 1.4 Διεθνή Συνέδρια...........................

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε την διακριτοποίηση

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΕΥΡΩΠΑΪΚΩΝ ΠΟΡΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. "ΕΚΠΑΙΔΕΥΣΗ & ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ" Ταχ.

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam)

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) Κεφάλαιο 1 Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) 1.1 Ορισμός σχεδιομελέτης και παραγωγής με χρήση υπολογιστή CAD (Computer

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. H ( Ω ). Αυτό επιβάλλει τη χρήση C πεπερασμένων. C ( Ω )). Άλλες προσεγγίσεις που αποφεύγουν τη χρήση C πεπερασμένων

ΕΙΣΑΓΩΓΗ. H ( Ω ). Αυτό επιβάλλει τη χρήση C πεπερασμένων. C ( Ω )). Άλλες προσεγγίσεις που αποφεύγουν τη χρήση C πεπερασμένων ΕΙΣΑΓΩΓΗ Οι μερικές διαφορικές εξισώσεις οι οποίες προκύπτουν στη Μαθηματική Μοντελοποίηση πολλών φυσικών, χημικών, βιολογικών φαινομένων και σε ποικίλες θεματικές περιοχές όπως η Δυναμική των Ρευστών,

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B) 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών B ttp://ecoursescemengntuagr/courses/computational_metods_or_engineers/ Επίλυση διαφορικών εξισώσεων Α Επίλυση

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγή στον Υπολογισμό της Χρονικής 5 1 Απόκρισης Δυναμικών Εξισώσεων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 8 : Το ιακριτό Μοντέλο Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκουσα: Δ.-Θ. Κακλαμάνη Web Sites: http://olympos.esd.ece.ntua.gr

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ

3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ 3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ Σύνοψη Στο Κεφάλαιο 3 «Επίλυση Παραβολικών Εξισώσεων» παρατίθενται αριθμητικές τεχνικές επίλυσης παραβολικών εξισώσεων. Αναφέρονται μερικές ρητές αριθμητικές τεχνικές και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συνάρτηση Μεταφοράς Σ.Δ.Δ. Διακριτοποίηση Συν. Μεταφοράς Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 1 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω Διαδικασία υπολογιστικής προσομοίωσης Η διαδικασία της υπολογιστικής προσομοίωσης για την επίλυση πρακτικών προβλημάτων με εμπορικό λογισμικό περιλαμβάνει τα στάδια που φαίνονται στο διάγραμμα του Σχ.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Δ.-Θ. Κακλαμάνη, Καθηγήτρια ΕΜΠ Δρ. Σ. Καπελλάκη,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα