Τεχνική Έκθεση DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνική Έκθεση DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3"

Transcript

1

2 Δ4.2/2 1.1 DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου Επικύρωση αποτελεσμάτων σε γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων στις διαστάσεις Επικύρωση αποτελεσμάτων σε ομογενή παραβολικά μη-γραμμικά προβλήματα στις διαστάσεις διαστάσεις Επικύρωση αποτελεσμάτων σε γραμμικά προβλήματα πολλαπλών πεδίων στις διαστάσεις DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου Μαθηματικό Μοντέλο σε Ν περιοχές Επικύρωση αποτελεσμάτων σε γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων στις διαστάσεις Μεθοδος ddhc και σχήματα DIRK Μέθοδος Φωκά Επικύρωση αποτελεσμάτων σε ομογενή παραβολικά μη-γραμμικά προβλήματα στις διαστάσεις διαστάσει Πρόβλημα ΙΙ Πρόβλημα ΙΙΙ Επικύρωση αποτελεσμάτων σε γραμμικά προβλήματα πολλαπλών πεδίων στις διαστάσεις

3 Δ4.2/3 Κεντρική επιδίωξη της παρούσας δράσης αποτελεί αφενός μεν η επικύρωση των αποτελεσμάτων μας (αποδοτικότητα μεθόδων) με ένα τόσο σημαντικό πρόβλημα, αφετέρου δε η μελέτη της εξέλιξης καρκινικών όγκων εγκεφάλου, με χρήση νέων μεθόδων, λογισμικού και σύγχρονων υπολογιστικών αρχιτεκτονικών. Την τρέχουσα περίοδο σκοπός μας ήταν η εφαρμογή της μεθόδου που αναπτύξαμε στις δράσεις 2.1 και 2.4 (βλ. Τεχνικές Εκθέσεις 2.1 και 2.4 Έτους 2013) σε γενικευμένα (με ακαθόριστου πλήθους περιοχών ασυνέχειας και αρχικών πηγών) γραμμικά προβλήματα διάχυσης καρκινικών όγκων στον εγκέφαλο στις αλλά και στις διαστάσεις όπου παράλληλα επαληθεύσαμε την τέταρτη τάξη σύγκλισης της μεθόδου ddhc. Προς τούτο η ddhc μέθοδος συνδυάστηκε με ένα Diagonally Implicit Runge-Kutta σχήμα διακριτοποίησης χρόνου τρίτης τάξεως. Παράλληλα, εφαρμόσαμε τη Hermite-Collocation, με φορμαλισμό Hadamard που αναπτύξαμε στη Δράση 2.1 για μη-γραμμικά παραβολικά προβλήματα σε ομοιογενή περιβάλλοντα, σε γενικευμένα προβλήματα βιολογικής εισβολής τύπου Fisher και KPP. Τα Runge-Kutta σχήματα διακριτοποίησης χρόνου που χρησιμοποιήσαμε για αυτήν την κατηγορία προβλημάτων ανήκουν στην κλάση Strong Stability Preserving (SSP) τριών και τεσσάρων βημάτων τρίτης τάξεως. Επιπλέον, την περίοδο αυτή συνεχίστηκε η πειραματική επεξεργασία δεδομένων και η πραγματοποίηση ενδεικτικών προσομοιώσεων με την πλατφόρμα πεπερασμένων στοιχείων FEniCS στα υπολογιστικά συστήματα του Εργαστηρίου Εφαρμοσμένων Μαθηματικών και Η/Υ (ΕΕΜΗΥ). Ταυτόχρονα επεκτείνεται η μελέτη απεικόνισης μεθόδων Hermite-Collocation σε πολυπυρήνες παράλληλες υπολογιστικές αρχιτεκτονικές τύπου CPU/GPU (η περιγραφή των σχετικών αποτελεσμάτων έχει συμπεριληφθεί στη ΤΕ Δράσης 4.3 έτους 2013). Στις επόμενες παραγράφους συνοψίζονται τα αποτελέσματα εφαρμογών της τρέχουσας περιόδου. Για την αποτελεσματικότερη συμπεριφορά της της μεθόδου ddhc είναι απαραίτητη η ζεύξη της με κατάλληλο αριθμητικό σχήμα χρονικής διακριτοποίησης ικανό να διατηρεί την συνολική τάξη σύγκλισης της μεθόδου σε γραμμικά και μη-γραμμικά μοντέλα διάχυσης καρκινικού όγκου αλλά και σε προβλήματα με άκαμπτη λύση. Σκοπός της ενότητας αυτής είναι να περιγράψουμε με συντομία σχήματα Runge-Kutta διακριτοποίησης χρόνου τύπου Diagonally Implicit και Strong Stability Preserving (SSP) και να εξηγήσουμε την καταλληλότητα χρήσης

4 Δ4.2/4 τους σε διαφορετικές κλάσεις προβλημάτων ώστε να εξυπηρετείται αφενός μεν ο πρωταρχικός μας στόχος της αποτελεσματικής ζεύξης με μεθόδους Collocation αφετέρου δε τα παραγόμενα συστήματα αλγεβρικών εξισώσεων να διατηρούν περιορισμένη πολυπλοκότητα ώστε να μπορούν να επιλυθούν γρήγορα και αποδοτικά Σκοπός της ενότητας αυτής είναι η μελέτη συμπεριφοράς της σύζευξης σχημάτων Runge-Kutta, τύπου Diagonally Implicit, και μεθόδων ddhc, καθώς και μετασχηματισμού Φωκά, σε γενικευμένα μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου στις διαστάσεις που περιγράφονται από αντίστοιχα γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων Σκοπός της ενότητας αυτής είναι η μελέτη συμπεριφοράς των μεθόδων Hermite- Collocation και SSPRK για μη-γραμμικά ομοιογενή παραβολικά προβλήματα, που αναπτύχθηκαν και περιγράφονται στη ΤΕ της Δράσης 2.1 έτους 2013, σε προβλήματα Βιολογικής εισβολής πληθυσμών στις διαστάσεις Σκοπός της ενότητας αυτής είναι η μελέτη συμπεριφοράς των μεθόδων ddhc και σχημάτων DIRK σε μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου στις διαστάσεις που περιγράφονται από αντίστοιχα γραμμικά προβλήματα πολλαπλών πεδίων. Το υπόλοιπο της παρούσης Τεχνικής Έκθεσης είναι οργανωμένο ως εξής. Στην παράγραφο 2 περιγράφονται σχήματα Runge-Kutta καθώς και τα το γενικό μοντέλο εξέλιξης καρκινικών όγκων εγκεφάλου, στην παράγραφο 3 ενδεικτικά αριθμητικά αποτελέσματα, ενώ στις επόμενες παραγράγους περιγράφονται συνεργασίες που αναπτύχθηκαν καθώς και τους μελλοντικούς στόχους.

5 Δ4.2/5 Για την εφαρμογή των αριθμητικών μεθόδων ddhc και τον συνδυασμό τους με διάφορα σχήματα χρονικής διακριτοποίησης χρησιμοποιήθηκαν εξισώσειςμοντέλα που κυρίως προσομοιώνουν, την ανάπτυξη καρκινικού όγκου στον εγκέφαλο και την βιολογική εισβολή πληθυσμού σε ομοιογενές και ανομοιογενές περιβάλλον. Ας θεωρήσουμε ότι έχουμε ένα σύστημα Συνήθων Διαφορικών Εξισώσεων (ΣΔΕ) της μορφής: C (0) ȧa = L(a). (1) Θεωρώντας ότι ο πίνακας C (0) είναι αντιστρέψιμος τότε το σύστημα θα μπορούσε επίσης να γραφεί ως: ȧa = L( ). = ( C (0)) 1 L( ) (2) Όπως είναι γνωστό, η βασική ιδέα των μεθόδων Runge-Kutta είναι η προσέγγιση της λύσης απο το βήμα a (n) στο χρονικό βήμα a (n+1) χρησιμοποιώντας τον τύπο q ενδιάμεσων βημάτων: a (n+1) = a (n) + t q b i L(a (n,i) (3) με a (0) να είναι η αρχική συνθήκη του συστήματος και b i συντελεστές βαρύτητας των μεθόδων RK. Η χρήση αριθμητικών σχημάτων υψηλής τάξης που να διατηρούν την ευστάθεια του συστήματος απεδείχθη απαραίτητη, ιδιαιτέρως σε μη-γραμμικά προβλήματα και σε προβλήματα με άκαμπτη λύση. Στη κατεύθυνση αυτή, μελετήσαμε καταρχήν την χρήση της Διαγώνιας Πεπλεγμένης Runge-Kutta (Diagonally Implicit RK - DIRK) τρίτης τάξης, η οποία αποδείχθηκε κατάλληλη για γραμμικά προβλήματα πολλαπλών πεδίων στις 1+1 και στις 1+2 διαστάσεις καθώς και σε προβλήματα που έχουν άκαμπτη λύση. Για το σύστημα (2) η μέθοδος DIRK μπορεί να γραφεί ως: i=1 (1) = n + λ t L( (1) ) [ ] (2) = n + t (1 2λ) L( (1) ) + λ L( (2) ) n+1 = n + t [ L( (1) ) + 2 L( )] (2)

6 Δ4.2/6 Η εφαρμογή της μεθόδου DIRK σε μη γραμμικά συστήματα ΣΔΕ κρίθηκε μη αποδοτική λόγω του υψηλού υπολογιστικού κόστους ανά χρονικό βήμα. Συγκεκριμένα, η πεπλεγμένη δομή της μεθόδου δημιουργεί μη γραμμικούς αγνώστους, με συνέπεια, η προσέγγιση της λύσης σε κάθε χρονικό βήμα να προϋποθέτει τη λύση δύο μη γραμμικών συστημάτων. Ως εναλλακτικά επιλογή θεωρήσαμε τα σχήματα Strong Stability Preserving RK (SSPRK) τριών και τεσσάρων βημάτων, που έχουν αναπτυχθεί για την επίλυση μη γραμμικών συστημάτων ΣΔΕ. Οι κανόνες SSPRK τριών και τεσσάρων βημάτων έχουν αντίστοιχα τη μορφή: (1) = n + t L( n ) (2) = 3 4 n (1) t L( (1) ) n+1 = 1 3 n (2) t L( (2) ) (1) = n t L( n ) (2) = (1) t L( (1) ) (3) = 2 3 n (2) t L( (2) ) n+1 = (3) t L( (3) ) Η βασική ΜΔΕ που περιγράφει το γραμμικό μοντέλο διάχυσης καρκινικών όγκων στον εγκέφαλο έχει τη μορφή: c t = ( D( ) c ) + ρ c, (4) όπου c(, t) συμβολίζει τη συγκέντρωση κυττάρων στη θέση x την χρονική στιγμή t, το ρ συμβολίζει το ποσοστό της αύξησης της συγκέντρωσης των κυττάρων,

7 Δ4.2/7 και συμπεριλαμβάνει τόσο το ρυθμό αναπαραγωγής όσο και εκείνον της καταστροφής τους, και D( ) είναι ο συντελεστής διάχυσης των κυττάρων στον ιστό του εγκεφάλου και δίδεται από την σχέση D( ) = { Dg, ανήκει στην φαιά ουσία D w, ανήκει στην λευκή ουσία, (5) με D g και D w να είναι σταθερές με D w > D g. Το μοντέλο ολοκληρώνεται με μηδενικές συνοριακές συνθήκες ροής που υποδηλώνουν τη μη επέκταση των καρκινικών κυττάρων εκτός της περιοχής του εγκεφάλου, καθώς και μία αρχική συνθήκη c(, 0) = f( ), όπου f( x) δείχνει την αρχική χωρική κατανομή των κακοήθων κυττάρων. Χρησιμοποιώντας τον κλασικό εκθετικό μετασχηματισμό c(x, t) = e t u(x, t) και τις αδιάστατες μεταβλητές (βλ. [27] ): ρ x = x, t = ρ t, (6) D w f(x) = f ( ρ c(x, t) = c ( ρ D w x ) Dw xρ t, (7) D w ρn 0 ), N 0 = f(x)dx (8) καταλήγουμε στην παρακάτω μορφή του μοντέλου: u t = (D u), x [a, b], u x (a, t) = 0, u x (b, t) = 0 t 0 u(x, 0) = f(x) := M δ(x ξ i ), ξ i (a, b) i=1, (9) όπου δ(x) δηλώνει την Dirac delta συνάρτηση. Λαμβάνοντας υπ όψιν την ετερογένεια του εγκεφαλικού ιστού (λευκή - φαιά ουσία), θεωρούμε ότι το διάστημα [a, b] είναι χωρισμένο σε n + 1 περιοχές R j := (w j 1, w j ), με a w 0 < w 1 < w 2 <... < w n < w n+1 b, και εάν, για κάποιο j, η R j είναι η λευκή περιοχή, τότε η R j 1 και R j+1 θα είναι η φαιά περιοχή. Συνεπώς η αδιάστατη μορφή του συντελεστή διάχυσης D(x) γίνεται: με γ j := D(x) = γ j, x R j, j = 1,..., n + 1 (10) { Dg /D w, όταν η R j είναι η φαιά ουσία 1, when R j είναι λευκή ουσία. (11)

8 Δ4.2/ Σε αυτή την ενότητα μελετάμε αριθμητικά την απόδοση της collocation μεθόδου (DHC) με ασυνεχή πολυώνυμα Hemite στα σημεία διεπαφής σε συνδυασμό με τα χρονικά σχήματα (BE), (CN) και (2,3)-DIRK στα ακόλουθα προβλήματα: a = 5, w 1 = 2.5, w 2 = 0, w 3 = 2.5, b = 5, γ = 0.5 και f(x) = 1 η π e (x 1)2 /η 2, με η = 0.2. Η εξέλιξη του καρκινικού όγκου στο χρόνο για μέγιστο χρόνο t max = 4, που αντιστοιχεί σε πραγματικό χρόνο περίπου ενός έτους, απεικονίζεται σχηματικά από το σχήμα (1) που ακολουθεί. Η τάξη σύγκλισης της collocation μεθόδου (DHC) Σχήμα 1: Εξέλιξη της συγκέντρωσης καρκινικών κυττάρων στο χρόνο με ασυνεχή πολυώνυμα Hemite στα σημεία διεπαφής σε συνδυασμό με όλες τις μεθόδους χρονικής διακριτοποίησης, όπως φαίνεται στο σχήμα (2) διατηρείται τετάρτης τάξεως. Αντίστοιχα η τάξη σύγκλισης των χρονικών μεθόδων διακριτοποίησης, όπως φαίνεται στο σχήματα (3) παρέμεινε ένα για την BE, δύο CN και

9 Δ4.2/9 Σχήμα 2: Τάξη σύγκλισης της χωρικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 1. τρία για την DIRK. Το N t συμβολίζει το πλήθος των χρονικών βημάτων μεταξύ του t = 0 και του t = 4. Σχήμα 3: Τάξη σύγκλισης της χρονικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 1. a = 10, w 1 = 6, w 2 = 2,, w 3 = 2, w 4 = 6, b = 10, γ = 0.5 και f(x) = 1 η π (e (x+8)2 /η 2 + e (x+4)2 /η 2 ), με η = 0.2.

10 Δ4.2/10 Όπως και στο πρόβλημα 1, η εξέλιξη του καρκινικού όγκου στο χρόνο για μέγιστο χρόνο t max = 4, που αντιστοιχεί σε πραγματικό χρόνο περίπου ενός έτους, απεικονίζεται σχηματικά από το σχήμα (4) που ακολουθεί. Σχήμα 4: Εξέλιξη της συγκέντρωσης καρκινικών κυττάρων στο χρόνο Η τάξη σύγκλισης της collocation μεθόδου (DHC) με ασυνεχή πολυώνυμα Hemite στα σημεία διεπαφής σε συνδυασμό με όλες τις μεθόδους χρονικής διακριτοποίησης, όπως φαίνεται στο σχήμα (5) διατηρείται και πάλι τετάρτης τάξεως. Σχήμα 5: Τάξη σύγκλισης της χωρικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 2. Αντίστοιχα η τάξη σύγκλισης των χρονικών μεθόδων διακριτοποίησης, όπως φαίνεται στο σχήμα (6), παρέμεινε ένα για την BE, δύο CN και τρία για την DIRK. Το N t συμβολίζει το πλήθος των χρονικών βημάτων μεταξύ του t = 0 και του t = 4.

11 Δ4.2/11 Σχήμα 6: Τάξη σύγκλισης της χρονικής διακριτοποίησης όλων των μεθόδων για το Πρόβλημα 2. Για τα αριθμητικά μας πειράματα χρησιμοποιήσαμε [a, b] = [ 4, 5] για τα άκρα, [w 1, w 2, w 3, w 4, w 5 ] = [ 2, 1.5, 0, 3, 4] για τα σημεία διεπαφής των περιοχών, γ j = D g /D w is 0.2 για όλα τα j = 1, 3,..., n + 1 και δύο πηγές καρκινικών κυττάρων με ξ 1 = 3 και ξ 2 = 2.5. Στο γράφημα 7 παρουσιάζεται η διάχυση του καρκινικού όγκου σε διάφορα χρονικά βήματα c(c,t) x Σχήμα 7: Χρονική εξέλιξη του πυκνότητας του όγκου c(x, t). Το σχετικό σφάλμα, που απεικονίζεται στο γράφημα 8, δίνεται από τη σχέση:

12 Δ4.2/12 E N := u Ni+1 u Ni / u Ni+1 με N να δηλώνει τον αριθμό των σημείων ολοκλήρωσης και u N είναι η αντίστοιχη αριθμητική λυση. Παρατηρήστε την ταχεία πτώση του σφάλματος καθώς αυξάνονται τα σημεία ολοκλήρωσης E N N Σχήμα 8: Το σχετικό σφάλμα E N Το πρώτο πρόβλημα μοντέλο, που χρησιμοποιήθηκε για την μελέτη της συμπεριφοράς της μεθόδου HC-SSPRK, περιγράφεται από την γενικευμένη εξίσωση του Fisher ως ακολούθως: u t = [(1 u)u x ] x + 2u 2u 2, 5π/2 x 5π/2, 0 t T u x ( 5π 2, t) = 0, u x( 5π 2, t) = 0, u(x, 0) = 1 [2 + sin ( x)] (12) 3 και επιδέχεται την αναλυτική λύση u(x, t) = 1 [ ] e t (3e 2t sin ( x)). 3 e t + e t Το χωρικό απόλυτο σφάλμα που χρησιμοποιήθηκε σε όλα τα πειράματα ορίζεται απο τη σχέση E n := U(x, t n ) u(x, t n ) 2 και οι απαραίτητοι περιορισμοί που τέθηκαν στην χρονική διαμέριση είναι t 1 5 h2 για την SSP(4,3), t 1 10 h2

13 Δ4.2/13 για την SSP(3,3) και t 1 9 h2 για την RK4. Υπο αυτούς τους περιορισμούς όλα τα χρονικά σχήματα έχουν υψηλή ευστάθεια, όπως φαίνεται στην εικόνα b του σχήματος Σχ. 9 για την SSP(4,3) ενώ, την ίδια στιγμή, η O(h 4 ) τάξη σύγκλισης της HC διατηρείται (βλέπε πίνακα I). Το μέγιστο σφάλμα E 1 = max {E n } n και ο υπολογιστικός χρόνος που χρειάζεται να φτάσει το πρόβλημα στο χρόνο t = 1 συμπεριλαμβάνονται επίσης στον πίνακα I ώστε να δειχθεί η αποτελεσματικότητα της μεθόδου. Για να είναι πιο κατανοητή η σύγκριση των σχημάτων υλοποιήσαμε επίσης και την απλή μέθοδο RK τέταρτης τάξης Spatial Absolute Error N=32 N=64 N=128 N=256 N= x t t (a) (b) Σχήμα 9: a) Αναλυτική (συμπαγής) και HC-SSPRK(4,3) προσεγγιστική (σημεία) λύση για N = 64 b) Χωρικό απόλυτο σφάλμα σαν συνάρτηση του χρόνου για την HC-SSPRK(4,3) Πίνακας I Υπολογιστική Επίδοση των σχημάτων HC-RK t = t N SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK e e e e e e e e e e e e e e e Το δεύτερο πρόβλημα που χρησιμοποιήσαμε για να ερευνήσουμε την συμπεριφορά της HC-RK δίνεται απο: u t = [(1 2u)u x ] x u u2, π x π, 0 t T u x ( π, t) = 0, u x (π, t) = 0, u(x, 0) = ( 1 + sin x ) 6 2 (13) και επαληθεύει την αναλυτική λύση u(x, t) = ( ) ( ) 1 + sin x e t 2 2

14 Δ4.2/14 (a) (b) Σχήμα 10: (a) Χρονική σύγκριση σε δευτερόλεπτα μεταξύ των SSPRK(4,3)-(3,3) & RK4. (b) Το απόλυτο σχετικό σφάλμα της μεθόδου ως συνάρτηση του χρόνου για την HC-SSPRK(4,3) (a) (b) Σχήμα 11: (a) Αναλυτική λύση και (b) κάτοψη λύσης για την εξ. (13) Οι απαραίτητοι χρονικοί περιορισμοί που πρέπει να θέσουμε είναι t = 1 5 h2 για την SSPRK(4,3), t = 1 10 h2 για την SSPRK(3,3) και t = 1 9 h2 για την RK4. Κάτω απο αυτούς τους περιορισμούς, διατηρούνται οι συνθήκες ευστάθειας και η τάξη σύγκλισης της HC για κάθε σχήμα χρονικής διακριτοποίησης. Η εξάρτηση του χρονικού βήματος απο το h 2 συνεπάγει στο υψηλό υπολογιστικό κόστος του προβλήματος. (Σημειώνουμε ότι για το πρόβλημα ΙΙ h = 2π/N, ενώ για το πρόβλημα Ι h = 5π/N). Η συνάρτηση του απόλυτου χωρικού σφάλματος της εξίσωσης, όπως φαίνεται στο Σχ. 12, επιβεβαιώνει την παρατήρηση μας στο Πρόβλημα Ι, ότι ο συνδυασμός της HC με ένα σχήμα χρονικής διακριτοποίησης Strong Stability παράγει μια ευσταθή μέθοδο υψηλής τάξης για μη γραμμικά παραβολικά προβλήματα

15 Δ4.2/15 Πίνακας II Υπολογιστική Επίδοση των σχημάτων HC-RK t = t N SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK e e e e e e e e e e e e e e e παραβολικής φύσης (αυτή η παρατήρηση φυσικά ισχύει με την υπόθεση ότι η λύση είναι επαρκώς ομαλή). (a) (b) Σχήμα 12: (a) Χρονική σύγκριση σε δευτερόλεπτα μεταξύ των SSPRK(4,3)-(3,3) & RK4. (b) Το απόλυτο σχετικό σφάλμα της μεθόδου ως συνάρτηση του χρόνου για την HC-SSPRK(4,3) Το τρίτο πρόβλημα που επιλέξαμε για την μελέτη της συμπεριφοράς της μεθόδου HC-RK δίνεται απο: u t = u 2u 2 + u xx, 10 x 10, 0 t T u x ( 10, t) = f( 10), u x (10, t) = f(10) (14) e 5 t+ [ x f(x) = 5, u(x, 0) = 1 ] 6 6 sech 2 6(e 6 t+ 1 x 6 + 1) x 2tanh 12 x 2 Η Εξ. (14) ανήκει στην οικογένεια των Κλασσικών εξισώσεων Fisher, όπου ο συντελεστής διάχυσης είναι σταθερός. Αναλυτικές λύσεις για τέτοιου τύπου εξισώσεις δίνεται στο [11].

16 Δ4.2/16 (a) (b) Σχήμα 13: (a) Αναλυτική Λύση και (b) κάτοψη της λύσης για την εξ. (14) Ο απαραίτητος περιορισμός για το χρονικό βήμα είναι t 1 10 h2 για την SSPRK(4,3), t 1 15 h2 για την SSPRK(3,3) και t 1 13 h2 για την RK4. Με αυτούς τους περιορισμούς πετυχαίνουμε την τάξη σύγκλισης της HC (Πίνακας II) ενώ, οι ιδιότητες ευστάθειας για όλα τα χρονικά σχήματα είναι χαλαρωμένες (Σχ. 14b). (a) (b) Σχήμα 14: (a) Χρονική σύγκριση σε δευτερόλεπτα μεταξύ των SSPRK(4,3)-(3,3) & RK4. (b) Το απόλυτο σχετικό σφάλμα της μεθόδου ως συνάρτηση του χρόνου για την HC-SSPRK(4,3) Αυτή η εξίσωση χρειάζεται πυκνότερη χρονική διαμέριση από τα προηγούμενα προβλήματα, λόγω της κινούμενης άκαμπτης λύσης που παρουσιάζει. Αυτή η ιδιαιτερότητα της λύσης επηρεάζει την ευστάθεια και τον υπολογιστικό χρόνο των σχημάτων Runge-Kutta (Πίνακας IΙI & Σχ. 14a).

17 Δ4.2/17 Πίνακας III Υπολογιστική Επίδοση των σχημάτων HC-RK t = t N SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK e e e e e e e e e e e e e e e όπου Θεωρούμε την εξίσωση c = [D (c)] t, c := c(x, y, t) (x, y) [a, b] 2, 0 t T c(x, y, 0) = f(x, y), c η = 0 γ, (x, y) [ 4, 2] [ 4, 4] D = 1, (x, y) ( 2, 2) ( 2, 2) γ, (x, y) [2, 4] [ 4, 4] 1 t= Σχήμα 15: Αριθμητική Λύση του προβλήματος τύπου Stripes σε 2+1 διαστάσεις Όπως μπορεί κανείς εύκολα να παρατηρήσει στο Σχ. (15), διακρίνονται οι διαφορετικές περιοχές στο χωρίο όπου στις γραμμές διεπαφής σχηματίζεται η ασυνεχής πρώτη παράγωγος της λύσης. Η τάξη σύγκλισης της μεθόδου παραμένει στο τέσσερα (Σχ. (16)) ενώ ο υπολογιστικός χρόνος επίλυσης της εξίσωσης αυξάνει πολυωνυμικά.

18 Δ4.2/ Absolute Spatial Error Time in seconds Elements (N) Elements (N) Σχήμα 16: Τάξη σύγκλισης της Μεθόδου DHC-DIRK και χρόνος υπολογισμού. Ι. Αθανασάκης, Ε. Παπαδοπούλου, Ι. Σαριδάκης, Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation, 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (Παρουσίαση) Ανάπτυξη λογισμικού σε προγραμματιστικό περιβάλλον MATLAB. Η παρούσα τεχνική έκθεση. Η παρούσα έρευνα πραγματοποιήθηκε από η ερευνητική ομάδα του Πολυτεχνείου Κρήτης (ΚΕΟ1) αποτελούμενη από τους καθ. Ι. Σαριδάκη, καθ. Ε. Παπαδοπούλου, Δρ. Μ. Παπαδομανωλάκη, Δρ. Α. Σηφαλάκη και τον υποψήφιο διδάκτορα Ι. Αθανασάκη. Έχοντας ως σκοπό την ολοκλήρωση του συνολικού στόχου του προγράμματος, προγραμματίζουμε ως μελλοντικές δράσεις της ομάδας μας Διερεύνηση νέων αριθμητικών σχημάτων για την χρονική διακριτοποίηση μη γραμμικών ΜΔΕ πολλαπλών πεδίων Μελέτη συμπεριφοράς της μεθόδου ddhc σε μη-γραμμικά προβλήματα στις 1+1 και 1+2 διαστάσεις.

19 Δ4.2/19 Μελέτη συμπεριφοράς της μεθόδου ddhc σε προβλήματα με ορθογώνια γεωμετρία αλλά με ασυνέχεια του συντελεστή διάχυσης ταυτόχρονα και στις δύο διαστάσεις. Ψηφιοποίηση ιατρικών απεικονίσεων MRI (Magnetic Resonance Imaging) και διακριτοποίηση μέσω εξειδικευμένων πακέτων λογισμικού και του FEniCS. [1] Akrivis G, Mathematics of Computation,, 45-68, 2012 [2] R. Alexander Diagonally Implicit Runge-Kutta Methods for stiff ODE s,, vol. 14, no. 6, pp , [3] C. de Boor and B. Swartz Collocation at Gaussian points,, vol.10, pp , [4] P.K. Burgess, P.M. Kulesa, J.D. Murray and E.C. Alvord Jr. The interaction of growth rates and diffusion coefficients in a threedimensional mathematical model of gliomas,, vol.56, no. 6, pp , [5] J.C. Butcher Implicit Runge-Kutta processes,, vol.18, pp.50-64, [6] J.C.Butcher The numerical analysis of ordinary differential equations,, [7] Cherniha R and Dutka V, Reports on Mathematical Physics,, , 2001 [8] M. Crouzeix Sur l approximation des equations differentielles operationnelles lineaires par desmethodes de Runge Kutta,, University Paris VI, Paris, [9] G.C. Cruywagen, D.E. Woodward, P. Tracqui, G.T. Bartoo, J.D. Murray and E.C. Alvord Jr. The modeling of diffusive tumours,, vol.3, pp , [10] de Boor C and Swartz B, SIAM Num. Anal., vol. 10, pp , 1973

20 Δ4.2/20 [11] Duan WS, Yang HJ and Shi YR, Chinese Physics,, , 2006 [12] Fisher RA, Ann. Eugen.,, , 1937 [13] Gottlieb S, Shu CW and Tadmor E, SIAM Num. Anal.,, , 2001 [14] Gottlieb S and Shu CW, Mat. Comp.,, 73-85, 1998 [15] Kolmogorov AN, Petrovsky IG and Piskunov NS, Bull. Moscow State Univ. Ser. A: Math. and Mech.,, 1-25, 1937 [16] Hairer E, Numer. Math.,, 57-68, 1980 [17] Hengeveld R, Chapman and Hall, London, 1989 [18] A. R. Mitchell, D.F. Griffiths The Finite Difference Method in Partial Differential Equations,, [19] Murray JD, Springer, Berlin, 1989 [20] M.G. Papadomanolaki The collocation method for parabolic differential equations with discontinuous diffusion coefficient: in the direction of brain tumour simulations,, Technical University of Crete, 2012 (in Greek) [21] Petrovskii SV and Li BL, Taylor & Francis, 2010 [22] Ruuth S and Spiteri R, J. Scientific Computation,, , 2002 [23] Schmitt B, BIT,, , 1988 [24] Shu CW, SIAM J. Sci. Stat. Comput.,, , 1988

21 Δ4.2/21 [25] Shu CW and Osher S, J. Comput. Phys.,, , 1988 [26] G.D. Smith Numerical solution of partial equations:finite difference methods(third edition),, [27] K.R.Swanson Mathematical modelling of the growth and control of tumour,, [28] K.R.Swanson, E.C.Alvord Jr and J.D.Murray A quantitive model for differential motility of gliomas in grey and white matter,, vol.33, pp , [29] K.R.Swanson,C.Bridge,J.D.Murray and E.C.Alvord Jr Virtual and real brain tumours:using mathematical modeling to quantify glioma growth and invasion,, vol.216, pp.1-10, [30] P.Tracqui,G.C.CruywagenG,D.E.Woodward,T.Bartoo, J.D.Murray and E.C.Alvord Jr. A mathematical model of glioma growth:the effect of chemotherapy on spatio-temporal growth,, vol.28, pp.17-31, [31] D.E.Woodward,J.Cook,P.Tracqui,G.C.Cruywagen,J.D.Murray,and E.C.Alvord Jr. A mathematical model of glioma growth: the effect of extent of surgical resection,, vol.29, pp , 1996.

Τεχνική Έκθεση Ανάπτυξη Υβριδικής Collocation - ΜΧΔ (HC-IR) μεθόδου στις 1+1. διαστάσεις... 4

Τεχνική Έκθεση Ανάπτυξη Υβριδικής Collocation - ΜΧΔ (HC-IR) μεθόδου στις 1+1. διαστάσεις... 4 Τεχνική Έκθεση 24 Δ2./2. Ανάπτυξη ddhc για μη-γραμμικά ΠΑΣΣ-ΠΠ στις +2 διαστάσεις με ασυνέχειες μόνο σε μία διάσταση................ 3.2 Ανάπτυξη ddhc για γραμμικά ΠΑΣΣ-ΠΠ στις +2 διαστάσεις με ασυνέχειες

Διαβάστε περισσότερα

Τεχνική Έκθεση Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο

Τεχνική Έκθεση Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο Δ4.2/2 2.1 Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο.................................. 3 2.2 Ασυνεχής Collocatlion και Αριθμητικά Σχήματα Διακριτοποίησης Χρόνου................................

Διαβάστε περισσότερα

Τελική Τεχνική Έκθεση

Τελική Τεχνική Έκθεση Δ4.2/2 1.1 Σχήματα Χρονικής Διακριτοποίησης Runge-Kutta......... 4 1.2 Μοντέλα Βιολογικής Εισβολής Πληθυσμών και Διάχυσης Καρκινικών Όγκων στον Εγκέφαλο.................... 5 1.3 Εξέλιξη Καρκινικών Όγκων

Διαβάστε περισσότερα

Τεχνική Έκθεση Αναγνώριση, Ψηφιοποίηση και Διακριτοποίηση Ετερογενών Περιοχών MRI Απεικόνισης Εγκεφάλου... 14

Τεχνική Έκθεση Αναγνώριση, Ψηφιοποίηση και Διακριτοποίηση Ετερογενών Περιοχών MRI Απεικόνισης Εγκεφάλου... 14 Δ4.2/2 1.1 ddhc και IMEX RK σχήματα για μη-γραμμικά μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου.................... 3 1.2 Απεικόνιση των ddhc εξισώσεων για γραμμικά μοντέλα εξέλιξης καρκινικών όγκων εγκεφάλου

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις...

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις... Δ2.4/2 1.1 Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων στις 1+1 διαστάσεις με ασυνεχή συντελεστή διάχυσης και χρονικά εξαρτώμενους συντελεστές..................... 3 1.2 Μέθοδος Φωκά για γραμμικά

Διαβάστε περισσότερα

Τεχνική Έκθεση Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα

Τεχνική Έκθεση Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα Δ2.1/2 1.1 Προσαρμογή της ddhc σε γενικευμένα γραμμικά προβλήματα πολλαπλών πεδίων στις 1 + 1 διαστάσεις............. 3 1.2 Ανάπτυξη της μεθόδου Hermite Collocation για ομογενή παραβολικά μη-γραμμικά προβλήματα

Διαβάστε περισσότερα

Τελική Τεχνική Έκθεση. 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4

Τελική Τεχνική Έκθεση. 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4 Δ2.1/2 1.1 Τα βασικά μαθηματικά εργαλεία (Building Blocks) της Δράσης 2.1 4 1.2 Η ddhc μέθοδος για γενικευμένα μη-γραμμικά παραβολικά ΠΑΣΣ- ΠΠ στις 1+1 διαστάσεις....................... 5 1.3 Η ddhc μέθοδος

Διαβάστε περισσότερα

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους Έκθεση Προόδου 2014 2 1.1 Σκοπός................................ 4 1.2 Δραστηριότητες Έτους 2014..................... 4 2.1 Υβριδικές/Ασυνεχείς Μέθοδοι Collocation............. 6 2.2 Μέθοδοι Χαλάρωσης

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά Θαλής MATENVMED - ΜΙΣ 379416 Δράση 24 - Μέθοδοι Μετασχηματισμού Φωκά Ασβεστάς Μάριος 1, Μαντζαβίνος Διονύσιος 2, Παπαδομανωλάκη Μαριάννα 1, Παπαδοπούλου Έλενα 1, Σαριδάκης Γιάννης 1, Σηφαλάκης Τάσος 1,

Διαβάστε περισσότερα

Τεχνική Έκθεση Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs... 3

Τεχνική Έκθεση Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs... 3 Δ2.1/2 1.1 Παράλληλη επαναληπτική επίλυση των Collocation εξισώσεων σε γραφικά υποσυστήματα GPUs................... 3 2.1 Red Black Collocation γραμμικά συστήματα............ 4 2.1.1 Παράλληλος αλγόριθμος

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ...

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ... Δ2.2/2 2.1 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 3 2.2 Παράλληλοι Αλγόριθμοι ΜΧΔ.................... 6 3.1 Μέθοδοι χαλάρωσης στη διεπαφή για

Διαβάστε περισσότερα

Θαλής (ΜΙΣ:379416) Μέθοδος Φωκά για Ασυνεχή Προβλήματα

Θαλής (ΜΙΣ:379416) Μέθοδος Φωκά για Ασυνεχή Προβλήματα Το Πρόβλημα Θαλής ΜΙΣ:379416) για Ασυνεχή Προβλήματα Διονύσιος Μαντζαβίνος 1, Παπαδοπούλου Έλενα 2, Παπαδομανωλάκη Μαριάννα 2, Σαριδάκης Γιάννης 2, Σηφαλάκης Τάσος 2, Ασβεστάς Μάριος 2 1 Τμήμα Εφαρμοσμένων

Διαβάστε περισσότερα

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους

Έκθεση Προόδου Σκοπός Δραστηριότητες Έτους Έκθεση Προόδου 2013 2 1.1 Σκοπός................................ 4 1.2 Δραστηριότητες Έτους 2013..................... 4 2.1 Υβριδικές/Ασυνεχείς Μέθοδοι Collocation............. 5 2.2 Μέθοδοι Χαλάρωσης

Διαβάστε περισσότερα

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία. Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

Πεπερασμένες διαφορές

Πεπερασμένες διαφορές Κεφάλαιο 2 Πεπερασμένες διαφορές Αυτό το κεφάλαιο αποτελεί μια εισαγωγή στο αντικείμενο των πεπερασμένων διαφορών για την επίλυση διαφορικών εξισώσεων. Θα εισαγάγουμε ποσότητες που προκύπτουν από διαφορές

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Περιεχόμενα Σκοπός Μεθοδολογία Συμπεράσματα Μελλοντικές Δράσεις Παραδοτέα Συνεργασίες

Περιεχόμενα Σκοπός Μεθοδολογία Συμπεράσματα Μελλοντικές Δράσεις Παραδοτέα Συνεργασίες Δ4.3/2 2.1 Παράκτιος υδροφορέας περιοχής Βαθέως Καλύμνου....... 3 2.2 Υφαλμύριση παράκτιων υδροφορέων............... 3 2.3 Οι εξισώσεις του μαθηματικού μοντέλου.............. 4 2.4 Αναλυτική λύση............................

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa

chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ονοµατεπώνυµο : ιεύθυνση : Email: Web: ΠΑΝΑΓΙΩΤΗΣ ΧΑΤΖΗΠΑΝΤΕΛΙ ΗΣ Τµήµα Μαθηµατικών, Λεωφ. Κνωσσού, Ηράκλειο, 71409. chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa Προσωπικά

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7 Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 2.2 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 5 3.1 Μέθοδοι χαλάρωσης στη

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις διαστάσεις...

Τεχνική Έκθεση Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις διαστάσεις... Δ2.4/2 1.1 Μέθοδος Φωκά για παραβολικά γραμμικά προβλήματα, με χωρικές και χρονικές ασυνέχειες, στις 1 + 1 διαστάσεις........ 3 1.2 Εισαγωγή στις δύο χωρικές διαστάσεις και σε μη-γραμμικά προβλήματα................................

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B) 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών B ttp://ecoursescemengntuagr/courses/computational_metods_or_engineers/ Επίλυση διαφορικών εξισώσεων Α Επίλυση

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Παρεµβολή Παρεµβολή interpoltion είναι η διαδικασία µε την οποία βρίσκεται µία

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών

Διαβάστε περισσότερα

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως: Γενικές π ληροφορίες μαθήματος: Τίτλος Υπ ολογιστική μαθήματος: Υδραυλική με Εφαρμογές σε Υδραυλικά Έργα Πιστωτικές μονάδες: 5 Κωδικός μαθήματος: CE07_H05 Φόρτος εργασίας ( ώρες): Επίπ εδο μαθήματος: Προπτυχιακό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές Αριθµητικές Μέθοδοι Collocation Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές Hermite Collocation Method BVP L B uxy (, ) = f(, xy), (, xy) Ω uxy (, ) = gxy (, ), (, xy) Ω Red Black Collocation

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Κεφάλαιο 5 Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Σε αυτό το κεφάλαιο θεωρούμε μια απλή παραβολική εξίσωση, την εξίσωση της θερμότητας, στη μια διάσταση ως προς τον χώρο. Θα κατασκευάσουμε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 Μοντελοποίηση της ροής σε ένα πόρο μεταβλητής γεωμετρίας και σε τρισδιάστατα δίκτυα παρουσία νερού ή οργανικής φάσης Ε.Ε. 5.1. : Μοντελοποίηση της ροής σε ένα πόρο απλής και μεταβλητής

Διαβάστε περισσότερα

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΕΥΡΩΠΑΪΚΩΝ ΠΟΡΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. "ΕΚΠΑΙΔΕΥΣΗ & ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ" Ταχ.

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις Κεφάλαιο Εισαγωγή Θα παρουσιάσουμε τις διαφορικές εξισώσεις και τα αντίστοιχα προβλήματα αρχικών και συνοριακών τιμών που θα συναντήσουμε στα επόμενα κεφάλαια. Επίσης, θα δούμε ορισμένες ιδιότητες και

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγή στον Υπολογισμό της Χρονικής 5 1 Απόκρισης Δυναμικών Εξισώσεων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΟΠΙΚΗ ΑΝΑΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Θεωρούμε τη γενιϰή ομογενή γραμμιϰή διαφοριϰή εξίσωση τάξης n N στην ϰανονιϰή μορφή της

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 8 : Το ιακριτό Μοντέλο Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα