Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7"

Transcript

1

2 Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων

3 Δ2.2/3 Στη Δράση 2.2 ( ) κύριο σκοπό αποτελεί η δημιουργία και μελέτη νέων προχωρημένων μεθόδων χαλάρωσης στη διεπαφή κατάλληλες για προβλήματα με σύνθετες ΜΔΕ και ιδιαίτερα κατάλληλες για την αντιμετώπιση ασυνεχειών στους συντελεστές τους. Συγκεκριμένα, η δράση το 2013 υλοποιεί τους εξής επιμέρους στόχους: (i) περαιτέρω επισκόπηση μεθόδων για επίλυση προβλημάτων πολλαπλών φυσικών και χωρίων, (ii) επισκόπηση υπαρχόντων μεθόδων χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα. (iii) έναρξη των υλοποιήσεων των μεθόδων που θα χρησιμοποιηθούν στην πορεία του έργου. Το υπόλοιπο της παρούσης Τεχνικής Έκθεσης είναι οργανωμένο ως εξής. Στην παράγραφο 2 παρουσιάζουμε τα βασικά στοιχεία της μεθοδολογίας που ακολουθήσαμε και στην παράγραφο 3 τα σημαντικότερα αποτελέσματα. Ανακεφαλαιώνοντας τη μέχρι τώρα πορεία του έργου αναφέρουμε ότι τα προβλήματα πολλαπλών φυσικών και χωρίων ορίζονται μέσα από αλγεβρικές μορφές, πριν διακριτοποιηθούν για να επιλυθούν με οποιαδήποτε κατάλληλη μέθοδο. Οι δύο πιο συνήθεις [1] αλγεβρικές μορφές είναι: (i) το συζευγμένο πρόβλημα ισορροπίας (coupled equilibrium problem - (1)) ( ) F1 (u F (u) 1, u 2 ) = 0, (1) F 2 (u 1, u 2 ) και (ii) to συζευγμένο πρόβλημα εξέλιξης (coupled evolution problem - (2)) t u 1 = f 1 (u 1, u 2 ) t u 2 = f 2 (u 1, u 2 ). (2) Θέτοντας J = (F 1,F 2 ) (u 1,u 2 ) και u = (u 1, u 2 ) T, οι αλγόριθμοι αντιμετώπισης προβλημάτων ισορροπίας (1) μπορούν να κατηγοριοποιηθούν σε 3 ομάδες όπως αυτές καταγράφονται στον Πίνακα 1. Συγκεκριμένα υπάρχουν οι μεθοδολογίες Jacobi, Gauss-Seidel και Newton. Υποθέτοντας ότι το αρχικό πρόβλημα αποτελείται από δύο επιμέρους προβλήματα τότε οι αλγόριθμοι σημειώνονται ως εξής:

4 Δ2.2/4 Jacobi Gauss-Seidel Newton Ορισμός αρχικής τιμής (u 0 1, u 0 2) Για k=1,2,... (εως ότου παρατηρηθεί σύγκλιση) Υπολόγισε τις (u k+1 1, u k+1 2 ) Υπολόγισε τις (u k+1 1, u k+1 F 1 (u k+1 1, u k 2) = 0 F 1 (u k+1 2 ) Υπολόγισε το δu 1, u k 2) = 0 J(u k )δu = F (u k ) 2 ) = 0 Υπολόγισε u k+1 = u k + δu Τέλος βήματος επαναληπτικής διαδικασίας F 2 (u k 1, u k+1 2 ) = 0 F 2 (u k+1 1, u k+1 Πίνακας 1: Κατηγορίες αλγορίθμων για προβλήματα ισορροπίας. Παρατηρούμε ότι στην αριστερή κλάση των αλγορίθμων η εκτέλεση ακολουθεί την μεθοδολογία Jacobi για την επίλυση συστήματος γραμμικών εξισώσεων. Για παράδειγμα στην k επανάληψη, η νέα λύση στο πρώτο χωρίο u k+1 1 υπολογίζεται με βάση την προηγούμενη λύση από το γειτονικό χωρίο u k 2, ενώ η νέα λύση στο δεύτερο χωρίο u k+1 2 υπολογίζεται με βάση την προηγούμενη λύση από το πρώτο χωρίο u k 1. Η διαδικασία αυτή μπορεί να επεκταθεί για περισσότερα από δύο υποχωρία, όπου κάθε φορά η νέα λύση u k+1 i στο i χωρίο υπολογίζεται χρησιμοποιώντας πληροφορία από τη λύση όλων των γειτονικών χωρίων στην προηγούμενη επανάληψη k. Το συγκεκριμένο σχήμα είναι πλήρως παραλληλίσιμο, αφού χρησιμοποιώντας τις λύσεις των επιμέρους προβλημάτων από την προηγούμενη επανάληψη, μπορούμε να υπολογίσουμε τις νέες λύσεις σε όλα τα χωρία ταυτόχρονα. Οι μέθοδοι τύπου Gauss-Seidel, ακολουθούν το πρότυπο της αντίστοιχης μεθόδου για την επίλυση συστημάτων γραμμικών εξισώσεων. Υποθέτοντας ότι έχουμε n επιμέρους συζευγμένα προβλήματα, η νέα λύση u k+1 i στο i χωρίο υπολογίζεται λαμβάνοντας υπόψιν όλες τις u k+1 1, u k+1 2,..., u k+1 i 1 από την τρέχουσα επανάληψη και τις u k i+1,..., u k n από την προηγούμενη επανάληψη. Η συγκεκριμένη μεθοδολογία δεν έχει χαρακτηριστικά παραλληλισμού, ωστόσο λόγω της άμεσης χρήσης των διορθωμένων τιμών των γειτόνων συγκλίνει ταχύτερα της Jacobi. Τέλος, οι αλγόριθμοι τύπου Newton, θεωρούνται αυστηρά συζευγμένα σχήματα καθώς εμπλέκουν τις F i, u j στον Ιακωβιανό πίνακα του συστήματος και χρησιμοποιούνται τόσο σε προβλήματα ισορροπίας όσο και σε προβλήματα εξέλιξης. Ορισμός αρχικής συνθήκης (u 1 (t 0 ), u 2 (t 0 )) Για n = 1,..., N t Προχωρούμε ένα βήμα στο χρόνο για την u 1 λύνοντας την t u 1 = f 1 (u 1, u 2 (t n 1 )) στο n χρονικό σημείο (δηλ., u 1 (t n )) Προχωρούμε ένα βήμα στο χρόνο για την u 2 λύνοντας την t u 2 = f 2 (u 1 (t n ), u 2 ) στο n χρονικό σημείο (δηλ., u 2 (t n )) Τέλος βήματος επαναληπτικής διαδικασίας Πίνακας 2: Αλγόριθμοι για προβλήματα εξέλιξης.

5 Δ2.2/5 Για τα προβλήματα εξέλιξης σε πολλαπλά χωρία και φυσικά μοντέλα, θεωρούμε σχήματα όπως αυτό του Πίνακα 2. Η μεθοδολογία αυτή είναι η απλούστερη δυνατή για την επίλυση παραβολικών προβλημάτων πολλαπλών χωρίων και πολλαπλών φυσικών μοντέλων. Κάθε επιμέρους πρόβλημα μπορεί να αντιμετωπιστεί με άμεσα ή έμμεσα σχήματα για τη διακριτοποίηση ως προς το χρόνο. Σε κάθε βήμα στο χρόνο χρησιμοποιούμε εμφωλευμένη επαναληπτική διαδικασία για βελτίωση της λύσης στο steady πρόβλημα της συγκεκριμένης χρονικής στιγμής. Οι μέθοδοι διαχωρισμού του χωρίου [2] [8] είναι μέθοδοι που χρησιμοποιήθηκαν αρχικά για να αντιμετωπίσουν τέτοιου είδους προβλήματα. Το κύριο χαρακτηριστικό τους είναι ότι διακριτοποιείται το αρχικό σύνθετο πρόβλημα (ακόμη και αν είναι ήδη χωρισμένο από τη φυσική του) και στη συνέχεια κόβεται σε επιμέρους προβλήματα σε επίπεδο γραμμικής άλγεβρας. Πλήθος μεθόδων, κυρίως επαναληπτικές χρησιμοποιούνται για να επιλύσουν τα επιμέρους γραμμικά συστήματα που προκύπτουν τα οποία είναι ισχυρά συζευγμένα. Οι Μέθοδοι Χαλάρωσης στη Διεπαφή (ΜΧΔ) [9] αποτελούν μια εναλλακτική μεθοδολογία για την αντιμετώπιση σύνθετων προβλημάτων και περιγράφονται στην παράγραφο 2.2 Οι ΜΧΔ μελετούν σύνθετα προβλήματα ΜΔΕ πολλαπλών μοντέλων φυσικής και πολλαπλών χωρίων με κύριο χαρακτηριστικό τα επιμέρους προβλήματα να ορίζονται σε ένα απλό χωρίο στο οποίο εφαρμόζεται μια ΜΔΕ. Επίσης, μελετούν το σύνθετο πρόβλημα, ερμηνεύοντας τη φυσική του προκειμένου να κατανοήσουμε και να αξιοποιήσουμε όλες τις ιδιότητές του. Το επιμέρους προβλήματα που προκύπτουν, προέρχονται από τεμαχισμό είτε με βάση τη φυσική του αρχικού προβλήματος είτε με βάση θέματα παραλληλισμού. Αυτά τα μικρά προβλήματα μελετώνται ανεξάρτητα και επιλύονται με τις κατάλληλες μεθόδους (FEM, FD, κλπ.). Ωστόσο, υπάρχει σύζευξη μεταξύ των υποπροβλημάτων [10] [12] στα κοινά σύνορα, που ονομάζονται διεπαφές (interfaces), έτσι ώστε να ικανοποιούνται συνθήκες και ιδιότητες του αρχικού προβλήματος (π.χ., συνέχεια και ομαλότητα της λύσης του αρχικού σύνθετου προβλήματος, ή ασυνέχεια στην παράγωγο της λύσης στο αρχικό πρόβλημα κλπ.). Αρχικές συνθήκες ορίζονται πάνω στις διεπαφές και μεταφέρονται κατάλληλα ως συνοριακές συνθήκες στα επιμέρους προβλήματα. Αυτά επιλύονται ταυτόχρονα και οι προσεγγίσεις που προκύπτουν συνδυάζονται κατάλληλα μέσω κάποιας ΜΧΔ χρησιμοποιώντας την τιμή της λύσης ή/και της παραγώγου της πάνω στις διεπαφές για να παραχθούν καλύτερες προσεγγίσεις (πάνω στις διεπαφές). Κατά την ανάλυση των ΜΧΔ, μελετώνται θέματα μαθηματικής ανάλυσης,

6 Δ2.2/6 υπολογιστικής πολυπλοκότητας και θέματα υλοποίησης που έχουν να κάνουν με λογισμικό ή/και υλικό [1]. Η μαθηματική ανάλυση επιτυγχάνεται κυρίως σε απλά μοντέλα φυσικής καθώς δεν είναι εφικτό να αναλυθούν σε βάθος πραγματικά προβλήματα. Η χρήση υπάρχοντος λογισμικού είναι μεγάλης σημασίας στην υλοποίηση των ΜΧΔ. Υπάρχει πληθώρα πακέτων λογισμικού που υλοποιούν μεθόδους επίλυσης απλών προβλημάτων αλλά πρέπει να συνδυαστούν και υποστηριχθούν κατάλληλα σε επίπεδο λογισμικού αλλά και υλικού, για να επιλύσουμε σύνθετα προβλήματα Η διαδικασία των ΜΧΔ είναι επαναληπτική [11] και περιγράφεται ως: Η διαδικασία χαλάρωσης στη διεπαφή ποικίλει από απλό μέσο όρο τιμών της συνάρτησης από τα δυο υποχωρία που έχουν κοινό σύνορο τη διεπαφή, μέχρι την εφαρμογή πολύπλοκων τελεστών υψηλής τάξης ακρίβειας με κύριο σκοπό η λύση στο σύνθετο πρόβλημα να ικανοποιεί όλες τις απαραίτητες συνθήκες. Το παραπάνω επαναληπτικό σχήμα, ορίζεται σε επίπεδο φυσικής των προβλημάτων, επομένως η ανάλυση των μεθόδων απαιτεί γνώσεις μαθηματικής ανάλυσης και όχι αριθμητικής ανάλυσης [10], [12]. Τα κύρια πλεονεκτήματα της μεθόδου συνοψίζονται στα εξής: i) παρέχει την ακριβή σύζευξη των διαφόρων μοντέλων τόσο για τις ΜΔΕ όσο και για τις διεπαφές, ii) υποστηρίζει την επαναχρησιμοποίηση του λογισμικού που επιλύουν απλά μοντέλα φυσικής, iii) εισαγάγει ένα υψηλότερο επίπεδο παραλληλισμού στους υπολογισμούς, iv) ακολουθεί τη γεωμετρική και φυσική μοντελοποίηση ενός σύνθετου προβλήματος ΜΔΕ. Ακολουθεί η μεθοδολογία της χαλάρωσης στη διεπαφή, για προβλήματα που προσομοιώνονται από δεύτερης τάξης ελλειπτικές ΜΔΕ. Τα επιμέρους προβλήματα ΜΔΕ δηλώνονται ως L i u i = f i στο Ω i για i = 1,..., p, (3) υποθέτοντας ότι τα Ω i δεν αλληλοεπικαλύπτονται. Επίσης οι συνθήκες στις διεπαφές μπορούν να περιγραφούν μέσω έμμεσων σχημάτων/τύπων, όπως: ( G i,j u i, u i ; u j, u ) j ; J 1, J 2 = 0 στο Γ i,j Ω i Ωj, (4) η i,j η j,i

7 Δ2.2/7 όπου η i,j το διάνυσμα με κατεύθυνση κάθετη στην διεπαφή Γ i,j και J 1, J 2 οι ποσότητες που δηλώνουν τις ασυνέχειες μέσω πηδήματος στην u ή/και την παράγωγό της. Το G i,j δηλώνει τον τελεστή που θα εφαρμοστεί στις u ή/και στις παραγώγους τους πάνω στην διεπαφή. Επίσης, υποθέτουμε την ύπαρξη συνοριακών συνθηκών στα σύνορα των χωρίων (που είναι υποσύνολα των συνόρων του γενικού χωρίου) αλλά και την ύπαρξη λύσης του κάθε επιμέρους προβλήματος ΜΔΕ. Στις εργασίες [9] [12] παρουσιάζονται κάποιες ΜΧΔ για ελλειπτικά προβλήματα. Από αυτές τις μεθόδους μελετήσαμε τη GEO και τη ROB. Ενδεικτικά αναφέρουμε ότι η GEO θέτει πάνω στην διεπαφή των χωρίων Ω i και Ω j την τύπου Dirichlet συνθήκη : U New i = U New j = U i Old + U Old j 2 ρ ij ( ϑu Old i ϑη Old ϑu j H ROB πάνω στη διεπαφή που ορίζεται από τα χωρία Ω i και Ω j θέτει τις μεικτές συνθήκες ϑui New Old ϑu + λ ij Ui New j = + λ ij Uj Old ϑη ϑη ϑη ) Για να οργανώσουμε την συγκέντρωση των πειραματικών αποτελεσμάτων μας καθορίσαμε σετ από προβλήματα ώστε να είναι εφικτή η επαλήθευση της ορθότητας των υλοποιήσεων σε διαφορετικά υπολογιστικά περιβάλλοντα αλλά και της ορθής εφαρμογής ων μεθόδων (GEO, ROB). Ορίσαμε λοιπόν το παρακάτω πρόβλημα ελλειπτικών διαφορικών εξισώσεων με 2 διαφορετικά χωρία που εμφανίζονται στο Σχήμα 1. Lu (x, y) u (x, y) + γ 2 u (x, y) = f (x, y), u (x, y) = u b (x, y), (x, y) Ω (x, y) Ω όπου f (x, y) and u b (x, y) τέτοια ώστε η λύση του προβλήματος να είναι η: u (x, y) = e y(x+4) x(x 1)(x 0.7)y(y 0.5) (5) Οι διεπαφές για το ομοιόμορφα (ως προς τον άξονα των x) τεμαχισμένο χωρίο βρίσκονται στις ευθείες x = x 1 = 1 και x = x 3 2 = 2 και για το μη ομοιόμορφα 3 τεμαχισμένο χωρίο στις x = x 1 = 1 και x = x 5 2 = 1 ενώ 2 γ2 = 2.

8 Δ2.2/8 Σχήμα 1: Ομοιόμορφα (ως προς τον άξονα των x) τεμαχισμένο χωρίο (αριστερά) και Μη Ομοιόμορφα τεμαχισμένο χωρίο (δεξιά) Ομοιόμορφο πρόβλημα Μη-Ομοιόμορφο πρόβλημα case h left middle right left middle right c x21 4x6 4x11 3x21 4x6 6x11 c x41 8x11 8x21 5x41 7x11 11x21 c x81 14x21 14x41 9x81 13x21 21x41 c x161 28x41 28x81 17x161 25x41 41x81 c x321 55x81 55x161 33x321 49x81 81x161 c x x x321 65x641 97x x321 c x x x x x x641 Πίνακας 3: Περιπτώσεις που εξετάσθηκαν με διαφορετικά βήματα διακριτοποίησης και μεγέθη πλέγματος των χωρίων για τα 3 χωρία των 2 προβλημάτων. Επίσης, ορίσαμε μια σειρά από διακριτοποιήσεις των υποχωρίων (Πίνακας 3) για τα δυο προβλήματα προκειμένου να ελέγξουμε την σύγκλιση των μεθόδων. Η υλοποίηση έγινε σε Matlab για πρωτοτυποποίηση και επαλήθευση των μεθόδων ΧΔ και πήραμε αποτελέσματα που επιβεβαίωναν την θεωρητική σύγκλιση στη λύση του αρχικού προβλήματος. Ωστόσο, για πολλούς λόγους στα επόμενα βήματα της Δράσης που θα αφορούν στην επαλήθευση των ΜΧΔ θα μεταφέρουμε τις εργασίες μας στο FEniCS. Το βασικό μειονέκτημα του Matlab είναι ότι χειρίζεται προβλήματα ΜΔΕ το πολύ 2 διαστάσεων, ενώ τα προβλήματα από τις εφαρμογές του έργου (πρόβλημα Ιατρικής και πρόβλημα υφαλμύρισης) είναι προβλήματα τριών διαστάσεων. Επιπλέον η χρήση λογισμικού open source στο έργο θεωρήθηκε μεγάλης σημασίας και όλες οι ομάδες αποφάσισαν από κοινού στην χρήση του FEniCS για την αντιμετώπιση των προβλημάτων ΜΔΕ. Τα παραδοτέα της Δράσης 2.2, σύμφωνα με το Τεχνικό Δελτίο του Έργου είναι:

9 Δ2.2/9 KEO 1 KEO 2 KEO 3 Σχεδιασμός ΜΧΔ στο FEniCS X X Συνδυασμός ΜΧΔ και μεθόδων Collocation. X X Πίνακας 4: Συνεργασίες των τριών ερευνητικών ομάδων στα πλαίσια της Δράσης 2.2. : το παρόν κείμενο. Προετοιμασία επιστημονικών άρθρων που αφορούν στην επισκόπηση μεθόδων για MDMP προβλήματα. : Σχεδιάστηκε και υλοποιήθηκε λογισμικό σε MATLAB το οποίο χρησιμοποιήθηκε για τα πρώτα αποτελέσματα επαλήθευσης των αλγορίθμων των ΜΧΔ. Στα πλαίσια αυτής της Δράσης, συνεργάστηκαν μέλη από όλες τις ερευνητικές ομάδες με κύρια ομάδα δράσης την ΚΕΟ 2 (Πανεπιστήμιο Θεσσαλίας). Η ομάδα ΚΕΟ 2 συνεργάστηκε με την ομάδα ΚΕΟ 3 (Πανεπιστήμιο Πατρών) για μελέτη των ΜΧΔ και σχεδιασμό των αλγορίθμων τους προκειμένου να υλοποιηθούν μέσα στο FEniCS. Η ομάδα ΚΕΟ 2 συνεργάστηκε με την ομάδα ΚΕΟ 1 (Πολυτεχνείο Κρητης) για μελέτη των ΜΧΔ προκειμένου να συνδυαστούν με μεθόδους Collocation. Κατά τη διάρκεια του 2013 καθορίσαμε το προγραμματιστικό περιβάλλον (FEniCS) που θα χρησιμοποιήσουμε στο έργο για την υλοποίηση των μαθηματικών μεθόδων. Καθορίσαμε σετ πειραμάτων για τη Δράση 2.2 και στα επόμενα βήματα μας θα υλοποιήσουμε μέσα στο FEniCS μεθόδους χαλάρωσης στις διεπαφές (ROΒ και GEO) σε ελλειπτικά και παραβολικά προβλήματα και θα συγκεντρώσουμε πειραματικά αποτελέσματα προκειμένου να υπάρξουν επιστημονικές δημοσιεύσεις.

10 Δ2.2/10 [1] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors,, Multiphysics simulations: Challenges and opportunities,, vol. 27, no. 1, pp. 4 83, [2] D. E. Keyes and W. D. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation,, vol. 8, no. 2, s166 s202, [3] P. Le Tallec, Y. H. De Roeck, and M. Vidrascu, Domain decomposition methods for large linearly elliptic three-dimensional problems,, vol. 34, no. 1, pp , [4] P.-L. Lions, On the schwarz alternating method. iii: A variant for nonoverlapping subdomains, in, SIAM Philadelphia, PA, vol. 6, 1990, pp [5] T. F. Chan and T. P. Mathew, Domain decomposition algorithms,, vol. 3, pp , [6] R. Natarajan, Domain decomposition using spectral expansions of steklovpoincaré operators,, vol. 16, no. 2, pp , [7] J. R. Rice, E. Vavalis, and D. Yang, Convergence analysis of a nonoverlapping domain decomposition method for elliptic pdes, [8] W. Heinrichs, Domain decomposition for fourth-order problems,, vol. 30, no. 2, pp , [9] J. Rice, P. Tsompanopoulou, and E. Vavalis, Interface relaxation methods for elliptic differential equations,, vol. 32, no. 2, pp , [10], Fine tuning interface relaxation methods for elliptic differential equations,, vol. 43, no. 4, pp , [11] P. Tsompanopoulou and E. Vavalis, An experimental study of interface relaxation methods for composite elliptic differential equations,, vol. 32, no. 8, pp , [12], Analysis of an interface relaxation method for composite elliptic differential equations,, vol. 226, no. 2, pp , 2009.

Τεχνική Έκθεση Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3

Τεχνική Έκθεση Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 Δ2.2/3 Το παρόν έργο θα ασχοληθεί με τη προσομοίωση πολύπλοκων φαινομένων που περιγράφονται από σύνθετα προβλήματα μερικών διαφορικών

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ...

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ... Δ2.2/2 2.1 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 3 2.2 Παράλληλοι Αλγόριθμοι ΜΧΔ.................... 6 3.1 Μέθοδοι χαλάρωσης στη διεπαφή για

Διαβάστε περισσότερα

Τελική Τεχνική Έκθεση

Τελική Τεχνική Έκθεση Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 2.2 Μεθόδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 6 2.3 Έλεγχος και επαλύθευση

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ) MATENVMED - MIS 379416 Πλατφόρμα Προηγμένων Μαθηματικών Μεθόδων και Λογισμικού για την Επίλυση Προβλημάτων Πολλαπλών Πεδίων (Mult-Physcs Mult-Doman Problems) σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές:

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Παρουσίαση 3ης Άσκησης

Παρουσίαση 3ης Άσκησης Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Κεφάλαιο 5 Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζονται οι περιπτώσεις συνοριακών συνθηκών οι οποίες συναντώνται σε προβλήματα γεωτεχνικής μηχανικής.

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 2. Η έννοια του προβλήματος 2 2. Η έννοια του προβλήματος 2.1 Το πρόβλημα στην επιστήμη των Η/Υ 2.2 Κατηγορίες προβλημάτων

Διαβάστε περισσότερα

Ειδικά θέματα στην επίλυση

Ειδικά θέματα στην επίλυση Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

Σχεδιασμός και υλοποίηση προηγμένων μαθηματικών μεθόδων για την επίλυση προβλημάτων πολλαπλών πεδίων σε σύγχρονες υπολογιστικές αρχιτεκτονικές

Σχεδιασμός και υλοποίηση προηγμένων μαθηματικών μεθόδων για την επίλυση προβλημάτων πολλαπλών πεδίων σε σύγχρονες υπολογιστικές αρχιτεκτονικές ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική εργασία στο πλαίσιο του μεταπτυχιακού προγράμματος Επιστήμη και Τεχνολογία Υπολογιστών Σχεδιασμός και υλοποίηση προηγμένων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν

Διαβάστε περισσότερα

Πεπερασμένες διαφορές

Πεπερασμένες διαφορές Κεφάλαιο 2 Πεπερασμένες διαφορές Αυτό το κεφάλαιο αποτελεί μια εισαγωγή στο αντικείμενο των πεπερασμένων διαφορών για την επίλυση διαφορικών εξισώσεων. Θα εισαγάγουμε ποσότητες που προκύπτουν από διαφορές

Διαβάστε περισσότερα

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Διάλεξη 3: Βασικές τεχνικές επίλυσης γραμμικών συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αριθμητικές τεχνικές - Επισκόπηση αλγορίθμων - Optimization in MATLAB ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Εφαρμόζονται κυρίως σε προβλήματα

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ. Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014

ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ. Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014 Περίληψη. ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ Μαρία Α. Λευτάκη 1 & Ευάγγελος Π. Βαλάρης 1 Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014 Μια απλή μη γραμμική

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (1)

Στοχαστικές Στρατηγικές. διαδρομής (1) Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με

Διαβάστε περισσότερα

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΕΥΡΩΠΑΪΚΩΝ ΠΟΡΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. "ΕΚΠΑΙΔΕΥΣΗ & ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ" Ταχ.

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton

Διαβάστε περισσότερα

v(t) = Ri(t). (1) website:

v(t) = Ri(t). (1) website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1)

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) 3.1. Εισαγωγή Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) Αν ϑελήσουμε να υπολογίσουμε το έργο της δύναμης αυτής μεταξύ δύο

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεθοδολογίες Ανάπτυξης Συστημάτων Πληροφορικής Απαντούν στα εξής ερωτήματα Ποιά βήματα θα ακολουθηθούν? Με ποιά σειρά? Ποιά τα παραδοτέα και πότε? Επομένως,

Διαβάστε περισσότερα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 6: Εφαρμογές ΙΙ Παράλληλοι Υπολογισμοί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 3.1 - Η 1 ΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Να κατανοήσουν τον ρόλο της αλγεβρικής αναγωγής σε απλούστερες αλγεβρικές

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις...

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις... Δ2.4/2 1.1 Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων στις 1+1 διαστάσεις με ασυνεχή συντελεστή διάχυσης και χρονικά εξαρτώμενους συντελεστές..................... 3 1.2 Μέθοδος Φωκά για γραμμικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Αθήνα, 06/05/2015 Α.Π. : 7043 Προς: ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ - ΚΟΥΝΟΥΠΙΔΙΑΝΑ T.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Αθήνα, 06/05/2015 Α.Π. : 7043 Προς: ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ - ΚΟΥΝΟΥΠΙΔΙΑΝΑ T. ΑΔΑ: 7ΘΘ3465ΦΘΘ-ΚΔΨ INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.05.07 15:23:59 EEST Reason: Location: Athens ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε

Διαβάστε περισσότερα

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων 5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σκοπός του μαθήματος είναι οι μαθητές και οι μαθήτριες να αναπτύξουν ικανότητες αναλυτικής και συνθετικής σκέψης, ώστε να επιλύουν προβλήματα, να σχεδιάζουν

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα