I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ"

Transcript

1 I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός κυρτών/κοίλων συναρτήσεων 9.Δεύτερο διαφορικό ΑΣΚΗΣΕΙΣ. Δεύτερη παράγωγος μιας συνάρτησης = f() καλείται η παράγωγος της (πρώτης) παραγώγου. Παριστάνεται μένα από τα σύμβολα: d d f() = f () ή = ή D = D f() d d Μετράει το ρυθμό μεταβολής της πρώτης παραγώγου καθώς το μεταβάλλεται. Γεωμετρικά: η πρώτη παράγωγος μετράει την κλίση της καμπύλης και αφορά τον (οριακό) ρυθμό μεταβολής των τιμών η δεύτερη παράγωγος μετράει την κυρτότητα (καμπυλότητα) της καμπύλης και αφορά τον (οριακό) ρυθμό μεταβολής της κλίσης, θετική αν η κλίση αυξάνει, αρνητική αν ελαττώνεται. Οι γραμμικές συναρτήσεις έχουν μηδενική η παράγωγο: { = m + β, = m, = } Oι παραβολικές συναρτήσεις έχουν σταθερή μη μηδενική η παράγωγο: { = α + β + γ, = α + β, = α} Παράδειγμα α α α α α α α α α α {, ( ) = α, ( ) = α(α ) } {e,(e ) = αe, (e ) = α e } / / 3/ {ln, ln = /, ln = / }, {f() = ( ),f () = (/ )( ), f () = (/ 4)( ) }, {sin, sin () = cos, sin = sin }, {cos, cos = sin, cos = cos } 3 {tan, tan = + tan, tan = tan tan = tan + tan }. Κυρτή καλείται μια συνεχής συνάρτηση f() αν η πρώτη παράγωγος f () είναι αύξουσα, και γνήσια κυρτή αν η πρώτη παράγωγος είναι γνήσια αύξουσα. Έχουμε: Αν η πρώτη παράγωγος f () είναι συνεχής (δηλαδή το γράφημα της συνάρτησης δεν έχει γωνίες), τότε η f() είναι κυρτή f () παντού στο διάστημα. Μια κυρτή συνάρτηση είναι γνήσια κυρτή αν το γράφημα της δεν έχει ευθύγραμμο τμήμα, δηλαδή μπορεί να έχει f () = σε πεπερασμένο πλήθος σημείων αλλά όχι σε ολόκληρο τμήμα. Αν μια συνάρτηση είναι κυρτή, τότε η πρώτη παράγωγος ως αύξουσα μπορεί να αλλάξει πρόσημο μόνο από αρνητικό σε θετικό, και επομένως: Μια κυρτή συνάρτηση θα είναι είτε μονότονη, είτε θα έχει δύο διαστήματα μονοτονίας οπότε θα είναι πρώτα φθίνουσα και μετά αύξουσα. Παράδειγμα α α α. =, = α, = α(α ) για. α> α< Είναι γνήσια κυρτή α(α ) >, δηλαδή α< ή α> Για α = {,} είναι γραμμική, επομένως κυρτή αλλά όχι γνήσια.. = ep(α), = αep(α), = α ep(α). Είναι γνήσια κυρτή α. Για α = είναι σταθερή γραμμική, επομένως κυρτή αλλά όχι γνήσια 3. = + ( ) = 3 +, = +, =. Είναι γνήσια κυρτή με δύο μονότονα τμήματα, πρώτα φθίνουσα και μετά αύξουσα. αν αν αν < 4. = ma{, } για = αν αν αν > Η η παράγωγος είναι παντού θετική (f ) εκτός του σημείου = όπου δεν ορίζεται διότι η η παράγωγος δεν είναι συνεχής σαυτό το σημείο. Δεν μπορούμε να χρησιμοποιήσουμε το κριτήριο της ης παραγώγου διότι στο σημείο ένωσης: = η η παράγωγος δεν ορίζεται. Μπορούμε όμως να πάμε στον ορισμό. Στο σημείο ένωσης η πρώτη παράγωγος αυξάνει διότι έχει θετική βηματική ασυνέχεια: + ( ) ( ) = = Έτσι, η πρώτη παράγωγος είναι παντού αύξουσα και η συνάρτηση είναι κυρτή, όχι γνήσια κυρτή διότι είναι γραμμική στο διάστημα όπου η η παράγωγος είναι μηδενική. α> α<

2 αν αν αν < 5. = min{, } για αν αν αν > Το κάθε τμήμα είναι κυρτό, αλλά σε αντίθεση με το προηγούμενο παράδειγμα τώρα η συνολική συνάρτηση δεν είναι κυρτή διότι στο σημείο ένωσης: =, η η παράγωγος μικραίνει καθώς έχει αρνητική βηματική ασυνέχεια: ( + ) ( ) = = < 3. Κοίλη καλείται μια συνάρτηση f() αν η πρώτη παράγωγος f () είναι φθίνουσα, και γνήσια κοίλη αν η πρώτη παράγωγος είναι γνήσια φθίνουσα. Έχουμε: Αν η πρώτη παράγωγος f () είναι συνεχής (δηλαδή το γράφημα της συνάρτησης δεν έχει γωνίες), τότε η f() είναι κοίλη f (), σε όλα τα σημεία του διαστήματος. Μια κοίλη συνάρτηση είναι γνήσια κοίλη αν το γράφημα της δεν έχει ευθύγραμμο τμήμα, δηλαδή μπορεί να έχει f () = σε πεπερασμένο πλήθος σημείων αλλά όχι σε ολόκληρο τμήμα. Αν μια συνάρτηση είναι κοίλη, τότε η πρώτη παράγωγος ως φθίνουσα μπορεί να αλλάξει πρόσημο μόνο από θετικό σε αρνητικό και επομένως: Μια κοίλη συνάρτηση θα είναι είτε μονότονη, είτε θα έχει δύο διαστήματα μονοτονίας οπότε θα είναι πρώτα αύξουσα και μετά φθίνουσα. Παράδειγμα α α α. =, = α, = α(α ).Είναι γνήσια κοίλη α(α ) <, δηλαδή < α<.. = ln, = /, = / <. Είναι γνήσια κοίλη. 3. = ( ) = 3+ 4, = 4, = 4. Είναι γνήσια κοίλη με δύο μονότονα τμήματα, πρώτα αύξουσα και μετά φθίνουσα. αν αν αν < 4. = min{, }, 3/ αν / αν / 4 αν > Είναι κοίλη στο διάστημα, διότι το κάθε τμήμα είναι κοίλο και επιπλέον στο σημείο ένωσης = η + έχει αρνητική βηματική ασυνέχεια: ( ) ( ) = /. Δεν είναι γνήσια κοίλη διότι είναι γραμμική στο διάστημα. α : α< ln ( ) min{, } 4. Ιδιότητες κυρτών/κοίλων συναρτήσεων Οι κυρτές και οι κοίλες συναρτήσεις έχουν αντίστοιχη μαθηματική θεωρία, διότι συνδέονται μεταξύ τους ως εξής: μια συνάρτηση είναι κοίλη η αρνητική της είναι κυρτή. Λέμε ότι οι κυρτές έχουν θετική κυρτότητα, και οι κοίλες αρνητική κυρτότητα, οπότε ο όρος «κυρτότητα» καλύπτει και τις δύο έννοιες. Η γραμμική συνάρτηση θεωρείται και κυρτή και κοίλη, αλλά όχι γνήσια. Έχουμε και τις παρακάτω απλές ιδιότητες:. Το άθροισμα κυρτών (κοίλων) συναρτήσεων είναι κυρτή (κοίλη) συνάρτηση. Πολλαπλασιασμός με θετικό αριθμό διατηρεί την κυρτότητα, ενώ με αρνητικό την αντιστρέφει 3α.. ma κυρτών συναρτήσεων είναι κυρτή 3β. min κοίλων συναρτήσεων είναι κοίλη 5. Σημεία καμπής μιας συνάρτησης καλούνται τα σημεία στα οποία η κυρτότητα αλλάζει γνήσια, από γνήσια κοίλη σε γνήσια κυρτή ή αντίστροφα. Αν η δεύτερη παράγωγος είναι συνεχής τότε στο σημείο καμπής θα έχουμε f () =. Αντίστροφα ένα σημείο με f () = δεν είναι απαραίτητα σημείο καμπής. Θα είναι αν το πρόσημο της f () αλλάζει γνήσια.

3 Παράδειγμα f() =, f () = 4, f () = Έχουμε f () = όταν =, αλλά το = δεν είναι σημείο καμπής. Η συνάρτηση είναι γνήσια κυρτή. 3. f() = α + β + γ + δ, f = 3α + β + γ, f = 6α + β α> α< Με α, έχουμε f = όταν = β / 3α. Τώρα το = β / 3α είναι σημείο καμπής διότι η f ως γραμμική αλλάζει πρόσημο: Για α>, η f() είναι κοίλη αν f () β / 3α, κυρτή αν f () β / 3α. Για α< ισχύει το αντίστροφο. καλείται η 6. Παραβολική προσέγγιση ή επέκταση μιας συνάρτησης f() σε κάποιο παραβολική συνάρτηση η οποία στο έχει την ίδια τιμή και την ίδια η και η παράγωγο με τη συνάρτηση. Δίνεται από την παράσταση: f() f( ) + f ( )( ) + f ( )( ) για Καλείται και τετραγωνική προσέγγιση ή επέκταση. Παρατηρούμε ότι η παραβολική προσέγγιση αποτελείται καταρχήν από την γραμμική στην οποία έχει προστεθεί και ένας όρος δευτέρου βαθμού δίνοντας έτσι μια καλλίτερη προσέγγιση των τιμών της συνάρτησης στη γειτονιά του, διότι εκτός από την κλίση παίρνει υπόψη της και την κυρτότητα της συνάρτησης στο συγκεκριμένο σημείο. Παρατήρηση. Γενικότερα, όσο περισσότερες κοινές παραγώγους έχουν δύο συναρτήσεις σε ένα σημείο, τόσο πλησιέστερα βρίσκονται οι τιμές τους σε μια γειτονιά του σημείου. Η γραμμική και η παραβολική προσέγγιση αποτελούν τα δύο πρώτα μιας ακολουθίας προσεγγιστικών πολυωνύμων αυξανόμενου βαθμού, που καλούνται πολυώνυμα Talor. Παράδειγμα. Για : e + +, ln(+ ), + +, α α(α ), (+ ) + α +, sin, cos Στον παρακάτω πίνακα δίνουμε τις προσεγγίσεις (γραμμική, παραβολική), και την πραγματική τιμή:...5. e.5, ln(.9).5, Παρατήρηση. Αντικαθιστώντας: = ( ) +, και αναπτύσσοντας τις δυνάμεις μπορούμε να εκφράσουμε ένα πολυώνυμο σε δυνάμεις του, για οιοδήποτε. Κρατώντας τις δυνάμεις μέχρι ου και ου βαθμού βρίσκουμε την γραμμική και παραβολική προσέγγιση αντίστοιχα, στο σημείο. Παράδειγμα. Σε δυνάμεις του ( + ), βρίσκουμε: = [ + ) ] + = [( + ) 3( + ) + 3( + ) + ] + = + 3( + ) 3( + ) + ( + ) 3 Πράγματι, οι προσεγγίσεις της συνάρτησης στο =, έχουν ως εξής: Γραμμική: + 3( + ), Παραβολική: ΠΑΡΑΡΤΗΜΑ 7. Δεύτερη πλεγμένη παραγώγιση + 3( + ) 3( + ) Η η παράγωγος πλεγμένης συνάρτησης βρίσκεται παραγωγίζοντας δύο φορές πλεγμένα. Παράδειγμα. + = 5. Παραγωγίζουμε πλεγμένα ως προς, βρίσκουμε για την η παράγωγο: + () 5, ( ) + ( ) = 5 + = Παραγωγίζοντας εκ νέου πλεγμένα βρίσκουμε για την η παράγωγο: 3

4 ( + ) = + + = Αντικαθιστώντας το από την πρώτη εξίσωση βρίσκουμε τελικά: 5 + =, = =, όπου αντικαταστήσαμε και + = Συμπεραίνουμε ότι η πλεγμένη συνάρτηση είναι κοίλη στο πάνω ημιεπίπεδο όπου έχουμε, κυρτή στο κάτω όπου έχουμε, όπως φαίνεται και στο γράφημα. ρ ρ Παράδειγμα. + = c με ρ {,}, c >, στη θετική περιοχή: {, }. α) Παραγωγίζοντας πλεγμένα ως προς, βρίσκουμε για την η παράγωγο: ρ ρ ρ ρ ρ d ( ) + ( ) = c ρ + ρ = = ρ d Συμπεραίνουμε ότι όσον αφορά την μονοτονία είναι φθίνουσα. β) Παραγωγίζοντας εκ νέου πλεγμένα την εξίσωση, βρίσκουμε για την η παράγωγο: ρ ρ ρ ρ ρ + = (ρ ) + (ρ ) ( ) + = Λύνοντας ως προς βρίσκουμε για την η παράγωγο: ρ d ρ ρ = ( ρ) ρ ( + ) όπου: = ρ d O όρος στην παρένθεση είναι θετικός, και συμπεραίνουμε ότι ως προς την κυρτότητα η συνάρτηση είναι: γνήσια κυρτή για ρ> ρ<, όπως στο πρώτο σχήμα παρακάτω κοίλη για ρ< ρ>, όπως στο δεύτερο και τρίτο σχήμα παρακάτω γ) Στο κεφάλαιο εξετάσαμε και τις τομές με τους άξονες. Υπενθυμίζουμε τα γραφήματα: ρ> < ρ< ρ< 8. Χαρακτηρισμός κυρτών/κοίλων συναρτήσεων Οι κυρτές συναρτήσεις χαρακτηρίζονται από τις παρακάτω τρεις ισοδύναμες ιδιότητες:. Η η παράγωγος είναι αύξουσα, δηλαδή η η παράγωγος είναι θετική: f. Η καμπύλη βρίσκεται πάνω από τις εφαπτόμενες ευθείες της, δηλαδή οι τιμές της συνάρτησης είναι μεγαλύτερες από τις τιμές των γραμμικών της επεκτάσεων: f() f( ) + f ( )( ) 3. Η καμπύλη βρίσκεται κάτω από τις χορδές της, δηλαδή οι τιμές της συνάρτησης στα ενδιάμεσα σημεία είναι μικρότερες από τα αντίστοιχα ενδιάμεσα των τιμών της στα ακραία σημεία: tf( ) + tf( ) f(t + t ) με {t, t, t + t = } f( ) + f( ) + Π.χ. για t = t = / f Οι τρεις χαρακτηρισμοί διατυπώνονται υπό συνθήκες αυξανόμενης γενικότητας. Έτσι στο υποθέτουμε συνεχή δεύτερη παράγωγο, στο συνεχή πρώτη παράγωγο, και στο 3 μόνο συνεχή συνάρτηση. Για το λέμε ότι: η κυρτή συνάρτηση είναι πάνω περιβάλλουσα των γραμμικών επεκτάσεών της. Σχετικά με το 3, υπενθυμίζουμε καταρχήν ότι αν έχουμε δύο σημεία (, ) και (, ), τότε τα ενδιάμεσα βρίσκονται παίρνοντας κυρτούς συνδυασμούς των συντεταγμένων τους, οπότε όπως φαίνεται στο παραπάνω σχήμα, έχουμε: { c = t + t = tf( ) + tf( ) }, { f( c) = f(t + t ) } c f( c), που είναι η σχέση 3. Για το 3 λέμε ότι: η κυρτή συνάρτηση βρίσκεται κάτω από τις γραμμικές παρεμβολές των τιμών της. 3 c f( c ) c 4

5 Παρατήρηση. Αντίστοιχοι γεωμετρικοί χαρακτηρισμοί ισχύουν για τις κοίλες συναρτήσεις:. Η πρώτη παράγωγος είναι φθίνουσα: f.οι εφαπτόμενες ευθείες είναι πάνω από την καμπύλη, δηλαδή οι τιμές της συνάρτησης είναι μικρότερες από τις γραμμικές επεκτάσεις της: f() f( ) + f ( )( ) 3. Οι χορδές είναι κάτω από την καμπύλη, δηλαδή οι τιμές της συνάρτησης στα ενδιάμεσα σημεία είναι μεγαλύτερες από τα αντίστοιχα ενδιάμεσα των τιμών της στα ακραία σημεία: tf( ) + tf( ) f(t + t ) με {t, t, t + t = } f( ) + f( ) + Π.χ. για t = t = / f Ισχύουν και οι αντίστοιχες παρατηρήσεις όπως για τις κυρτές. 9. Δεύτερο διαφορικό Από κάποια αρχική τιμή θεωρούμε μια μεταβολή Δ και την αντίστοιχη μεταβολή στην τιμή της συνάρτησης: Δf() = f( + Δ) f() Στο προηγούμενο κεφάλαιο διαπιστώσαμε ότι, σε αντιστοιχία με την γραμμική προσέγγιση, μια πρώτη εκτίμηση της μεταβολής στην τιμή της συνάρτησης, για μικρές μεταβολές Δ, δίνεται από το πρώτο διαφορικό: Δf df = f ()d, όπου: Δ = d Μάλιστα αυτό καθορίζει το πρόσημο της μεταβολής, αν είναι μη μηδενικό, δηλαδή αν η παράγωγος είναι μη μηδενική. Ως δεύτερο διαφορικό της συνάρτησης ορίζεται το μέγεθος d f() = f ()d Σε αντιστοιχία τώρα με την παραβολική προσέγγιση, βρίσκουμε ότι μια καλλίτερη εκτίμηση της μεταβολής στην τιμή της συνάρτησης βρίσκεται αν στο πρώτο διαφορικό προσθέσουμε και το μισό του δεύτερου διαφορικού: Δf() df() + d f() = f ()d + f ()d Ειδικότερα, ο χαρακτηρισμός της κυρτότητας αφορά το πρόσημο της διαφοράς: Δf() df(), που σύμφωνα με τα παραπάνω καθορίζεται από το πρόσημο του ου διαφορικού, και επομένως από το πρόσημο της ης παραγώγου αν αυτή είναι μη μηδενική. Παρατήρηση. Για να ορίσουμε τη δεύτερη παράγωγο απευθείας από την αρχική συνάρτηση, παίρνουμε διαδοχικές μεταβολές, και υπολογίζουμε τον ρυθμό μεταβολής του ρυθμού μεταβολής στο όριο Δ :, + Δ, + Δ + Δ = + Δ Δf Δ f( + Δ) f( + Δ) f( + Δ) f() Δ Δ = Δ Δ Δ Δ Δ f( + Δ) f( + Δ) + f() Δ f() d f() = = Δ Δ d Ο λόγος Δ f() Δ μπορεί να χρησιμοποιηθεί ως προσέγγιση της ης παραγώγου όταν έχουμε 3 διαδοχικές τιμές της συνάρτησης. Ο όρος στον αριθμητή καλείται δεύτερη μεταβολή της συνάρτησης: Δ f() = Δ(Δf) = [f( + Δ) f( + Δ)] [f( + Δ) f()], = f( + Δ) f( + Δ) + f() Προσεγγίζεται από το δεύτερο διαφορικό. 5

6 I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ Ασκήσεις. Να διαπιστωθεί ότι οι παρακάτω συναρτήσεις είναι κυρτές στο θετικό διάστημα:, και να γίνουν τα γραφήματα. Σε κάθε περίπτωση να εξεταστεί αν είναι μονότονες ή έχουν δύο μονότονα τμήματα 3 +, +, + ln(+ ), ma{+, }, + + γ + δ. Να διαπιστωθεί ότι οι παρακάτω συναρτήσεις είναι κοίλες στο θετικό διάστημα:, και να γίνουν τα γραφήματα. Σε κάθε περίπτωση να εξεταστεί αν είναι μονότονες ή έχουν δύο μονότονα τμήματα /3, ln(+ ), ln(+ ), {pln(+ ) w με p >, w > }, min{, } 3. Να μελετηθεί η μονοτονία και η κυρτότητα και να γίνουν τα γραφήματα, των συναρτήσεων: , +, e, e, ln 4. Να παρασταθεί το γράφημα παραπλεύρως με μια κυβική συνάρτηση, βρίσκοντας κατάλληλες συνθήκες για τους συντελεστές: 3 = α + β + γ + δ Σε κάθε περίπτωση να βρεθούν για, αναλυτικά και γραφικά, τα σημεία καμπής, κυρτότητας και κοιλότητας. Επίσης, για να βρεθούν γραφικά και αναλυτικά τα γραφήματα της μέσης τιμής A = / και του οριακού ρυθμού M =, στο ίδιο σύστημα συντεταγμένων. 5. Να γίνουν στο θετικό διάστημα τα γραφήματα των συνεχών συναρτήσεων f() με f() =, των οποίων οι παράγωγοι f () έχουν τα παρακάτω γραφήματα. 6. Να βρεθούν η γραμμική και η παραβολική προσέγγιση των παρακάτω: α α) Στο = : e,( ), ( ), tan β) Στο = : ln, 7. Να διαπιστωθεί ότι το άθροισμα κυρτών (κοίλων) συναρτήσεων είναι κυρτή (κοίλη), και ότι το θετικό πολλαπλάσιο κυρτής (κοίλης) είναι κυρτή (κοίλη). Να γίνει εφαρμογή στις παραπάνω ασκήσεις {,}. 8α. Να βρεθεί ο παρακάτω τύπος για την αλυσωτή η παράγωγο: { = () και = (t)} = (t) με (t) = () (t) + () (t) Να επαληθευτεί για τις συναρτήσεις: = ln, = t 8β. Να διαπιστωθεί ότι η σύνθεση αύξουσας κυρτής με κυρτή είναι κυρτή, και η σύνθεση αύξουσας κοίλης με κοίλη είναι κοίλη. Να εφαρμοστεί στις συναρτήσεις: α + β+ γ e μεα>,(+ ),ln(α+ β), ln, α + β Τι θα ισχύει αν αντί "αύξουσας" έχουμε "φθίνουσα"? 9α. Να βρεθεί ο παρακάτω τύπος για την η παράγωγο αντίστροφης συνάρτησης: 3 = () = () με () = ()/ () Να επαληθευτεί για τις αντίστροφες των συναρτήσεων: = ln, = 9β. Να διαπιστωθεί ότι η αντίστροφη κυρτής συνάρτησης είναι κοίλη αν είναι αύξουσα, κυρτή αν είναι φθίνουσα. Αντίστοιχα για την αντίστροφη κοίλης. Να εφαρμοστεί στις συναρτήσεις: e,, e, 6

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c} I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p EI.. ΜΕΣΟ ΚΟΣΤΟΣ.Μέσο κόστος(α).ελάχιστο μέσο κόστος 3.Μέσο προιόν(a).μέγιστο μέσο προιόν 5.Κερδοφορία. Μέσο κόστος Θεωρούμε το κόστος παραγωγής ενός προιόντος ως συνάρτηση της ποσότητας παραγωγής, και

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος Α Μέρος ΔΙΑΓΩΝΙΣΜΑ 1 1. (3.6 μονάδες) (α). Δίνεται η εξίσωση: = 8. Αν το ελαττωθεί από την τιμή = κατά 1%, να εκτιμηθεί η αντίστοιχη ποσοστιαία μεταβολή στην τιμή του. (β). Να διαπιστωθεί ότι η συνάρτηση

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ IV. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισμός ελαστικότητας 3.Σχετικά διαφορικά 4.Ελαστικότητα αντίστροφης 5.Ομογενείς συναρτήσεις 6.Λογισμός ρυθμών και διαφορικών 7.Λογαριθμική κλίμακα.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος. ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2. ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την

Διαβάστε περισσότερα

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ 1.Περιορισμένη τετραγωνική μορφή. Χαρακτηρισμός πλαισιωμένων συμμετρικών πινάκων 3.Συνθήκες για περιορισμένα τοπικά ακρότατα 4.Περισσότερες μεταβλητές και περιορισμοί 5.Περιορισμένα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται

Διαβάστε περισσότερα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x. Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x) . Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α Όχι βιαστικά, όχι αργά. Στο ρυθµό σου.. Έστω συνάρτηση f ορισµένη στο R µε συνεχή δεύτερη παράγωγο που ικανοποιεί τις σχέσεις f() f () και f ()f() + (f ()) f()f ()

Διαβάστε περισσότερα

α β. M x f x. f x x x = = =.

α β. M x f x. f x x x = = =. Κυρτές συναρτήσεις σηµεία καµπής, Έστω συνάρτηση f συνεχής στο [ α β ] και παραγωγίσιµη στο ( α, β ) (α) Αν η f είναι γνησίως αύξουσα στο ( α, β ), τότε η fείναι κυρτή ή στρέφει τα κοίλα πάνω στο [ α,

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΙΑ Παράδοση

2 η ΕΡΓΑΣΙΑ Παράδοση η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ). ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Σε μια παραγωγική διαδικασία διακρίνουμε τις εισροές (inpts) που αφορούν τους συντελεστές παραγωγής (factors of prodction), και τις εκροές (otpts) που αφορούν

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) Θ) Έστω μία συνάρτηση f η οποία είναι φορές ΠΑΡΑΓΩΓΙΣΙΜΗ στο R και α

Διαβάστε περισσότερα

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x. Ενδεικτικές Λύσεις Διαγωνίσματος (9--9) ΘΕΜΑ Α A. Απόδειξη σχολικού βιβλίου σελ. 5 Α. α. ψ β. Αντιπαράδειγμα σχολικού βιβλίου σελ. 99 Α. Ορισμός σχολικού βιβλίου σελ. 6 Α4. α) Σ β) Λ γ) Λ δ) Σ ε) Λ ΛΥΣΗ

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c, Σύγχρονο www.asma.ro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο sit του φροντιστηρίου. 5ης Μαρτίου ΠΕΤΡΟΥΠΟΛΗ 5

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Παραγώγιση Ντίνα Λύκα Εαρινό Εξάμηνο, 213 lika@biology.uoc.gr Μια συνάρτηση είναι παραγωγίσιμη στο αν και μόνο αν το όριο lim h + h h υπάρχει. Αν το όριο υπάρχει θα το ονομάζουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0, Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα